
Package ‘ggplot2’
May 3, 2022

Version 3.3.6

Title Create Elegant Data Visualisations Using the Grammar of Graphics

Description A system for 'declaratively' creating graphics,
based on ``The Grammar of Graphics''. You provide the data, tell 'ggplot2'
how to map variables to aesthetics, what graphical primitives to use,
and it takes care of the details.

Depends R (>= 3.3)

Imports digest, glue, grDevices, grid, gtable (>= 0.1.1), isoband,
MASS, mgcv, rlang (>= 0.4.10), scales (>= 0.5.0), stats,
tibble, withr (>= 2.0.0)

Suggests covr, ragg, dplyr, ggplot2movies, hexbin, Hmisc, interp,
knitr, lattice, mapproj, maps, maptools, multcomp, munsell,
nlme, profvis, quantreg, RColorBrewer, rgeos, rmarkdown, rpart,
sf (>= 0.7-3), svglite (>= 1.2.0.9001), testthat (>= 2.1.0),
vdiffr (>= 1.0.0), xml2

Enhances sp

License MIT + file LICENSE

URL https://ggplot2.tidyverse.org,

https://github.com/tidyverse/ggplot2

BugReports https://github.com/tidyverse/ggplot2/issues

LazyData true

Collate 'ggproto.r' 'ggplot-global.R' 'aaa-.r'
'aes-colour-fill-alpha.r' 'aes-evaluation.r'
'aes-group-order.r' 'aes-linetype-size-shape.r'
'aes-position.r' 'compat-plyr.R' 'utilities.r' 'aes.r'
'legend-draw.r' 'geom-.r' 'annotation-custom.r'
'annotation-logticks.r' 'geom-polygon.r' 'geom-map.r'
'annotation-map.r' 'geom-raster.r' 'annotation-raster.r'
'annotation.r' 'autolayer.r' 'autoplot.r' 'axis-secondary.R'
'backports.R' 'bench.r' 'bin.R' 'coord-.r' 'coord-cartesian-.r'
'coord-fixed.r' 'coord-flip.r' 'coord-map.r' 'coord-munch.r'
'coord-polar.r' 'coord-quickmap.R' 'coord-sf.R'

1

https://ggplot2.tidyverse.org
https://github.com/tidyverse/ggplot2
https://github.com/tidyverse/ggplot2/issues

2

'coord-transform.r' 'data.R' 'facet-.r' 'facet-grid-.r'
'facet-null.r' 'facet-wrap.r' 'fortify-lm.r' 'fortify-map.r'
'fortify-multcomp.r' 'fortify-spatial.r' 'fortify.r' 'stat-.r'
'geom-abline.r' 'geom-rect.r' 'geom-bar.r' 'geom-bin2d.r'
'geom-blank.r' 'geom-boxplot.r' 'geom-col.r' 'geom-path.r'
'geom-contour.r' 'geom-count.r' 'geom-crossbar.r'
'geom-segment.r' 'geom-curve.r' 'geom-defaults.r'
'geom-ribbon.r' 'geom-density.r' 'geom-density2d.r'
'geom-dotplot.r' 'geom-errorbar.r' 'geom-errorbarh.r'
'geom-freqpoly.r' 'geom-function.R' 'geom-hex.r'
'geom-histogram.r' 'geom-hline.r' 'geom-jitter.r'
'geom-label.R' 'geom-linerange.r' 'geom-point.r'
'geom-pointrange.r' 'geom-quantile.r' 'geom-rug.r' 'geom-sf.R'
'geom-smooth.r' 'geom-spoke.r' 'geom-text.r' 'geom-tile.r'
'geom-violin.r' 'geom-vline.r' 'ggplot2.r' 'grob-absolute.r'
'grob-dotstack.r' 'grob-null.r' 'grouping.r' 'guide-bins.R'
'guide-colorbar.r' 'guide-colorsteps.R' 'guide-legend.r'
'guides-.r' 'guides-axis.r' 'guides-grid.r' 'guides-none.r'
'hexbin.R' 'labeller.r' 'labels.r' 'layer.r' 'layer-sf.R'
'layout.R' 'limits.r' 'margins.R' 'performance.R'
'plot-build.r' 'plot-construction.r' 'plot-last.r' 'plot.r'
'position-.r' 'position-collide.r' 'position-dodge.r'
'position-dodge2.r' 'position-identity.r' 'position-jitter.r'
'position-jitterdodge.R' 'position-nudge.R' 'position-stack.r'
'quick-plot.r' 'range.r' 'reshape-add-margins.R' 'save.r'
'scale-.r' 'scale-alpha.r' 'scale-binned.R' 'scale-brewer.r'
'scale-colour.r' 'scale-continuous.r' 'scale-date.r'
'scale-discrete-.r' 'scale-expansion.r' 'scale-gradient.r'
'scale-grey.r' 'scale-hue.r' 'scale-identity.r'
'scale-linetype.r' 'scale-manual.r' 'scale-shape.r'
'scale-size.r' 'scale-steps.R' 'scale-type.R' 'scale-view.r'
'scale-viridis.r' 'scales-.r' 'stat-bin.r' 'stat-bin2d.r'
'stat-bindot.r' 'stat-binhex.r' 'stat-boxplot.r'
'stat-contour.r' 'stat-count.r' 'stat-density-2d.r'
'stat-density.r' 'stat-ecdf.r' 'stat-ellipse.R'
'stat-function.r' 'stat-identity.r' 'stat-qq-line.R'
'stat-qq.r' 'stat-quantile.r' 'stat-sf-coordinates.R'
'stat-sf.R' 'stat-smooth-methods.r' 'stat-smooth.r'
'stat-sum.r' 'stat-summary-2d.r' 'stat-summary-bin.R'
'stat-summary-hex.r' 'stat-summary.r' 'stat-unique.r'
'stat-ydensity.r' 'summarise-plot.R' 'summary.r'
'theme-elements.r' 'theme.r' 'theme-defaults.r'
'theme-current.R' 'translate-qplot-ggplot.r'
'translate-qplot-lattice.r' 'utilities-break.r'
'utilities-grid.r' 'utilities-help.r' 'utilities-matrix.r'
'utilities-resolution.r' 'utilities-table.r'
'utilities-tidy-eval.R' 'zxx.r' 'zzz.r'

VignetteBuilder knitr

R topics documented: 3

RoxygenNote 7.1.1

Encoding UTF-8

Config/Needs/website ggtext, tidyr, forcats, tidyverse/tidytemplate

NeedsCompilation no

Author Hadley Wickham [aut] (<https://orcid.org/0000-0003-4757-117X>),
Winston Chang [aut] (<https://orcid.org/0000-0002-1576-2126>),
Lionel Henry [aut],
Thomas Lin Pedersen [aut, cre]

(<https://orcid.org/0000-0002-5147-4711>),
Kohske Takahashi [aut],
Claus Wilke [aut] (<https://orcid.org/0000-0002-7470-9261>),
Kara Woo [aut] (<https://orcid.org/0000-0002-5125-4188>),
Hiroaki Yutani [aut] (<https://orcid.org/0000-0002-3385-7233>),
Dewey Dunnington [aut] (<https://orcid.org/0000-0002-9415-4582>),
RStudio [cph, fnd]

Maintainer Thomas Lin Pedersen <thomas.pedersen@rstudio.com>

Repository CRAN

Date/Publication 2022-05-03 07:00:14 UTC

R topics documented:
+.gg . 6
aes . 7
aes_ . 9
aes_colour_fill_alpha . 10
aes_eval . 12
aes_group_order . 13
aes_linetype_size_shape . 15
aes_position . 16
annotate . 18
annotation_custom . 19
annotation_logticks . 20
annotation_map . 22
annotation_raster . 24
autolayer . 25
autoplot . 25
borders . 26
CoordSf . 28
coord_cartesian . 34
coord_fixed . 35
coord_flip . 36
coord_map . 37
coord_polar . 40
coord_trans . 41
cut_interval . 44
diamonds . 45

https://orcid.org/0000-0003-4757-117X
https://orcid.org/0000-0002-1576-2126
https://orcid.org/0000-0002-5147-4711
https://orcid.org/0000-0002-7470-9261
https://orcid.org/0000-0002-5125-4188
https://orcid.org/0000-0002-3385-7233
https://orcid.org/0000-0002-9415-4582

4 R topics documented:

draw_key . 46
economics . 47
expand_limits . 48
expansion . 48
facet_grid . 49
facet_wrap . 52
faithfuld . 54
fortify . 55
geom_abline . 55
geom_bar . 58
geom_bin_2d . 62
geom_blank . 64
geom_boxplot . 65
geom_contour . 69
geom_count . 74
geom_crossbar . 77
geom_density . 80
geom_density_2d . 84
geom_dotplot . 88
geom_errorbarh . 92
geom_freqpoly . 94
geom_function . 99
geom_hex . 102
geom_jitter . 104
geom_label . 106
geom_map . 111
geom_path . 114
geom_point . 118
geom_polygon . 120
geom_qq_line . 123
geom_quantile . 127
geom_raster . 129
geom_ribbon . 132
geom_rug . 135
geom_segment . 138
geom_smooth . 141
geom_spoke . 145
geom_violin . 147
get_alt_text . 151
ggplot . 152
ggproto . 154
ggsave . 155
ggtheme . 157
guides . 160
guide_axis . 162
guide_bins . 163
guide_colourbar . 165
guide_coloursteps . 170

R topics documented: 5

guide_legend . 172
guide_none . 175
hmisc . 176
labeller . 177
labellers . 179
label_bquote . 181
labs . 182
lims . 183
luv_colours . 185
margin . 186
mean_se . 188
midwest . 189
mpg . 190
msleep . 191
position_dodge . 192
position_identity . 194
position_jitter . 194
position_jitterdodge . 195
position_nudge . 196
position_stack . 197
presidential . 200
print.ggplot . 200
print.ggproto . 201
qplot . 202
resolution . 204
scale_alpha . 205
scale_binned . 206
scale_colour_brewer . 208
scale_colour_continuous . 211
scale_colour_discrete . 213
scale_colour_gradient . 215
scale_colour_grey . 220
scale_colour_hue . 222
scale_colour_steps . 225
scale_colour_viridis_d . 229
scale_continuous . 232
scale_date . 236
scale_identity . 240
scale_linetype . 241
scale_manual . 243
scale_shape . 246
scale_size . 248
scale_x_discrete . 251
seals . 254
sec_axis . 254
stat_ecdf . 256
stat_ellipse . 258
stat_identity . 260

6 +.gg

stat_sf_coordinates . 261
stat_summary_2d . 263
stat_summary_bin . 266
stat_unique . 270
theme . 272
theme_get . 279
txhousing . 281
vars . 282

Index 284

+.gg Add components to a plot

Description

+ is the key to constructing sophisticated ggplot2 graphics. It allows you to start simple, then get
more and more complex, checking your work at each step.

Usage

S3 method for class 'gg'
e1 + e2

e1 %+% e2

Arguments

e1 An object of class ggplot() or a theme().

e2 A plot component, as described below.

What can you add?

You can add any of the following types of objects:

• An aes() object replaces the default aesthetics.

• A layer created by a geom_ or stat_ function adds a new layer.

• A scale overrides the existing scale.

• A theme() modifies the current theme.

• A coord overrides the current coordinate system.

• A facet specification overrides the current faceting.

To replace the current default data frame, you must use %+%, due to S3 method precedence issues.

You can also supply a list, in which case each element of the list will be added in turn.

See Also

theme()

aes 7

Examples

base <-
ggplot(mpg, aes(displ, hwy)) +
geom_point()

base + geom_smooth()

To override the data, you must use %+%
base %+% subset(mpg, fl == "p")

Alternatively, you can add multiple components with a list.
This can be useful to return from a function.
base + list(subset(mpg, fl == "p"), geom_smooth())

aes Construct aesthetic mappings

Description

Aesthetic mappings describe how variables in the data are mapped to visual properties (aesthetics)
of geoms. Aesthetic mappings can be set in ggplot() and in individual layers.

Usage

aes(x, y, ...)

Arguments

x, y, ... List of name-value pairs in the form aesthetic = variable describing which
variables in the layer data should be mapped to which aesthetics used by the
paired geom/stat. The expression variable is evaluated within the layer data, so
there is no need to refer to the original dataset (i.e., use ggplot(df, aes(variable))
instead of ggplot(df, aes(df$variable))). The names for x and y aesthetics
are typically omitted because they are so common; all other aesthetics must be
named.

Details

This function also standardises aesthetic names by converting color to colour (also in substrings,
e.g., point_color to point_colour) and translating old style R names to ggplot names (e.g., pch
to shape and cex to size).

Value

A list with class uneval. Components of the list are either quosures or constants.

8 aes

Quasiquotation

aes() is a quoting function. This means that its inputs are quoted to be evaluated in the context of
the data. This makes it easy to work with variables from the data frame because you can name those
directly. The flip side is that you have to use quasiquotation to program with aes(). See a tidy
evaluation tutorial such as the dplyr programming vignette to learn more about these techniques.

See Also

vars() for another quoting function designed for faceting specifications.

Examples

aes(x = mpg, y = wt)
aes(mpg, wt)

You can also map aesthetics to functions of variables
aes(x = mpg ^ 2, y = wt / cyl)

Or to constants
aes(x = 1, colour = "smooth")

Aesthetic names are automatically standardised
aes(col = x)
aes(fg = x)
aes(color = x)
aes(colour = x)

aes() is passed to either ggplot() or specific layer. Aesthetics supplied
to ggplot() are used as defaults for every layer.
ggplot(mpg, aes(displ, hwy)) + geom_point()
ggplot(mpg) + geom_point(aes(displ, hwy))

Tidy evaluation --
aes() automatically quotes all its arguments, so you need to use tidy
evaluation to create wrappers around ggplot2 pipelines. The
simplest case occurs when your wrapper takes dots:
scatter_by <- function(data, ...) {

ggplot(data) + geom_point(aes(...))
}
scatter_by(mtcars, disp, drat)

If your wrapper has a more specific interface with named arguments,
you need "enquote and unquote":
scatter_by <- function(data, x, y) {

x <- enquo(x)
y <- enquo(y)

ggplot(data) + geom_point(aes(!!x, !!y))
}
scatter_by(mtcars, disp, drat)

Note that users of your wrapper can use their own functions in the

https://dplyr.tidyverse.org/articles/programming.html

aes_ 9

quoted expressions and all will resolve as it should!
cut3 <- function(x) cut_number(x, 3)
scatter_by(mtcars, cut3(disp), drat)

aes_ Define aesthetic mappings programmatically

Description

Aesthetic mappings describe how variables in the data are mapped to visual properties (aesthet-
ics) of geoms. aes() uses non-standard evaluation to capture the variable names. aes_() and
aes_string() require you to explicitly quote the inputs either with "" for aes_string(), or with
quote or ~ for aes_(). (aes_q() is an alias to aes_()). This makes aes_() and aes_string()
easy to program with.

Usage

aes_(x, y, ...)

aes_string(x, y, ...)

aes_q(x, y, ...)

Arguments

x, y, ... List of name value pairs. Elements must be either quoted calls, strings, one-
sided formulas or constants.

Details

aes_string() and aes_() are particularly useful when writing functions that create plots because
you can use strings or quoted names/calls to define the aesthetic mappings, rather than having to
use substitute() to generate a call to aes().

I recommend using aes_(), because creating the equivalents of aes(colour = "my colour") or
aes(x = `X$1`) with aes_string() is quite clunky.

Life cycle

All these functions are soft-deprecated. Please use tidy evaluation idioms instead (see the quasiquo-
tation section in aes() documentation).

See Also

aes()

10 aes_colour_fill_alpha

Examples

Three ways of generating the same aesthetics
aes(mpg, wt, col = cyl)
aes_(quote(mpg), quote(wt), col = quote(cyl))
aes_(~mpg, ~wt, col = ~cyl)
aes_string("mpg", "wt", col = "cyl")

You can't easily mimic these calls with aes_string
aes(`$100`, colour = "smooth")
aes_(~ `$100`, colour = "smooth")
Ok, you can, but it requires a _lot_ of quotes
aes_string("`$100`", colour = '"smooth"')

Convert strings to names with as.name
var <- "cyl"
aes(col = x)
aes_(col = as.name(var))

aes_colour_fill_alpha Colour related aesthetics: colour, fill, and alpha

Description

These aesthetics parameters change the colour (colour and fill) and the opacity (alpha) of geom
elements on a plot. Almost every geom has either colour or fill (or both), as well as can have their
alpha modified. Modifying colour on a plot is a useful way to enhance the presentation of data,
often especially when a plot graphs more than two variables.

Colour and fill

Colours and fills can be specified in the following ways:

• A name, e.g., "red". R has 657 built-in named colours, which can be listed with grDevices::colors().

• An rgb specification, with a string of the form "#RRGGBB" where each of the pairs RR, GG, BB
consists of two hexadecimal digits giving a value in the range 00 to FF. You can optionally
make the colour transparent by using the form "#RRGGBBAA".

• An NA, for a completely transparent colour.

Alpha

Alpha refers to the opacity of a geom. Values of alpha range from 0 to 1, with lower values
corresponding to more transparent colors.

Alpha can additionally be modified through the colour or fill aesthetic if either aesthetic provides
color values using an rgb specification ("#RRGGBBAA"), where AA refers to transparency values.

aes_colour_fill_alpha 11

See Also

• Other options for modifying colour: scale_colour_brewer(), scale_colour_gradient(),
scale_colour_grey(), scale_colour_hue(), scale_colour_identity(), scale_colour_manual(),
scale_colour_viridis_d()

• Other options for modifying fill: scale_fill_brewer(), scale_fill_gradient(), scale_fill_grey(),
scale_fill_hue(), scale_fill_identity(), scale_fill_manual(), scale_fill_viridis_d()

• Other options for modifying alpha: scale_alpha()

• Run vignette("ggplot2-specs") to see an overview of other aesthestics that can be modi-
fied.

Examples

Bar chart example
p <- ggplot(mtcars, aes(factor(cyl)))
Default plotting
p + geom_bar()
To change the interior colouring use fill aesthetic
p + geom_bar(fill = "red")
Compare with the colour aesthetic which changes just the bar outline
p + geom_bar(colour = "red")
Combining both, you can see the changes more clearly
p + geom_bar(fill = "white", colour = "red")
Both colour and fill can take an rgb specification.
p + geom_bar(fill = "#00abff")
Use NA for a completely transparent colour.
p + geom_bar(fill = NA, colour = "#00abff")

Colouring scales differ depending on whether a discrete or
continuous variable is being mapped. For example, when mapping
fill to a factor variable, a discrete colour scale is used.
ggplot(mtcars, aes(factor(cyl), fill = factor(vs))) + geom_bar()

When mapping fill to continuous variable a continuous colour
scale is used.
ggplot(faithfuld, aes(waiting, eruptions)) +

geom_raster(aes(fill = density))

Some geoms only use the colour aesthetic but not the fill
aesthetic (e.g. geom_point() or geom_line()).
p <- ggplot(economics, aes(x = date, y = unemploy))
p + geom_line()
p + geom_line(colour = "green")
p + geom_point()
p + geom_point(colour = "red")

For large datasets with overplotting the alpha
aesthetic will make the points more transparent.
df <- data.frame(x = rnorm(5000), y = rnorm(5000))
p <- ggplot(df, aes(x,y))

12 aes_eval

p + geom_point()
p + geom_point(alpha = 0.5)
p + geom_point(alpha = 1/10)

Alpha can also be used to add shading.
p <- ggplot(economics, aes(x = date, y = unemploy)) + geom_line()
p
yrng <- range(economics$unemploy)
p <- p +

geom_rect(
aes(NULL, NULL, xmin = start, xmax = end, fill = party),
ymin = yrng[1], ymax = yrng[2], data = presidential

)
p
p + scale_fill_manual(values = alpha(c("blue", "red"), .3))

aes_eval Control aesthetic evaluation

Description

Most aesthetics are mapped from variables found in the data. Sometimes, however, you want to
delay the mapping until later in the rendering process. ggplot2 has three stages of the data that you
can map aesthetics from. The default is to map at the beginning, using the layer data provided by
the user. The second stage is after the data has been transformed by the layer stat. The third and
last stage is after the data has been transformed and mapped by the plot scales. The most common
example of mapping from stat transformed data is the height of bars in geom_histogram(): the
height does not come from a variable in the underlying data, but is instead mapped to the count
computed by stat_bin(). An example of mapping from scaled data could be to use a desaturated
version of the stroke colour for fill. If you want to map directly from the layer data you should not
do anything special. In order to map from stat transformed data you should use the after_stat()
function to flag that evaluation of the aesthetic mapping should be postponed until after stat trans-
formation. Similarly, you should use after_scale() to flag evaluation of mapping for after data
has been scaled. If you want to map the same aesthetic multiple times, e.g. map x to a data col-
umn for the stat, but remap it for the geom, you can use the stage() function to collect multiple
mappings.

Usage

after_stat(x)

after_scale(x)

stage(start = NULL, after_stat = NULL, after_scale = NULL)

aes_group_order 13

Arguments

x An aesthetic expression using variables calculated by the stat (after_stat())
or layer aesthetics (after_scale()).

start An aesthetic expression using variables from the layer data.

after_stat An aesthetic expression using variables calculated by the stat.

after_scale An aesthetic expression using layer aesthetics.

Details

after_stat() replaces the old approaches of using either stat() or surrounding the variable
names with ...

Note

Evaluation after stat transformation will only have access to the variables calculated by the stat.
Evaluation after scaling will only have access to the final aesthetics of the layer (including non-
mapped, default aesthetics). The original layer data can only be accessed at the first stage.

Examples

Default histogram display
ggplot(mpg, aes(displ)) +

geom_histogram(aes(y = after_stat(count)))

Scale tallest bin to 1
ggplot(mpg, aes(displ)) +

geom_histogram(aes(y = after_stat(count / max(count))))

Use a transparent version of colour for fill
ggplot(mpg, aes(class, hwy)) +

geom_boxplot(aes(colour = class, fill = after_scale(alpha(colour, 0.4))))

Use stage to modify the scaled fill
ggplot(mpg, aes(class, hwy)) +

geom_boxplot(aes(fill = stage(class, after_scale = alpha(fill, 0.4))))

aes_group_order Aesthetics: grouping

Description

The group aesthetic is by default set to the interaction of all discrete variables in the plot. This
choice often partitions the data correctly, but when it does not, or when no discrete variable is used
in the plot, you will need to explicitly define the grouping structure by mapping group to a variable
that has a different value for each group.

14 aes_group_order

Details

For most applications the grouping is set implicitly by mapping one or more discrete variables to
x, y, colour, fill, alpha, shape, size, and/or linetype. This is demonstrated in the examples
below.

There are three common cases where the default does not display the data correctly. The exam-
ples below use a longitudinal dataset, Oxboys, from the nlme package to demonstrate these cases.
Oxboys records the heights (height) and centered ages (age) of 26 boys (Subject), measured on nine
occasions (Occasion).

See Also

• Geoms commonly used with groups: geom_bar(), geom_histogram(), geom_line()

• Run vignette("ggplot2-specs") to see an overview of other aesthestics that can be modi-
fied.

Examples

p <- ggplot(mtcars, aes(wt, mpg))
A basic scatter plot
p + geom_point(size = 4)
Using the colour aesthetic
p + geom_point(aes(colour = factor(cyl)), size = 4)
Using the shape aesthetic
p + geom_point(aes(shape = factor(cyl)), size = 4)

Using fill
p <- ggplot(mtcars, aes(factor(cyl)))
p + geom_bar()
p + geom_bar(aes(fill = factor(cyl)))
p + geom_bar(aes(fill = factor(vs)))

Using linetypes
ggplot(economics_long, aes(date, value01)) +

geom_line(aes(linetype = variable))

Multiple groups with one aesthetic
p <- ggplot(nlme::Oxboys, aes(age, height))
The default is not sufficient here. A single line tries to connect all
the observations.
p + geom_line()
To fix this, use the group aesthetic to map a different line for each
subject.
p + geom_line(aes(group = Subject))

Different groups on different layers
p <- p + geom_line(aes(group = Subject))
Using the group aesthetic with both geom_line() and geom_smooth()
groups the data the same way for both layers
p + geom_smooth(aes(group = Subject), method = "lm", se = FALSE)

aes_linetype_size_shape 15

Changing the group aesthetic for the smoother layer
fits a single line of best fit across all boys
p + geom_smooth(aes(group = 1), size = 2, method = "lm", se = FALSE)

Overriding the default grouping
Sometimes the plot has a discrete scale but you want to draw lines
that connect across groups. This is the strategy used in interaction
plots, profile plots, and parallel coordinate plots, among others.
For example, we draw boxplots of height at each measurement occasion.
p <- ggplot(nlme::Oxboys, aes(Occasion, height)) + geom_boxplot()
p
There is no need to specify the group aesthetic here; the default grouping
works because occasion is a discrete variable. To overlay individual
trajectories, we again need to override the default grouping for that layer
with aes(group = Subject)
p + geom_line(aes(group = Subject), colour = "blue")

aes_linetype_size_shape

Differentiation related aesthetics: linetype, size, shape

Description

The linetype, size, and shape aesthetics modify the appearance of lines and/or points. They also
apply to the outlines of polygons (linetype and size) or to text (size).

The linetype aesthetic can be specified with either an integer (0-6), a name (0 = blank, 1 = solid, 2
= dashed, 3 = dotted, 4 = dotdash, 5 = longdash, 6 = twodash), a mapping to a discrete variable, or a
string of an even number (up to eight) of hexadecimal digits which give the lengths in consecutive
positions in the string. See examples for a hex string demonstration.

The size aesthetic can be specified with a numerical value (in millimetres) or via a mapping to a
continuous variable.

The shape aesthetic can be specified with an integer (between 0 and 25), a single character (which
uses that character as the plotting symbol), a . to draw the smallest rectangle that is visible (i.e.,
about one pixel), an NA to draw nothing, or a mapping to a discrete variable. Symbols and filled
shapes are described in the examples below.

See Also

• geom_line() and geom_point() for geoms commonly used with these aesthetics.

• aes_group_order() for using linetype, size, or shape for grouping.

• Run vignette("ggplot2-specs") to see an overview of other aesthestics that can be modi-
fied.

16 aes_position

Examples

df <- data.frame(x = 1:10 , y = 1:10)
p <- ggplot(df, aes(x, y))
p + geom_line(linetype = 2)
p + geom_line(linetype = "dotdash")

An example with hex strings; the string "33" specifies three units on followed
by three off and "3313" specifies three units on followed by three off followed
by one on and finally three off.
p + geom_line(linetype = "3313")

Mapping line type from a grouping variable
ggplot(economics_long, aes(date, value01)) +

geom_line(aes(linetype = variable))

Size examples
p <- ggplot(mtcars, aes(wt, mpg))
p + geom_point(size = 4)
p + geom_point(aes(size = qsec))
p + geom_point(size = 2.5) +

geom_hline(yintercept = 25, size = 3.5)

Shape examples
p + geom_point()
p + geom_point(shape = 5)
p + geom_point(shape = "k", size = 3)
p + geom_point(shape = ".")
p + geom_point(shape = NA)
p + geom_point(aes(shape = factor(cyl)))

A look at all 25 symbols
df2 <- data.frame(x = 1:5 , y = 1:25, z = 1:25)
p <- ggplot(df2, aes(x, y))
p + geom_point(aes(shape = z), size = 4) +

scale_shape_identity()
While all symbols have a foreground colour, symbols 19-25 also take a
background colour (fill)
p + geom_point(aes(shape = z), size = 4, colour = "Red") +

scale_shape_identity()
p + geom_point(aes(shape = z), size = 4, colour = "Red", fill = "Black") +

scale_shape_identity()

aes_position Position related aesthetics: x, y, xmin, xmax, ymin, ymax, xend, yend

Description

The following aesthetics can be used to specify the position of elements: x, y, xmin, xmax, ymin,
ymax, xend, yend.

aes_position 17

Details

x and y define the locations of points or of positions along a line or path.

x, y and xend, yend define the starting and ending points of segment and curve geometries.

xmin, xmax, ymin and ymax can be used to specify the position of annotations and to represent
rectangular areas.

See Also

• Geoms that commonly use these aesthetics: geom_crossbar(), geom_curve(), geom_errorbar(),
geom_line(), geom_linerange(), geom_path(), geom_point(), geom_pointrange(), geom_rect(),
geom_segment()

• See also annotate() for placing annotations.

Examples

Generate data: means and standard errors of means for prices
for each type of cut
dmod <- lm(price ~ cut, data = diamonds)
cut <- unique(diamonds$cut)
cuts_df <- data.frame(

cut,
predict(dmod, data.frame(cut), se = TRUE)[c("fit", "se.fit")]

)
ggplot(cuts_df) +

aes(
x = cut,
y = fit,
ymin = fit - se.fit,
ymax = fit + se.fit,
colour = cut
) +
geom_pointrange()

Using annotate
p <- ggplot(mtcars, aes(x = wt, y = mpg)) + geom_point()
p
p + annotate(

"rect", xmin = 2, xmax = 3.5, ymin = 2, ymax = 25,
fill = "dark grey", alpha = .5

)

Geom_segment examples
p + geom_segment(

aes(x = 2, y = 15, xend = 2, yend = 25),
arrow = arrow(length = unit(0.5, "cm"))

)
p + geom_segment(

aes(x = 2, y = 15, xend = 3, yend = 15),
arrow = arrow(length = unit(0.5, "cm"))

18 annotate

)
p + geom_segment(

aes(x = 5, y = 30, xend = 3.5, yend = 25),
arrow = arrow(length = unit(0.5, "cm"))

)

You can also use geom_segment() to recreate plot(type = "h")
from base R:
counts <- as.data.frame(table(x = rpois(100, 5)))
counts$x <- as.numeric(as.character(counts$x))
with(counts, plot(x, Freq, type = "h", lwd = 10))

ggplot(counts, aes(x = x, y = Freq)) +
geom_segment(aes(yend = 0, xend = x), size = 10)

annotate Create an annotation layer

Description

This function adds geoms to a plot, but unlike typical a geom function, the properties of the geoms
are not mapped from variables of a data frame, but are instead passed in as vectors. This is useful
for adding small annotations (such as text labels) or if you have your data in vectors, and for some
reason don’t want to put them in a data frame.

Usage

annotate(
geom,
x = NULL,
y = NULL,
xmin = NULL,
xmax = NULL,
ymin = NULL,
ymax = NULL,
xend = NULL,
yend = NULL,
...,
na.rm = FALSE

)

Arguments

geom name of geom to use for annotation
x, y, xmin, ymin, xmax, ymax, xend, yend

positioning aesthetics - you must specify at least one of these.
... Other arguments passed on to layer(). These are often aesthetics, used to set

an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

annotation_custom 19

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

Details

Note that all position aesthetics are scaled (i.e. they will expand the limits of the plot so they are
visible), but all other aesthetics are set. This means that layers created with this function will never
affect the legend.

Examples

p <- ggplot(mtcars, aes(x = wt, y = mpg)) + geom_point()
p + annotate("text", x = 4, y = 25, label = "Some text")
p + annotate("text", x = 2:5, y = 25, label = "Some text")
p + annotate("rect", xmin = 3, xmax = 4.2, ymin = 12, ymax = 21,

alpha = .2)
p + annotate("segment", x = 2.5, xend = 4, y = 15, yend = 25,

colour = "blue")
p + annotate("pointrange", x = 3.5, y = 20, ymin = 12, ymax = 28,

colour = "red", size = 1.5)

p + annotate("text", x = 2:3, y = 20:21, label = c("my label", "label 2"))

p + annotate("text", x = 4, y = 25, label = "italic(R) ^ 2 == 0.75",
parse = TRUE)

p + annotate("text", x = 4, y = 25,
label = "paste(italic(R) ^ 2, \" = .75\")", parse = TRUE)

annotation_custom Annotation: Custom grob

Description

This is a special geom intended for use as static annotations that are the same in every panel. These
annotations will not affect scales (i.e. the x and y axes will not grow to cover the range of the grob,
and the grob will not be modified by any ggplot settings or mappings).

Usage

annotation_custom(grob, xmin = -Inf, xmax = Inf, ymin = -Inf, ymax = Inf)

Arguments

grob grob to display

xmin, xmax x location (in data coordinates) giving horizontal location of raster

ymin, ymax y location (in data coordinates) giving vertical location of raster

20 annotation_logticks

Details

Most useful for adding tables, inset plots, and other grid-based decorations.

Note

annotation_custom() expects the grob to fill the entire viewport defined by xmin, xmax, ymin,
ymax. Grobs with a different (absolute) size will be center-justified in that region. Inf values can be
used to fill the full plot panel (see examples).

Examples

Dummy plot
df <- data.frame(x = 1:10, y = 1:10)
base <- ggplot(df, aes(x, y)) +

geom_blank() +
theme_bw()

Full panel annotation
base + annotation_custom(

grob = grid::roundrectGrob(),
xmin = -Inf, xmax = Inf, ymin = -Inf, ymax = Inf

)

Inset plot
df2 <- data.frame(x = 1 , y = 1)
g <- ggplotGrob(ggplot(df2, aes(x, y)) +

geom_point() +
theme(plot.background = element_rect(colour = "black")))

base +
annotation_custom(grob = g, xmin = 1, xmax = 10, ymin = 8, ymax = 10)

annotation_logticks Annotation: log tick marks

Description

This annotation adds log tick marks with diminishing spacing. These tick marks probably make
sense only for base 10.

Usage

annotation_logticks(
base = 10,
sides = "bl",
outside = FALSE,
scaled = TRUE,
short = unit(0.1, "cm"),
mid = unit(0.2, "cm"),

annotation_logticks 21

long = unit(0.3, "cm"),
colour = "black",
size = 0.5,
linetype = 1,
alpha = 1,
color = NULL,
...

)

Arguments

base the base of the log (default 10)

sides a string that controls which sides of the plot the log ticks appear on. It can be set
to a string containing any of "trbl", for top, right, bottom, and left.

outside logical that controls whether to move the log ticks outside of the plot area.
Default is off (FALSE). You will also need to use coord_cartesian(clip =
"off"). See examples.

scaled is the data already log-scaled? This should be TRUE (default) when the data is
already transformed with log10() or when using scale_y_log10(). It should
be FALSE when using coord_trans(y = "log10").

short a grid::unit() object specifying the length of the short tick marks

mid a grid::unit() object specifying the length of the middle tick marks. In base
10, these are the "5" ticks.

long a grid::unit() object specifying the length of the long tick marks. In base 10,
these are the "1" (or "10") ticks.

colour Colour of the tick marks.

size Thickness of tick marks, in mm.

linetype Linetype of tick marks (solid, dashed, etc.)

alpha The transparency of the tick marks.

color An alias for colour.

... Other parameters passed on to the layer

See Also

scale_y_continuous(), scale_y_log10() for log scale transformations.

coord_trans() for log coordinate transformations.

Examples

Make a log-log plot (without log ticks)
a <- ggplot(msleep, aes(bodywt, brainwt)) +
geom_point(na.rm = TRUE) +
scale_x_log10(
breaks = scales::trans_breaks("log10", function(x) 10^x),
labels = scales::trans_format("log10", scales::math_format(10^.x))

) +

22 annotation_map

scale_y_log10(
breaks = scales::trans_breaks("log10", function(x) 10^x),
labels = scales::trans_format("log10", scales::math_format(10^.x))

) +
theme_bw()

a + annotation_logticks() # Default: log ticks on bottom and left
a + annotation_logticks(sides = "lr") # Log ticks for y, on left and right
a + annotation_logticks(sides = "trbl") # All four sides

a + annotation_logticks(sides = "lr", outside = TRUE) +
coord_cartesian(clip = "off") # Ticks outside plot

Hide the minor grid lines because they don't align with the ticks
a + annotation_logticks(sides = "trbl") + theme(panel.grid.minor = element_blank())

Another way to get the same results as 'a' above: log-transform the data before
plotting it. Also hide the minor grid lines.
b <- ggplot(msleep, aes(log10(bodywt), log10(brainwt))) +
geom_point(na.rm = TRUE) +
scale_x_continuous(name = "body", labels = scales::math_format(10^.x)) +
scale_y_continuous(name = "brain", labels = scales::math_format(10^.x)) +
theme_bw() + theme(panel.grid.minor = element_blank())

b + annotation_logticks()

Using a coordinate transform requires scaled = FALSE
t <- ggplot(msleep, aes(bodywt, brainwt)) +

geom_point() +
coord_trans(x = "log10", y = "log10") +
theme_bw()

t + annotation_logticks(scaled = FALSE)

Change the length of the ticks
a + annotation_logticks(

short = unit(.5,"mm"),
mid = unit(3,"mm"),
long = unit(4,"mm")

)

annotation_map Annotation: a map

Description

Display a fixed map on a plot. This function predates the geom_sf() framework and does not work
with sf geometry columns as input. However, it can be used in conjunction with geom_sf() layers
and/or coord_sf() (see examples).

annotation_map 23

Usage

annotation_map(map, ...)

Arguments

map Data frame representing a map. See geom_map() for details.

... Other arguments used to modify visual parameters, such as colour or fill.

Examples

Not run:
if (requireNamespace("maps", quietly = TRUE)) {
location of cities in North Carolina
df <- data.frame(

name = c("Charlotte", "Raleigh", "Greensboro"),
lat = c(35.227, 35.772, 36.073),
long = c(-80.843, -78.639, -79.792)

)

p <- ggplot(df, aes(x = long, y = lat)) +
annotation_map(
map_data("state"),
fill = "antiquewhite", colour = "darkgrey"

) +
geom_point(color = "blue") +
geom_text(

aes(label = name),
hjust = 1.105, vjust = 1.05, color = "blue"

)

use without coord_sf() is possible but not recommended
p + xlim(-84, -76) + ylim(34, 37.2)

if (requireNamespace("sf", quietly = TRUE)) {
use with coord_sf() for appropriate projection
p +

coord_sf(
crs = st_crs(3347),
default_crs = st_crs(4326), # data is provided as long-lat
xlim = c(-84, -76),
ylim = c(34, 37.2)

)

you can mix annotation_map() and geom_sf()
nc <- sf::st_read(system.file("shape/nc.shp", package = "sf"), quiet = TRUE)
p +

geom_sf(
data = nc, inherit.aes = FALSE,
fill = NA, color = "black", size = 0.1

) +
coord_sf(crs = st_crs(3347), default_crs = st_crs(4326))

}}

24 annotation_raster

End(Not run)

annotation_raster Annotation: high-performance rectangular tiling

Description

This is a special version of geom_raster() optimised for static annotations that are the same in
every panel. These annotations will not affect scales (i.e. the x and y axes will not grow to cover
the range of the raster, and the raster must already have its own colours). This is useful for adding
bitmap images.

Usage

annotation_raster(raster, xmin, xmax, ymin, ymax, interpolate = FALSE)

Arguments

raster raster object to display, may be an array or a nativeRaster

xmin, xmax x location (in data coordinates) giving horizontal location of raster

ymin, ymax y location (in data coordinates) giving vertical location of raster

interpolate If TRUE interpolate linearly, if FALSE (the default) don’t interpolate.

Examples

Generate data
rainbow <- matrix(hcl(seq(0, 360, length.out = 50 * 50), 80, 70), nrow = 50)
ggplot(mtcars, aes(mpg, wt)) +

geom_point() +
annotation_raster(rainbow, 15, 20, 3, 4)

To fill up whole plot
ggplot(mtcars, aes(mpg, wt)) +

annotation_raster(rainbow, -Inf, Inf, -Inf, Inf) +
geom_point()

rainbow2 <- matrix(hcl(seq(0, 360, length.out = 10), 80, 70), nrow = 1)
ggplot(mtcars, aes(mpg, wt)) +

annotation_raster(rainbow2, -Inf, Inf, -Inf, Inf) +
geom_point()

rainbow2 <- matrix(hcl(seq(0, 360, length.out = 10), 80, 70), nrow = 1)
ggplot(mtcars, aes(mpg, wt)) +

annotation_raster(rainbow2, -Inf, Inf, -Inf, Inf, interpolate = TRUE) +
geom_point()

autolayer 25

autolayer Create a ggplot layer appropriate to a particular data type

Description

autolayer() uses ggplot2 to draw a particular layer for an object of a particular class in a single
command. This defines the S3 generic that other classes and packages can extend.

Usage

autolayer(object, ...)

Arguments

object an object, whose class will determine the behaviour of autolayer

... other arguments passed to specific methods

Value

a ggplot layer

See Also

autoplot(), ggplot() and fortify()

autoplot Create a complete ggplot appropriate to a particular data type

Description

autoplot() uses ggplot2 to draw a particular plot for an object of a particular class in a single
command. This defines the S3 generic that other classes and packages can extend.

Usage

autoplot(object, ...)

Arguments

object an object, whose class will determine the behaviour of autoplot

... other arguments passed to specific methods

Value

a ggplot object

26 borders

See Also

autolayer(), ggplot() and fortify()

borders Create a layer of map borders

Description

This is a quick and dirty way to get map data (from the maps package) on to your plot. This is
a good place to start if you need some crude reference lines, but you’ll typically want something
more sophisticated for communication graphics.

Usage

borders(
database = "world",
regions = ".",
fill = NA,
colour = "grey50",
xlim = NULL,
ylim = NULL,
...

)

Arguments

database map data, see maps::map() for details

regions map region

fill fill colour

colour border colour

xlim, ylim latitudinal and longitudinal ranges for extracting map polygons, see maps::map()
for details.

... Arguments passed on to geom_polygon

rule Either "evenodd" or "winding". If polygons with holes are being drawn
(using the subgroup aesthetic) this argument defines how the hole coordi-
nates are interpreted. See the examples in grid::pathGrob() for an expla-
nation.

mapping Set of aesthetic mappings created by aes() or aes_(). If specified
and inherit.aes = TRUE (the default), it is combined with the default map-
ping at the top level of the plot. You must supply mapping if there is no plot
mapping.

borders 27

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in
the call to ggplot().
A data.frame, or other object, will override the plot data. All objects will
be fortified to produce a data frame. See fortify() for which variables
will be created.
A function will be called with a single argument, the plot data. The re-
turn value must be a data.frame, and will be used as the layer data. A
function can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer, as a string.
position Position adjustment, either as a string, or the result of a call to a

position adjustment function.
show.legend logical. Should this layer be included in the legends? NA, the

default, includes if any aesthetics are mapped. FALSE never includes, and
TRUE always includes. It can also be a named logical vector to finely select
the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining
with them. This is most useful for helper functions that define both data
and aesthetics and shouldn’t inherit behaviour from the default plot specifi-
cation, e.g. borders().

na.rm If FALSE, the default, missing values are removed with a warning. If
TRUE, missing values are silently removed.

Examples

if (require("maps")) {

ia <- map_data("county", "iowa")
mid_range <- function(x) mean(range(x))
seats <- do.call(rbind, lapply(split(ia, ia$subregion), function(d) {
data.frame(lat = mid_range(d$lat), long = mid_range(d$long), subregion = unique(d$subregion))

}))

ggplot(ia, aes(long, lat)) +
geom_polygon(aes(group = group), fill = NA, colour = "grey60") +
geom_text(aes(label = subregion), data = seats, size = 2, angle = 45)

}

if (require("maps")) {
data(us.cities)
capitals <- subset(us.cities, capital == 2)
ggplot(capitals, aes(long, lat)) +

borders("state") +
geom_point(aes(size = pop)) +
scale_size_area() +
coord_quickmap()

}

if (require("maps")) {
Same map, with some world context

28 CoordSf

ggplot(capitals, aes(long, lat)) +
borders("world", xlim = c(-130, -60), ylim = c(20, 50)) +
geom_point(aes(size = pop)) +
scale_size_area() +
coord_quickmap()

}

CoordSf Visualise sf objects

Description

This set of geom, stat, and coord are used to visualise simple feature (sf) objects. For simple plots,
you will only need geom_sf() as it uses stat_sf() and adds coord_sf() for you. geom_sf() is an
unusual geom because it will draw different geometric objects depending on what simple features
are present in the data: you can get points, lines, or polygons. For text and labels, you can use
geom_sf_text() and geom_sf_label().

Usage

coord_sf(
xlim = NULL,
ylim = NULL,
expand = TRUE,
crs = NULL,
default_crs = NULL,
datum = sf::st_crs(4326),
label_graticule = waiver(),
label_axes = waiver(),
lims_method = c("cross", "box", "orthogonal", "geometry_bbox"),
ndiscr = 100,
default = FALSE,
clip = "on"

)

geom_sf(
mapping = aes(),
data = NULL,
stat = "sf",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...

)

geom_sf_label(

CoordSf 29

mapping = aes(),
data = NULL,
stat = "sf_coordinates",
position = "identity",
...,
parse = FALSE,
nudge_x = 0,
nudge_y = 0,
label.padding = unit(0.25, "lines"),
label.r = unit(0.15, "lines"),
label.size = 0.25,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
fun.geometry = NULL

)

geom_sf_text(
mapping = aes(),
data = NULL,
stat = "sf_coordinates",
position = "identity",
...,
parse = FALSE,
nudge_x = 0,
nudge_y = 0,
check_overlap = FALSE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
fun.geometry = NULL

)

stat_sf(
mapping = NULL,
data = NULL,
geom = "rect",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...

)

Arguments

xlim, ylim Limits for the x and y axes. These limits are specified in the units of the de-
fault CRS. By default, this means projected coordinates (default_crs = NULL).
How limit specifications translate into the exact region shown on the plot can be

30 CoordSf

confusing when non-linear or rotated coordinate systems are used as the default
crs. First, different methods can be preferable under different conditions. See
parameter lims_method for details. Second, specifying limits along only one
direction can affect the automatically generated limits along the other direction.
Therefore, it is best to always specify limits for both x and y. Third, specifying
limits via position scales or xlim()/ylim() is strongly discouraged, as it can
result in data points being dropped from the plot even though they would be
visible in the final plot region.

expand If TRUE, the default, adds a small expansion factor to the limits to ensure that
data and axes don’t overlap. If FALSE, limits are taken exactly from the data or
xlim/ylim.

crs The coordinate reference system (CRS) into which all data should be projected
before plotting. If not specified, will use the CRS defined in the first sf layer of
the plot.

default_crs The default CRS to be used for non-sf layers (which don’t carry any CRS infor-
mation) and scale limits. The default value of NULL means that the setting for
crs is used. This implies that all non-sf layers and scale limits are assumed to be
specified in projected coordinates. A useful alternative setting is default_crs =
sf::st_crs(4326), which means x and y positions are interpreted as longitude
and latitude, respectively, in the World Geodetic System 1984 (WGS84).

datum CRS that provides datum to use when generating graticules.
label_graticule

Character vector indicating which graticule lines should be labeled where. Merid-
ians run north-south, and the letters "N" and "S" indicate that they should be
labeled on their north or south end points, respectively. Parallels run east-west,
and the letters "E" and "W" indicate that they should be labeled on their east
or west end points, respectively. Thus, label_graticule = "SW" would label
meridians at their south end and parallels at their west end, whereas label_graticule
= "EW" would label parallels at both ends and meridians not at all. Because
meridians and parallels can in general intersect with any side of the plot panel,
for any choice of label_graticule labels are not guaranteed to reside on only
one particular side of the plot panel. Also, label_graticule can cause label-
ing artifacts, in particular if a graticule line coincides with the edge of the plot
panel. In such circumstances, label_axes will generally yield better results and
should be used instead.
This parameter can be used alone or in combination with label_axes.

label_axes Character vector or named list of character values specifying which graticule
lines (meridians or parallels) should be labeled on which side of the plot. Merid-
ians are indicated by "E" (for East) and parallels by "N" (for North). Default is
"--EN", which specifies (clockwise from the top) no labels on the top, none on
the right, meridians on the bottom, and parallels on the left. Alternatively, this
setting could have been specified with list(bottom = "E", left = "N").
This parameter can be used alone or in combination with label_graticule.

lims_method Method specifying how scale limits are converted into limits on the plot re-
gion. Has no effect when default_crs = NULL. For a very non-linear CRS
(e.g., a perspective centered around the North pole), the available methods yield

CoordSf 31

widely differing results, and you may want to try various options. Methods cur-
rently implemented include "cross" (the default), "box", "orthogonal", and
"geometry_bbox". For method "cross", limits along one direction (e.g., lon-
gitude) are applied at the midpoint of the other direction (e.g., latitude). This
method avoids excessively large limits for rotated coordinate systems but means
that sometimes limits need to be expanded a little further if extreme data points
are to be included in the final plot region. By contrast, for method "box", a box
is generated out of the limits along both directions, and then limits in projected
coordinates are chosen such that the entire box is visible. This method can yield
plot regions that are too large. Finally, method "orthogonal" applies limits
separately along each axis, and method "geometry_bbox" ignores all limit in-
formation except the bounding boxes of any objects in the geometry aesthetic.

ndiscr Number of segments to use for discretising graticule lines; try increasing this
number when graticules look incorrect.

default Is this the default coordinate system? If FALSE (the default), then replacing this
coordinate system with another one creates a message alerting the user that the
coordinate system is being replaced. If TRUE, that warning is suppressed.

clip Should drawing be clipped to the extent of the plot panel? A setting of "on" (the
default) means yes, and a setting of "off" means no. In most cases, the default
of "on" should not be changed, as setting clip = "off" can cause unexpected
results. It allows drawing of data points anywhere on the plot, including in
the plot margins. If limits are set via xlim and ylim and some data points fall
outside those limits, then those data points may show up in places such as the
axes, the legend, the plot title, or the plot margins.

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer, as a string.

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.
You can also set this to one of "polygon", "line", and "point" to override the
default legend.

32 CoordSf

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

parse If TRUE, the labels will be parsed into expressions and displayed as described in
?plotmath.

nudge_x Horizontal and vertical adjustment to nudge labels by. Useful for offsetting text
from points, particularly on discrete scales. Cannot be jointly specified with
position.

nudge_y Horizontal and vertical adjustment to nudge labels by. Useful for offsetting text
from points, particularly on discrete scales. Cannot be jointly specified with
position.

label.padding Amount of padding around label. Defaults to 0.25 lines.

label.r Radius of rounded corners. Defaults to 0.15 lines.

label.size Size of label border, in mm.

fun.geometry A function that takes a sfc object and returns a sfc_POINT with the same length
as the input. If NULL, function(x) sf::st_point_on_surface(sf::st_zm(x))
will be used. Note that the function may warn about the incorrectness of the re-
sult if the data is not projected, but you can ignore this except when you really
care about the exact locations.

check_overlap If TRUE, text that overlaps previous text in the same layer will not be plotted.
check_overlap happens at draw time and in the order of the data. Therefore
data should be arranged by the label column before calling geom_text(). Note
that this argument is not supported by geom_label().

geom The geometric object to use display the data

Geometry aesthetic

geom_sf() uses a unique aesthetic: geometry, giving an column of class sfc containing simple
features data. There are three ways to supply the geometry aesthetic:

• Do nothing: by default geom_sf() assumes it is stored in the geometry column.

• Explicitly pass an sf object to the data argument. This will use the primary geometry column,
no matter what it’s called.

• Supply your own using aes(geometry = my_column)

Unlike other aesthetics, geometry will never be inherited from the plot.

CRS

coord_sf() ensures that all layers use a common CRS. You can either specify it using the crs
param, or coord_sf() will take it from the first layer that defines a CRS.

CoordSf 33

Combining sf layers and regular geoms

Most regular geoms, such as geom_point(), geom_path(), geom_text(), geom_polygon() etc.
will work fine with coord_sf(). However when using these geoms, two problems arise. First, what
CRS should be used for the x and y coordinates used by these non-sf geoms? The CRS applied to
non-sf geoms is set by the default_crs parameter, and it defaults to NULL, which means positions
for non-sf geoms are interpreted as projected coordinates in the coordinate system set by the crs
parameter. This setting allows you complete control over where exactly items are placed on the
plot canvas, but it may require some understanding of how projections work and how to generate
data in projected coordinates. As an alternative, you can set default_crs = sf::st_crs(4326),
the World Geodetic System 1984 (WGS84). This means that x and y positions are interpreted as
longitude and latitude, respectively. You can also specify any other valid CRS as the default CRS
for non-sf geoms.

The second problem that arises for non-sf geoms is how straight lines should be interpreted in
projected space when default_crs is not set to NULL. The approach coord_sf() takes is to break
straight lines into small pieces (i.e., segmentize them) and then transform the pieces into projected
coordinates. For the default setting where x and y are interpreted as longitude and latitude, this
approach means that horizontal lines follow the parallels and vertical lines follow the meridians. If
you need a different approach to handling straight lines, then you should manually segmentize and
project coordinates and generate the plot in projected coordinates.

See Also

stat_sf_coordinates()

Examples

if (requireNamespace("sf", quietly = TRUE)) {
nc <- sf::st_read(system.file("shape/nc.shp", package = "sf"), quiet = TRUE)
ggplot(nc) +

geom_sf(aes(fill = AREA))

If not supplied, coord_sf() will take the CRS from the first layer
and automatically transform all other layers to use that CRS. This
ensures that all data will correctly line up
nc_3857 <- sf::st_transform(nc, 3857)
ggplot() +

geom_sf(data = nc) +
geom_sf(data = nc_3857, colour = "red", fill = NA)

Unfortunately if you plot other types of feature you'll need to use
show.legend to tell ggplot2 what type of legend to use
nc_3857$mid <- sf::st_centroid(nc_3857$geometry)
ggplot(nc_3857) +

geom_sf(colour = "white") +
geom_sf(aes(geometry = mid, size = AREA), show.legend = "point")

You can also use layers with x and y aesthetics. To have these interpreted
as longitude/latitude you need to set the default CRS in coord_sf()
ggplot(nc_3857) +

geom_sf() +

34 coord_cartesian

annotate("point", x = -80, y = 35, colour = "red", size = 4) +
coord_sf(default_crs = sf::st_crs(4326))

Thanks to the power of sf, a geom_sf nicely handles varying projections
setting the aspect ratio correctly.
library(maps)
world1 <- sf::st_as_sf(map('world', plot = FALSE, fill = TRUE))
ggplot() + geom_sf(data = world1)

world2 <- sf::st_transform(
world1,
"+proj=laea +y_0=0 +lon_0=155 +lat_0=-90 +ellps=WGS84 +no_defs"

)
ggplot() + geom_sf(data = world2)

To add labels, use geom_sf_label().
ggplot(nc_3857[1:3,]) +

geom_sf(aes(fill = AREA)) +
geom_sf_label(aes(label = NAME))

}

coord_cartesian Cartesian coordinates

Description

The Cartesian coordinate system is the most familiar, and common, type of coordinate system. Set-
ting limits on the coordinate system will zoom the plot (like you’re looking at it with a magnifying
glass), and will not change the underlying data like setting limits on a scale will.

Usage

coord_cartesian(
xlim = NULL,
ylim = NULL,
expand = TRUE,
default = FALSE,
clip = "on"

)

Arguments

xlim, ylim Limits for the x and y axes.

expand If TRUE, the default, adds a small expansion factor to the limits to ensure that
data and axes don’t overlap. If FALSE, limits are taken exactly from the data or
xlim/ylim.

default Is this the default coordinate system? If FALSE (the default), then replacing this
coordinate system with another one creates a message alerting the user that the
coordinate system is being replaced. If TRUE, that warning is suppressed.

coord_fixed 35

clip Should drawing be clipped to the extent of the plot panel? A setting of "on" (the
default) means yes, and a setting of "off" means no. In most cases, the default
of "on" should not be changed, as setting clip = "off" can cause unexpected
results. It allows drawing of data points anywhere on the plot, including in
the plot margins. If limits are set via xlim and ylim and some data points fall
outside those limits, then those data points may show up in places such as the
axes, the legend, the plot title, or the plot margins.

Examples

There are two ways of zooming the plot display: with scales or
with coordinate systems. They work in two rather different ways.

p <- ggplot(mtcars, aes(disp, wt)) +
geom_point() +
geom_smooth()

p

Setting the limits on a scale converts all values outside the range to NA.
p + scale_x_continuous(limits = c(325, 500))

Setting the limits on the coordinate system performs a visual zoom.
The data is unchanged, and we just view a small portion of the original
plot. Note how smooth continues past the points visible on this plot.
p + coord_cartesian(xlim = c(325, 500))

By default, the same expansion factor is applied as when setting scale
limits. You can set the limits precisely by setting expand = FALSE
p + coord_cartesian(xlim = c(325, 500), expand = FALSE)

Simiarly, we can use expand = FALSE to turn off expansion with the
default limits
p + coord_cartesian(expand = FALSE)

You can see the same thing with this 2d histogram
d <- ggplot(diamonds, aes(carat, price)) +

stat_bin2d(bins = 25, colour = "white")
d

When zooming the scale, the we get 25 new bins that are the same
size on the plot, but represent smaller regions of the data space
d + scale_x_continuous(limits = c(0, 1))

When zooming the coordinate system, we see a subset of original 50 bins,
displayed bigger
d + coord_cartesian(xlim = c(0, 1))

coord_fixed Cartesian coordinates with fixed "aspect ratio"

36 coord_flip

Description

A fixed scale coordinate system forces a specified ratio between the physical representation of data
units on the axes. The ratio represents the number of units on the y-axis equivalent to one unit on
the x-axis. The default, ratio = 1, ensures that one unit on the x-axis is the same length as one unit
on the y-axis. Ratios higher than one make units on the y axis longer than units on the x-axis, and
vice versa. This is similar to MASS::eqscplot(), but it works for all types of graphics.

Usage

coord_fixed(ratio = 1, xlim = NULL, ylim = NULL, expand = TRUE, clip = "on")

Arguments

ratio aspect ratio, expressed as y / x

xlim Limits for the x and y axes.
ylim Limits for the x and y axes.
expand If TRUE, the default, adds a small expansion factor to the limits to ensure that

data and axes don’t overlap. If FALSE, limits are taken exactly from the data or
xlim/ylim.

clip Should drawing be clipped to the extent of the plot panel? A setting of "on" (the
default) means yes, and a setting of "off" means no. In most cases, the default
of "on" should not be changed, as setting clip = "off" can cause unexpected
results. It allows drawing of data points anywhere on the plot, including in
the plot margins. If limits are set via xlim and ylim and some data points fall
outside those limits, then those data points may show up in places such as the
axes, the legend, the plot title, or the plot margins.

Examples

ensures that the ranges of axes are equal to the specified ratio by
adjusting the plot aspect ratio

p <- ggplot(mtcars, aes(mpg, wt)) + geom_point()
p + coord_fixed(ratio = 1)
p + coord_fixed(ratio = 5)
p + coord_fixed(ratio = 1/5)
p + coord_fixed(xlim = c(15, 30))

Resize the plot to see that the specified aspect ratio is maintained

coord_flip Cartesian coordinates with x and y flipped

Description

Flip cartesian coordinates so that horizontal becomes vertical, and vertical, horizontal. This is pri-
marily useful for converting geoms and statistics which display y conditional on x, to x conditional
on y.

coord_map 37

Usage

coord_flip(xlim = NULL, ylim = NULL, expand = TRUE, clip = "on")

Arguments

xlim Limits for the x and y axes.

ylim Limits for the x and y axes.

expand If TRUE, the default, adds a small expansion factor to the limits to ensure that
data and axes don’t overlap. If FALSE, limits are taken exactly from the data or
xlim/ylim.

clip Should drawing be clipped to the extent of the plot panel? A setting of "on" (the
default) means yes, and a setting of "off" means no. In most cases, the default
of "on" should not be changed, as setting clip = "off" can cause unexpected
results. It allows drawing of data points anywhere on the plot, including in
the plot margins. If limits are set via xlim and ylim and some data points fall
outside those limits, then those data points may show up in places such as the
axes, the legend, the plot title, or the plot margins.

Examples

Very useful for creating boxplots, and other interval
geoms in the horizontal instead of vertical position.

ggplot(diamonds, aes(cut, price)) +
geom_boxplot() +
coord_flip()

h <- ggplot(diamonds, aes(carat)) +
geom_histogram()

h
h + coord_flip()
h + coord_flip() + scale_x_reverse()

You can also use it to flip line and area plots:
df <- data.frame(x = 1:5, y = (1:5) ^ 2)
ggplot(df, aes(x, y)) +

geom_area()
last_plot() + coord_flip()

coord_map Map projections

Description

coord_map() projects a portion of the earth, which is approximately spherical, onto a flat 2D plane
using any projection defined by the mapproj package. Map projections do not, in general, preserve
straight lines, so this requires considerable computation. coord_quickmap() is a quick approxima-
tion that does preserve straight lines. It works best for smaller areas closer to the equator.

38 coord_map

Usage

coord_map(
projection = "mercator",
...,
parameters = NULL,
orientation = NULL,
xlim = NULL,
ylim = NULL,
clip = "on"

)

coord_quickmap(xlim = NULL, ylim = NULL, expand = TRUE, clip = "on")

Arguments

projection projection to use, see mapproj::mapproject() for list
..., parameters

Other arguments passed on to mapproj::mapproject(). Use ... for named
parameters to the projection, and parameters for unnamed parameters. ... is
ignored if the parameters argument is present.

orientation projection orientation, which defaults to c(90, 0, mean(range(x))). This is
not optimal for many projections, so you will have to supply your own. See
mapproj::mapproject() for more information.

xlim, ylim Manually specific x/y limits (in degrees of longitude/latitude)

clip Should drawing be clipped to the extent of the plot panel? A setting of "on"
(the default) means yes, and a setting of "off" means no. For details, please see
coord_cartesian().

expand If TRUE, the default, adds a small expansion factor to the limits to ensure that
data and axes don’t overlap. If FALSE, limits are taken exactly from the data or
xlim/ylim.

Details

In general, map projections must account for the fact that the actual length (in km) of one degree of
longitude varies between the equator and the pole. Near the equator, the ratio between the lengths
of one degree of latitude and one degree of longitude is approximately 1. Near the pole, it tends
towards infinity because the length of one degree of longitude tends towards 0. For regions that span
only a few degrees and are not too close to the poles, setting the aspect ratio of the plot to the ap-
propriate lat/lon ratio approximates the usual mercator projection. This is what coord_quickmap()
does, and is much faster (particularly for complex plots like geom_tile()) at the expense of cor-
rectness.

Examples

if (require("maps")) {
nz <- map_data("nz")
Prepare a map of NZ
nzmap <- ggplot(nz, aes(x = long, y = lat, group = group)) +

coord_map 39

geom_polygon(fill = "white", colour = "black")

Plot it in cartesian coordinates
nzmap
}

if (require("maps")) {
With correct mercator projection
nzmap + coord_map()
}

if (require("maps")) {
With the aspect ratio approximation
nzmap + coord_quickmap()
}

if (require("maps")) {
Other projections
nzmap + coord_map("azequalarea", orientation = c(-36.92, 174.6, 0))
}

if (require("maps")) {
states <- map_data("state")
usamap <- ggplot(states, aes(long, lat, group = group)) +

geom_polygon(fill = "white", colour = "black")

Use cartesian coordinates
usamap
}

if (require("maps")) {
With mercator projection
usamap + coord_map()
}

if (require("maps")) {
See ?mapproject for coordinate systems and their parameters
usamap + coord_map("gilbert")
}

if (require("maps")) {
For most projections, you'll need to set the orientation yourself
as the automatic selection done by mapproject is not available to
ggplot
usamap + coord_map("orthographic")
}

if (require("maps")) {
usamap + coord_map("conic", lat0 = 30)
}

if (require("maps")) {
usamap + coord_map("bonne", lat0 = 50)

40 coord_polar

}

Not run:
if (require("maps")) {
World map, using geom_path instead of geom_polygon
world <- map_data("world")
worldmap <- ggplot(world, aes(x = long, y = lat, group = group)) +

geom_path() +
scale_y_continuous(breaks = (-2:2) * 30) +
scale_x_continuous(breaks = (-4:4) * 45)

Orthographic projection with default orientation (looking down at North pole)
worldmap + coord_map("ortho")
}

if (require("maps")) {
Looking up up at South Pole
worldmap + coord_map("ortho", orientation = c(-90, 0, 0))
}

if (require("maps")) {
Centered on New York (currently has issues with closing polygons)
worldmap + coord_map("ortho", orientation = c(41, -74, 0))
}

End(Not run)

coord_polar Polar coordinates

Description

The polar coordinate system is most commonly used for pie charts, which are a stacked bar chart in
polar coordinates.

Usage

coord_polar(theta = "x", start = 0, direction = 1, clip = "on")

Arguments

theta variable to map angle to (x or y)

start Offset of starting point from 12 o’clock in radians. Offset is applied clockwise
or anticlockwise depending on value of direction.

direction 1, clockwise; -1, anticlockwise

clip Should drawing be clipped to the extent of the plot panel? A setting of "on"
(the default) means yes, and a setting of "off" means no. For details, please see
coord_cartesian().

coord_trans 41

Examples

NOTE: Use these plots with caution - polar coordinates has
major perceptual problems. The main point of these examples is
to demonstrate how these common plots can be described in the
grammar. Use with EXTREME caution.

#' # A pie chart = stacked bar chart + polar coordinates
pie <- ggplot(mtcars, aes(x = factor(1), fill = factor(cyl))) +
geom_bar(width = 1)

pie + coord_polar(theta = "y")

A coxcomb plot = bar chart + polar coordinates
cxc <- ggplot(mtcars, aes(x = factor(cyl))) +

geom_bar(width = 1, colour = "black")
cxc + coord_polar()
A new type of plot?
cxc + coord_polar(theta = "y")

The bullseye chart
pie + coord_polar()

Hadley's favourite pie chart
df <- data.frame(

variable = c("does not resemble", "resembles"),
value = c(20, 80)

)
ggplot(df, aes(x = "", y = value, fill = variable)) +

geom_col(width = 1) +
scale_fill_manual(values = c("red", "yellow")) +
coord_polar("y", start = pi / 3) +
labs(title = "Pac man")

Windrose + doughnut plot
if (require("ggplot2movies")) {
movies$rrating <- cut_interval(movies$rating, length = 1)
movies$budgetq <- cut_number(movies$budget, 4)

doh <- ggplot(movies, aes(x = rrating, fill = budgetq))

Wind rose
doh + geom_bar(width = 1) + coord_polar()
Race track plot
doh + geom_bar(width = 0.9, position = "fill") + coord_polar(theta = "y")
}

coord_trans Transformed Cartesian coordinate system

42 coord_trans

Description

coord_trans() is different to scale transformations in that it occurs after statistical transformation
and will affect the visual appearance of geoms - there is no guarantee that straight lines will continue
to be straight.

Usage

coord_trans(
x = "identity",
y = "identity",
xlim = NULL,
ylim = NULL,
limx = "DEPRECATED",
limy = "DEPRECATED",
clip = "on",
expand = TRUE

)

Arguments

x, y Transformers for x and y axes or their names.

xlim Limits for the x and y axes.

ylim Limits for the x and y axes.

limx, limy Deprecated: use xlim and ylim instead.

clip Should drawing be clipped to the extent of the plot panel? A setting of "on" (the
default) means yes, and a setting of "off" means no. In most cases, the default
of "on" should not be changed, as setting clip = "off" can cause unexpected
results. It allows drawing of data points anywhere on the plot, including in
the plot margins. If limits are set via xlim and ylim and some data points fall
outside those limits, then those data points may show up in places such as the
axes, the legend, the plot title, or the plot margins.

expand If TRUE, the default, adds a small expansion factor to the limits to ensure that
data and axes don’t overlap. If FALSE, limits are taken exactly from the data or
xlim/ylim.

Details

Transformations only work with continuous values: see scales::trans_new() for list of transfor-
mations, and instructions on how to create your own.

Examples

See ?geom_boxplot for other examples

Three ways of doing transformation in ggplot:
* by transforming the data
ggplot(diamonds, aes(log10(carat), log10(price))) +

coord_trans 43

geom_point()
* by transforming the scales
ggplot(diamonds, aes(carat, price)) +

geom_point() +
scale_x_log10() +
scale_y_log10()

* by transforming the coordinate system:
ggplot(diamonds, aes(carat, price)) +

geom_point() +
coord_trans(x = "log10", y = "log10")

The difference between transforming the scales and
transforming the coordinate system is that scale
transformation occurs BEFORE statistics, and coordinate
transformation afterwards. Coordinate transformation also
changes the shape of geoms:

d <- subset(diamonds, carat > 0.5)

ggplot(d, aes(carat, price)) +
geom_point() +
geom_smooth(method = "lm") +
scale_x_log10() +
scale_y_log10()

ggplot(d, aes(carat, price)) +
geom_point() +
geom_smooth(method = "lm") +
coord_trans(x = "log10", y = "log10")

Here I used a subset of diamonds so that the smoothed line didn't
drop below zero, which obviously causes problems on the log-transformed
scale

With a combination of scale and coordinate transformation, it's
possible to do back-transformations:
ggplot(diamonds, aes(carat, price)) +

geom_point() +
geom_smooth(method = "lm") +
scale_x_log10() +
scale_y_log10() +
coord_trans(x = scales::exp_trans(10), y = scales::exp_trans(10))

cf.
ggplot(diamonds, aes(carat, price)) +

geom_point() +
geom_smooth(method = "lm")

Also works with discrete scales
df <- data.frame(a = abs(rnorm(26)),letters)
plot <- ggplot(df,aes(a,letters)) + geom_point()

plot + coord_trans(x = "log10")

44 cut_interval

plot + coord_trans(x = "sqrt")

cut_interval Discretise numeric data into categorical

Description

cut_interval() makes n groups with equal range, cut_number() makes n groups with (approxi-
mately) equal numbers of observations; cut_width() makes groups of width width.

Usage

cut_interval(x, n = NULL, length = NULL, ...)

cut_number(x, n = NULL, ...)

cut_width(
x,
width,
center = NULL,
boundary = NULL,
closed = c("right", "left"),
...

)

Arguments

x numeric vector

n number of intervals to create, OR

length length of each interval

... Arguments passed on to base::cut.default

breaks either a numeric vector of two or more unique cut points or a single
number (greater than or equal to 2) giving the number of intervals into
which x is to be cut.

labels labels for the levels of the resulting category. By default, labels are
constructed using "(a,b]" interval notation. If labels = FALSE, simple
integer codes are returned instead of a factor.

right logical, indicating if the intervals should be closed on the right (and open
on the left) or vice versa.

dig.lab integer which is used when labels are not given. It determines the
number of digits used in formatting the break numbers.

ordered_result logical: should the result be an ordered factor?

width The bin width.

diamonds 45

center, boundary

Specify either the position of edge or the center of a bin. Since all bins are
aligned, specifying the position of a single bin (which doesn’t need to be in the
range of the data) affects the location of all bins. If not specified, uses the "tile
layers algorithm", and sets the boundary to half of the binwidth.
To center on integers, width = 1 and center = 0. boundary = 0.5.

closed One of "right" or "left" indicating whether right or left edges of bins are
included in the bin.

Author(s)

Randall Prium contributed most of the implementation of cut_width().

Examples

table(cut_interval(1:100, 10))
table(cut_interval(1:100, 11))

table(cut_number(runif(1000), 10))

table(cut_width(runif(1000), 0.1))
table(cut_width(runif(1000), 0.1, boundary = 0))
table(cut_width(runif(1000), 0.1, center = 0))
table(cut_width(runif(1000), 0.1, labels = FALSE))

diamonds Prices of over 50,000 round cut diamonds

Description

A dataset containing the prices and other attributes of almost 54,000 diamonds. The variables are
as follows:

Usage

diamonds

Format

A data frame with 53940 rows and 10 variables:

price price in US dollars (\$326–\$18,823)

carat weight of the diamond (0.2–5.01)

cut quality of the cut (Fair, Good, Very Good, Premium, Ideal)

color diamond colour, from D (best) to J (worst)

clarity a measurement of how clear the diamond is (I1 (worst), SI2, SI1, VS2, VS1, VVS2, VVS1,
IF (best))

46 draw_key

x length in mm (0–10.74)

y width in mm (0–58.9)

z depth in mm (0–31.8)

depth total depth percentage = z / mean(x, y) = 2 * z / (x + y) (43–79)

table width of top of diamond relative to widest point (43–95)

draw_key Key glyphs for legends

Description

Each geom has an associated function that draws the key when the geom needs to be displayed in
a legend. These functions are called draw_key_*(), where * stands for the name of the respective
key glyph. The key glyphs can be customized for individual geoms by providing a geom with the
key_glyph argument (see layer() or examples below.)

Usage

draw_key_point(data, params, size)

draw_key_abline(data, params, size)

draw_key_rect(data, params, size)

draw_key_polygon(data, params, size)

draw_key_blank(data, params, size)

draw_key_boxplot(data, params, size)

draw_key_crossbar(data, params, size)

draw_key_path(data, params, size)

draw_key_vpath(data, params, size)

draw_key_dotplot(data, params, size)

draw_key_pointrange(data, params, size)

draw_key_smooth(data, params, size)

draw_key_text(data, params, size)

draw_key_label(data, params, size)

economics 47

draw_key_vline(data, params, size)

draw_key_timeseries(data, params, size)

Arguments

data A single row data frame containing the scaled aesthetics to display in this key

params A list of additional parameters supplied to the geom.

size Width and height of key in mm.

Value

A grid grob.

Examples

p <- ggplot(economics, aes(date, psavert, color = "savings rate"))
key glyphs can be specified by their name
p + geom_line(key_glyph = "timeseries")

key glyphs can be specified via their drawing function
p + geom_line(key_glyph = draw_key_rect)

economics US economic time series

Description

This dataset was produced from US economic time series data available from https://fred.
stlouisfed.org/. economics is in "wide" format, economics_long is in "long" format.

Usage

economics

economics_long

Format

A data frame with 574 rows and 6 variables:

date Month of data collection

pce personal consumption expenditures, in billions of dollars, https://fred.stlouisfed.org/
series/PCE

pop total population, in thousands, https://fred.stlouisfed.org/series/POP

psavert personal savings rate, https://fred.stlouisfed.org/series/PSAVERT/

https://fred.stlouisfed.org/
https://fred.stlouisfed.org/
https://fred.stlouisfed.org/series/PCE
https://fred.stlouisfed.org/series/PCE
https://fred.stlouisfed.org/series/POP
https://fred.stlouisfed.org/series/PSAVERT/

48 expansion

uempmed median duration of unemployment, in weeks, https://fred.stlouisfed.org/series/
UEMPMED

unemploy number of unemployed in thousands, https://fred.stlouisfed.org/series/UNEMPLOY

An object of class tbl_df (inherits from tbl, data.frame) with 2870 rows and 4 columns.

expand_limits Expand the plot limits, using data

Description

Sometimes you may want to ensure limits include a single value, for all panels or all plots. This
function is a thin wrapper around geom_blank() that makes it easy to add such values.

Usage

expand_limits(...)

Arguments

... named list of aesthetics specifying the value (or values) that should be included
in each scale.

Examples

p <- ggplot(mtcars, aes(mpg, wt)) + geom_point()
p + expand_limits(x = 0)
p + expand_limits(y = c(1, 9))
p + expand_limits(x = 0, y = 0)

ggplot(mtcars, aes(mpg, wt)) +
geom_point(aes(colour = cyl)) +
expand_limits(colour = seq(2, 10, by = 2))

ggplot(mtcars, aes(mpg, wt)) +
geom_point(aes(colour = factor(cyl))) +
expand_limits(colour = factor(seq(2, 10, by = 2)))

expansion Generate expansion vector for scales

Description

This is a convenience function for generating scale expansion vectors for the expand argument of
scale_(x|y)_continuous and scale_(x|y)_discrete. The expansion vectors are used to add some space
between the data and the axes.

https://fred.stlouisfed.org/series/UEMPMED
https://fred.stlouisfed.org/series/UEMPMED
https://fred.stlouisfed.org/series/UNEMPLOY

facet_grid 49

Usage

expansion(mult = 0, add = 0)

expand_scale(mult = 0, add = 0)

Arguments

mult vector of multiplicative range expansion factors. If length 1, both the lower and
upper limits of the scale are expanded outwards by mult. If length 2, the lower
limit is expanded by mult[1] and the upper limit by mult[2].

add vector of additive range expansion constants. If length 1, both the lower and
upper limits of the scale are expanded outwards by add units. If length 2, the
lower limit is expanded by add[1] and the upper limit by add[2].

Examples

No space below the bars but 10% above them
ggplot(mtcars) +

geom_bar(aes(x = factor(cyl))) +
scale_y_continuous(expand = expansion(mult = c(0, .1)))

Add 2 units of space on the left and right of the data
ggplot(subset(diamonds, carat > 2), aes(cut, clarity)) +

geom_jitter() +
scale_x_discrete(expand = expansion(add = 2))

Reproduce the default range expansion used
when the 'expand' argument is not specified
ggplot(subset(diamonds, carat > 2), aes(cut, price)) +

geom_jitter() +
scale_x_discrete(expand = expansion(add = .6)) +
scale_y_continuous(expand = expansion(mult = .05))

facet_grid Lay out panels in a grid

Description

facet_grid() forms a matrix of panels defined by row and column faceting variables. It is most
useful when you have two discrete variables, and all combinations of the variables exist in the data.
If you have only one variable with many levels, try facet_wrap().

Usage

facet_grid(
rows = NULL,
cols = NULL,

50 facet_grid

scales = "fixed",
space = "fixed",
shrink = TRUE,
labeller = "label_value",
as.table = TRUE,
switch = NULL,
drop = TRUE,
margins = FALSE,
facets = NULL

)

Arguments

rows, cols A set of variables or expressions quoted by vars() and defining faceting groups
on the rows or columns dimension. The variables can be named (the names are
passed to labeller).
For compatibility with the classic interface, rows can also be a formula with the
rows (of the tabular display) on the LHS and the columns (of the tabular display)
on the RHS; the dot in the formula is used to indicate there should be no faceting
on this dimension (either row or column).

scales Are scales shared across all facets (the default, "fixed"), or do they vary across
rows ("free_x"), columns ("free_y"), or both rows and columns ("free")?

space If "fixed", the default, all panels have the same size. If "free_y" their height
will be proportional to the length of the y scale; if "free_x" their width will be
proportional to the length of the x scale; or if "free" both height and width will
vary. This setting has no effect unless the appropriate scales also vary.

shrink If TRUE, will shrink scales to fit output of statistics, not raw data. If FALSE, will
be range of raw data before statistical summary.

labeller A function that takes one data frame of labels and returns a list or data frame
of character vectors. Each input column corresponds to one factor. Thus there
will be more than one with vars(cyl, am). Each output column gets displayed
as one separate line in the strip label. This function should inherit from the
"labeller" S3 class for compatibility with labeller(). You can use different
labeling functions for different kind of labels, for example use label_parsed()
for formatting facet labels. label_value() is used by default, check it for more
details and pointers to other options.

as.table If TRUE, the default, the facets are laid out like a table with highest values at the
bottom-right. If FALSE, the facets are laid out like a plot with the highest value
at the top-right.

switch By default, the labels are displayed on the top and right of the plot. If "x", the
top labels will be displayed to the bottom. If "y", the right-hand side labels will
be displayed to the left. Can also be set to "both".

drop If TRUE, the default, all factor levels not used in the data will automatically be
dropped. If FALSE, all factor levels will be shown, regardless of whether or not
they appear in the data.

facet_grid 51

margins Either a logical value or a character vector. Margins are additional facets which
contain all the data for each of the possible values of the faceting variables.
If FALSE, no additional facets are included (the default). If TRUE, margins are
included for all faceting variables. If specified as a character vector, it is the
names of variables for which margins are to be created.

facets This argument is soft-deprecated, please use rows and cols instead.

Examples

p <- ggplot(mpg, aes(displ, cty)) + geom_point()

Use vars() to supply variables from the dataset:
p + facet_grid(rows = vars(drv))
p + facet_grid(cols = vars(cyl))
p + facet_grid(vars(drv), vars(cyl))

To change plot order of facet grid,
change the order of variable levels with factor()

If you combine a facetted dataset with a dataset that lacks those
faceting variables, the data will be repeated across the missing
combinations:
df <- data.frame(displ = mean(mpg$displ), cty = mean(mpg$cty))
p +

facet_grid(cols = vars(cyl)) +
geom_point(data = df, colour = "red", size = 2)

Free scales ---
You can also choose whether the scales should be constant
across all panels (the default), or whether they should be allowed
to vary
mt <- ggplot(mtcars, aes(mpg, wt, colour = factor(cyl))) +

geom_point()

mt + facet_grid(vars(cyl), scales = "free")

If scales and space are free, then the mapping between position
and values in the data will be the same across all panels. This
is particularly useful for categorical axes
ggplot(mpg, aes(drv, model)) +

geom_point() +
facet_grid(manufacturer ~ ., scales = "free", space = "free") +
theme(strip.text.y = element_text(angle = 0))

Margins --

Margins can be specified logically (all yes or all no) or for specific
variables as (character) variable names
mg <- ggplot(mtcars, aes(x = mpg, y = wt)) + geom_point()
mg + facet_grid(vs + am ~ gear, margins = TRUE)
mg + facet_grid(vs + am ~ gear, margins = "am")
when margins are made over "vs", since the facets for "am" vary

52 facet_wrap

within the values of "vs", the marginal facet for "vs" is also
a margin over "am".
mg + facet_grid(vs + am ~ gear, margins = "vs")

facet_wrap Wrap a 1d ribbon of panels into 2d

Description

facet_wrap() wraps a 1d sequence of panels into 2d. This is generally a better use of screen space
than facet_grid() because most displays are roughly rectangular.

Usage

facet_wrap(
facets,
nrow = NULL,
ncol = NULL,
scales = "fixed",
shrink = TRUE,
labeller = "label_value",
as.table = TRUE,
switch = NULL,
drop = TRUE,
dir = "h",
strip.position = "top"

)

Arguments

facets A set of variables or expressions quoted by vars() and defining faceting groups
on the rows or columns dimension. The variables can be named (the names are
passed to labeller).
For compatibility with the classic interface, can also be a formula or character
vector. Use either a one sided formula, ~a + b, or a character vector, c("a",
"b").

nrow, ncol Number of rows and columns.

scales Should scales be fixed ("fixed", the default), free ("free"), or free in one
dimension ("free_x", "free_y")?

shrink If TRUE, will shrink scales to fit output of statistics, not raw data. If FALSE, will
be range of raw data before statistical summary.

labeller A function that takes one data frame of labels and returns a list or data frame
of character vectors. Each input column corresponds to one factor. Thus there
will be more than one with vars(cyl, am). Each output column gets displayed
as one separate line in the strip label. This function should inherit from the

facet_wrap 53

"labeller" S3 class for compatibility with labeller(). You can use different
labeling functions for different kind of labels, for example use label_parsed()
for formatting facet labels. label_value() is used by default, check it for more
details and pointers to other options.

as.table If TRUE, the default, the facets are laid out like a table with highest values at the
bottom-right. If FALSE, the facets are laid out like a plot with the highest value
at the top-right.

switch By default, the labels are displayed on the top and right of the plot. If "x", the
top labels will be displayed to the bottom. If "y", the right-hand side labels will
be displayed to the left. Can also be set to "both".

drop If TRUE, the default, all factor levels not used in the data will automatically be
dropped. If FALSE, all factor levels will be shown, regardless of whether or not
they appear in the data.

dir Direction: either "h" for horizontal, the default, or "v", for vertical.

strip.position By default, the labels are displayed on the top of the plot. Using strip.position
it is possible to place the labels on either of the four sides by setting strip.position
= c("top", "bottom", "left", "right")

Examples

p <- ggplot(mpg, aes(displ, hwy)) + geom_point()

Use vars() to supply faceting variables:
p + facet_wrap(vars(class))

Control the number of rows and columns with nrow and ncol
p + facet_wrap(vars(class), nrow = 4)

You can facet by multiple variables
ggplot(mpg, aes(displ, hwy)) +

geom_point() +
facet_wrap(vars(cyl, drv))

Use the `labeller` option to control how labels are printed:
ggplot(mpg, aes(displ, hwy)) +

geom_point() +
facet_wrap(vars(cyl, drv), labeller = "label_both")

To change the order in which the panels appear, change the levels
of the underlying factor.
mpg$class2 <- reorder(mpg$class, mpg$displ)
ggplot(mpg, aes(displ, hwy)) +

geom_point() +
facet_wrap(vars(class2))

By default, the same scales are used for all panels. You can allow
scales to vary across the panels with the `scales` argument.
Free scales make it easier to see patterns within each panel, but
harder to compare across panels.

54 faithfuld

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
facet_wrap(vars(class), scales = "free")

To repeat the same data in every panel, simply construct a data frame
that does not contain the faceting variable.
ggplot(mpg, aes(displ, hwy)) +

geom_point(data = transform(mpg, class = NULL), colour = "grey85") +
geom_point() +
facet_wrap(vars(class))

Use `strip.position` to display the facet labels at the side of your
choice. Setting it to `bottom` makes it act as a subtitle for the axis.
This is typically used with free scales and a theme without boxes around
strip labels.
ggplot(economics_long, aes(date, value)) +

geom_line() +
facet_wrap(vars(variable), scales = "free_y", nrow = 2, strip.position = "top") +
theme(strip.background = element_blank(), strip.placement = "outside")

faithfuld 2d density estimate of Old Faithful data

Description

A 2d density estimate of the waiting and eruptions variables data faithful.

Usage

faithfuld

Format

A data frame with 5,625 observations and 3 variables:

eruptions Eruption time in mins

waiting Waiting time to next eruption in mins

density 2d density estimate

fortify 55

fortify Fortify a model with data.

Description

Rather than using this function, I now recommend using the broom package, which implements a
much wider range of methods. fortify() may be deprecated in the future.

Usage

fortify(model, data, ...)

Arguments

model model or other R object to convert to data frame

data original dataset, if needed

... other arguments passed to methods

See Also

fortify.lm()

geom_abline Reference lines: horizontal, vertical, and diagonal

Description

These geoms add reference lines (sometimes called rules) to a plot, either horizontal, vertical, or
diagonal (specified by slope and intercept). These are useful for annotating plots.

Usage

geom_abline(
mapping = NULL,
data = NULL,
...,
slope,
intercept,
na.rm = FALSE,
show.legend = NA

)

geom_hline(
mapping = NULL,
data = NULL,

56 geom_abline

...,
yintercept,
na.rm = FALSE,
show.legend = NA

)

geom_vline(
mapping = NULL,
data = NULL,
...,
xintercept,
na.rm = FALSE,
show.legend = NA

)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_().

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

xintercept, yintercept, slope, intercept

Parameters that control the position of the line. If these are set, data, mapping
and show.legend are overridden.

Details

These geoms act slightly differently from other geoms. You can supply the parameters in two
ways: either as arguments to the layer function, or via aesthetics. If you use arguments, e.g.
geom_abline(intercept = 0, slope = 1), then behind the scenes the geom makes a new data
frame containing just the data you’ve supplied. That means that the lines will be the same in all
facets; if you want them to vary across facets, construct the data frame yourself and use aesthetics.

geom_abline 57

Unlike most other geoms, these geoms do not inherit aesthetics from the plot default, because they
do not understand x and y aesthetics which are commonly set in the plot. They also do not affect
the x and y scales.

Aesthetics

These geoms are drawn using with geom_line() so support the same aesthetics: alpha, colour,
linetype and size. They also each have aesthetics that control the position of the line:

• geom_vline(): xintercept

• geom_hline(): yintercept

• geom_abline(): slope and intercept

See Also

See geom_segment() for a more general approach to adding straight line segments to a plot.

Examples

p <- ggplot(mtcars, aes(wt, mpg)) + geom_point()

Fixed values
p + geom_vline(xintercept = 5)
p + geom_vline(xintercept = 1:5)
p + geom_hline(yintercept = 20)

p + geom_abline() # Can't see it - outside the range of the data
p + geom_abline(intercept = 20)

Calculate slope and intercept of line of best fit
coef(lm(mpg ~ wt, data = mtcars))
p + geom_abline(intercept = 37, slope = -5)
But this is easier to do with geom_smooth:
p + geom_smooth(method = "lm", se = FALSE)

To show different lines in different facets, use aesthetics
p <- ggplot(mtcars, aes(mpg, wt)) +

geom_point() +
facet_wrap(~ cyl)

mean_wt <- data.frame(cyl = c(4, 6, 8), wt = c(2.28, 3.11, 4.00))
p + geom_hline(aes(yintercept = wt), mean_wt)

You can also control other aesthetics
ggplot(mtcars, aes(mpg, wt, colour = wt)) +

geom_point() +
geom_hline(aes(yintercept = wt, colour = wt), mean_wt) +
facet_wrap(~ cyl)

58 geom_bar

geom_bar Bar charts

Description

There are two types of bar charts: geom_bar() and geom_col(). geom_bar() makes the height of
the bar proportional to the number of cases in each group (or if the weight aesthetic is supplied,
the sum of the weights). If you want the heights of the bars to represent values in the data, use
geom_col() instead. geom_bar() uses stat_count() by default: it counts the number of cases at
each x position. geom_col() uses stat_identity(): it leaves the data as is.

Usage

geom_bar(
mapping = NULL,
data = NULL,
stat = "count",
position = "stack",
...,
width = NULL,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)

geom_col(
mapping = NULL,
data = NULL,
position = "stack",
...,
width = NULL,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

stat_count(
mapping = NULL,
data = NULL,
geom = "bar",
position = "stack",
...,
width = NULL,
na.rm = FALSE,
orientation = NA,
show.legend = NA,

geom_bar 59

inherit.aes = TRUE
)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

width Bar width. By default, set to 90% of the resolution of the data.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

orientation The orientation of the layer. The default (NA) automatically determines the ori-
entation from the aesthetic mapping. In the rare event that this fails it can be
given explicitly by setting orientation to either "x" or "y". See the Orienta-
tion section for more detail.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

geom, stat Override the default connection between geom_bar() and stat_count().

Details

A bar chart uses height to represent a value, and so the base of the bar must always be shown
to produce a valid visual comparison. Proceed with caution when using transformed scales with
a bar chart. It’s important to always use a meaningful reference point for the base of the bar.
For example, for log transformations the reference point is 1. In fact, when using a log scale,
geom_bar() automatically places the base of the bar at 1. Furthermore, never use stacked bars with
a transformed scale, because scaling happens before stacking. As a consequence, the height of bars
will be wrong when stacking occurs with a transformed scale.

60 geom_bar

By default, multiple bars occupying the same x position will be stacked atop one another by
position_stack(). If you want them to be dodged side-to-side, use position_dodge() or position_dodge2().
Finally, position_fill() shows relative proportions at each x by stacking the bars and then stan-
dardising each bar to have the same height.

Orientation

This geom treats each axis differently and, thus, can thus have two orientations. Often the orienta-
tion is easy to deduce from a combination of the given mappings and the types of positional scales
in use. Thus, ggplot2 will by default try to guess which orientation the layer should have. Under
rare circumstances, the orientation is ambiguous and guessing may fail. In that case the orientation
can be specified directly using the orientation parameter, which can be either "x" or "y". The
value gives the axis that the geom should run along, "x" being the default orientation you would
expect for the geom.

Aesthetics

geom_bar() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• alpha

• colour

• fill

• group

• linetype

• size

Learn more about setting these aesthetics in vignette("ggplot2-specs").

geom_col() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• alpha

• colour

• fill

• group

• linetype

• size

Learn more about setting these aesthetics in vignette("ggplot2-specs").

stat_count() understands the following aesthetics (required aesthetics are in bold):

• x or y
• group

• weight

Learn more about setting these aesthetics in vignette("ggplot2-specs").

geom_bar 61

Computed variables

count number of points in bin

prop groupwise proportion

See Also

geom_histogram() for continuous data, position_dodge() and position_dodge2() for creating
side-by-side bar charts.

stat_bin(), which bins data in ranges and counts the cases in each range. It differs from stat_count(),
which counts the number of cases at each x position (without binning into ranges). stat_bin() re-
quires continuous x data, whereas stat_count() can be used for both discrete and continuous x
data.

Examples

geom_bar is designed to make it easy to create bar charts that show
counts (or sums of weights)
g <- ggplot(mpg, aes(class))
Number of cars in each class:
g + geom_bar()
Total engine displacement of each class
g + geom_bar(aes(weight = displ))
Map class to y instead to flip the orientation
ggplot(mpg) + geom_bar(aes(y = class))

Bar charts are automatically stacked when multiple bars are placed
at the same location. The order of the fill is designed to match
the legend
g + geom_bar(aes(fill = drv))

If you need to flip the order (because you've flipped the orientation)
call position_stack() explicitly:
ggplot(mpg, aes(y = class)) +
geom_bar(aes(fill = drv), position = position_stack(reverse = TRUE)) +
theme(legend.position = "top")

To show (e.g.) means, you need geom_col()
df <- data.frame(trt = c("a", "b", "c"), outcome = c(2.3, 1.9, 3.2))
ggplot(df, aes(trt, outcome)) +

geom_col()
But geom_point() displays exactly the same information and doesn't
require the y-axis to touch zero.
ggplot(df, aes(trt, outcome)) +

geom_point()

You can also use geom_bar() with continuous data, in which case
it will show counts at unique locations
df <- data.frame(x = rep(c(2.9, 3.1, 4.5), c(5, 10, 4)))
ggplot(df, aes(x)) + geom_bar()
cf. a histogram of the same data
ggplot(df, aes(x)) + geom_histogram(binwidth = 0.5)

62 geom_bin_2d

geom_bin_2d Heatmap of 2d bin counts

Description

Divides the plane into rectangles, counts the number of cases in each rectangle, and then (by default)
maps the number of cases to the rectangle’s fill. This is a useful alternative to geom_point() in the
presence of overplotting.

Usage

geom_bin_2d(
mapping = NULL,
data = NULL,
stat = "bin2d",
position = "identity",
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

stat_bin_2d(
mapping = NULL,
data = NULL,
geom = "tile",
position = "identity",
...,
bins = 30,
binwidth = NULL,
drop = TRUE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

geom_bin_2d 63

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

geom, stat Use to override the default connection between geom_bin_2d() and stat_bin_2d().

bins numeric vector giving number of bins in both vertical and horizontal directions.
Set to 30 by default.

binwidth Numeric vector giving bin width in both vertical and horizontal directions. Over-
rides bins if both set.

drop if TRUE removes all cells with 0 counts.

Aesthetics

stat_bin2d() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• fill

• group

Learn more about setting these aesthetics in vignette("ggplot2-specs").

Computed variables

count number of points in bin

density density of points in bin, scaled to integrate to 1

ncount count, scaled to maximum of 1

ndensity density, scaled to maximum of 1

See Also

stat_binhex() for hexagonal binning

64 geom_blank

Examples

d <- ggplot(diamonds, aes(x, y)) + xlim(4, 10) + ylim(4, 10)
d + geom_bin_2d()

You can control the size of the bins by specifying the number of
bins in each direction:
d + geom_bin_2d(bins = 10)
d + geom_bin_2d(bins = 30)

Or by specifying the width of the bins
d + geom_bin_2d(binwidth = c(0.1, 0.1))

geom_blank Draw nothing

Description

The blank geom draws nothing, but can be a useful way of ensuring common scales between differ-
ent plots. See expand_limits() for more details.

Usage

geom_blank(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom_boxplot 65

stat The statistical transformation to use on the data for this layer, as a string.

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Examples

ggplot(mtcars, aes(wt, mpg))
Nothing to see here!

geom_boxplot A box and whiskers plot (in the style of Tukey)

Description

The boxplot compactly displays the distribution of a continuous variable. It visualises five summary
statistics (the median, two hinges and two whiskers), and all "outlying" points individually.

Usage

geom_boxplot(
mapping = NULL,
data = NULL,
stat = "boxplot",
position = "dodge2",
...,
outlier.colour = NULL,
outlier.color = NULL,
outlier.fill = NULL,
outlier.shape = 19,
outlier.size = 1.5,
outlier.stroke = 0.5,
outlier.alpha = NULL,
notch = FALSE,
notchwidth = 0.5,
varwidth = FALSE,
na.rm = FALSE,
orientation = NA,

66 geom_boxplot

show.legend = NA,
inherit.aes = TRUE

)

stat_boxplot(
mapping = NULL,
data = NULL,
geom = "boxplot",
position = "dodge2",
...,
coef = 1.5,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

outlier.colour, outlier.color, outlier.fill, outlier.shape, outlier.size, outlier.stroke, outlier.alpha

Default aesthetics for outliers. Set to NULL to inherit from the aesthetics used for
the box.
In the unlikely event you specify both US and UK spellings of colour, the US
spelling will take precedence.
Sometimes it can be useful to hide the outliers, for example when overlaying
the raw data points on top of the boxplot. Hiding the outliers can be achieved
by setting outlier.shape = NA. Importantly, this does not remove the outliers,
it only hides them, so the range calculated for the y-axis will be the same with
outliers shown and outliers hidden.

geom_boxplot 67

notch If FALSE (default) make a standard box plot. If TRUE, make a notched box plot.
Notches are used to compare groups; if the notches of two boxes do not overlap,
this suggests that the medians are significantly different.

notchwidth For a notched box plot, width of the notch relative to the body (defaults to
notchwidth = 0.5).

varwidth If FALSE (default) make a standard box plot. If TRUE, boxes are drawn with
widths proportional to the square-roots of the number of observations in the
groups (possibly weighted, using the weight aesthetic).

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

orientation The orientation of the layer. The default (NA) automatically determines the ori-
entation from the aesthetic mapping. In the rare event that this fails it can be
given explicitly by setting orientation to either "x" or "y". See the Orienta-
tion section for more detail.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

geom, stat Use to override the default connection between geom_boxplot() and stat_boxplot().

coef Length of the whiskers as multiple of IQR. Defaults to 1.5.

Orientation

This geom treats each axis differently and, thus, can thus have two orientations. Often the orienta-
tion is easy to deduce from a combination of the given mappings and the types of positional scales
in use. Thus, ggplot2 will by default try to guess which orientation the layer should have. Under
rare circumstances, the orientation is ambiguous and guessing may fail. In that case the orientation
can be specified directly using the orientation parameter, which can be either "x" or "y". The
value gives the axis that the geom should run along, "x" being the default orientation you would
expect for the geom.

Summary statistics

The lower and upper hinges correspond to the first and third quartiles (the 25th and 75th percentiles).
This differs slightly from the method used by the boxplot() function, and may be apparent with
small samples. See boxplot.stats() for for more information on how hinge positions are calcu-
lated for boxplot().

The upper whisker extends from the hinge to the largest value no further than 1.5 * IQR from the
hinge (where IQR is the inter-quartile range, or distance between the first and third quartiles). The
lower whisker extends from the hinge to the smallest value at most 1.5 * IQR of the hinge. Data
beyond the end of the whiskers are called "outlying" points and are plotted individually.

In a notched box plot, the notches extend 1.58 * IQR / sqrt(n). This gives a roughly 95% confi-
dence interval for comparing medians. See McGill et al. (1978) for more details.

68 geom_boxplot

Aesthetics

geom_boxplot() understands the following aesthetics (required aesthetics are in bold):

• x or y
• lower or xlower
• upper or xupper
• middle or xmiddle
• ymin or xmin
• ymax or xmax
• alpha

• colour

• fill

• group

• linetype

• shape

• size

• weight

Learn more about setting these aesthetics in vignette("ggplot2-specs").

Computed variables

stat_boxplot() provides the following variables, some of which depend on the orientation:

width width of boxplot

ymin or xmin lower whisker = smallest observation greater than or equal to lower hinge - 1.5 *
IQR

lower or xlower lower hinge, 25% quantile

notchlower lower edge of notch = median - 1.58 * IQR / sqrt(n)

middle or xmiddle median, 50% quantile

notchupper upper edge of notch = median + 1.58 * IQR / sqrt(n)

upper or xupper upper hinge, 75% quantile

ymax or xmax upper whisker = largest observation less than or equal to upper hinge + 1.5 * IQR

References

McGill, R., Tukey, J. W. and Larsen, W. A. (1978) Variations of box plots. The American Statisti-
cian 32, 12-16.

See Also

geom_quantile() for continuous x, geom_violin() for a richer display of the distribution, and
geom_jitter() for a useful technique for small data.

geom_contour 69

Examples

p <- ggplot(mpg, aes(class, hwy))
p + geom_boxplot()
Orientation follows the discrete axis
ggplot(mpg, aes(hwy, class)) + geom_boxplot()

p + geom_boxplot(notch = TRUE)
p + geom_boxplot(varwidth = TRUE)
p + geom_boxplot(fill = "white", colour = "#3366FF")
By default, outlier points match the colour of the box. Use
outlier.colour to override
p + geom_boxplot(outlier.colour = "red", outlier.shape = 1)
Remove outliers when overlaying boxplot with original data points
p + geom_boxplot(outlier.shape = NA) + geom_jitter(width = 0.2)

Boxplots are automatically dodged when any aesthetic is a factor
p + geom_boxplot(aes(colour = drv))

You can also use boxplots with continuous x, as long as you supply
a grouping variable. cut_width is particularly useful
ggplot(diamonds, aes(carat, price)) +

geom_boxplot()
ggplot(diamonds, aes(carat, price)) +

geom_boxplot(aes(group = cut_width(carat, 0.25)))
Adjust the transparency of outliers using outlier.alpha
ggplot(diamonds, aes(carat, price)) +

geom_boxplot(aes(group = cut_width(carat, 0.25)), outlier.alpha = 0.1)

It's possible to draw a boxplot with your own computations if you
use stat = "identity":
y <- rnorm(100)
df <- data.frame(

x = 1,
y0 = min(y),
y25 = quantile(y, 0.25),
y50 = median(y),
y75 = quantile(y, 0.75),
y100 = max(y)

)
ggplot(df, aes(x)) +

geom_boxplot(
aes(ymin = y0, lower = y25, middle = y50, upper = y75, ymax = y100),
stat = "identity"

)

geom_contour 2D contours of a 3D surface

70 geom_contour

Description

ggplot2 can not draw true 3D surfaces, but you can use geom_contour(), geom_contour_filled(),
and geom_tile() to visualise 3D surfaces in 2D. To specify a valid surface, the data must contain x,
y, and z coordinates, and each unique combination of x and y can appear at most once. Contouring
requires that the points can be rearranged so that the z values form a matrix, with rows correspond-
ing to unique x values, and columns corresponding to unique y values. Missing entries are allowed,
but contouring will only be done on cells of the grid with all four z values present. If your data
is irregular, you can interpolate to a grid before visualising using the interp::interp() function
from the interp package (or one of the interpolating functions from the akima package.)

Usage

geom_contour(
mapping = NULL,
data = NULL,
stat = "contour",
position = "identity",
...,
bins = NULL,
binwidth = NULL,
breaks = NULL,
lineend = "butt",
linejoin = "round",
linemitre = 10,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_contour_filled(
mapping = NULL,
data = NULL,
stat = "contour_filled",
position = "identity",
...,
bins = NULL,
binwidth = NULL,
breaks = NULL,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

stat_contour(
mapping = NULL,
data = NULL,
geom = "contour",
position = "identity",

geom_contour 71

...,
bins = NULL,
binwidth = NULL,
breaks = NULL,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

stat_contour_filled(
mapping = NULL,
data = NULL,
geom = "contour_filled",
position = "identity",
...,
bins = NULL,
binwidth = NULL,
breaks = NULL,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer, as a string.
position Position adjustment, either as a string, or the result of a call to a position adjust-

ment function.
... Other arguments passed on to layer(). These are often aesthetics, used to set

an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

bins Number of contour bins. Overridden by binwidth.
binwidth The width of the contour bins. Overridden by breaks.
breaks Numeric vector to set the contour breaks. Overrides binwidth and bins. By

default, this is a vector of length ten with pretty() breaks.

72 geom_contour

lineend Line end style (round, butt, square).

linejoin Line join style (round, mitre, bevel).

linemitre Line mitre limit (number greater than 1).

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

geom The geometric object to use display the data

Aesthetics

geom_contour() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• alpha

• colour

• group

• linetype

• size

• weight

Learn more about setting these aesthetics in vignette("ggplot2-specs").

geom_contour_filled() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• alpha

• colour

• fill

• group

• linetype

• size

• subgroup

Learn more about setting these aesthetics in vignette("ggplot2-specs").

stat_contour() understands the following aesthetics (required aesthetics are in bold):

• x

geom_contour 73

• y

• z

• group

• order

Learn more about setting these aesthetics in vignette("ggplot2-specs").

stat_contour_filled() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• z

• fill

• group

• order

Learn more about setting these aesthetics in vignette("ggplot2-specs").

Computed variables

The computed variables differ somewhat for contour lines (computed by stat_contour()) and
contour bands (filled contours, computed by stat_contour_filled()). The variables nlevel and
piece are available for both, whereas level_low, level_high, and level_mid are only available
for bands. The variable level is a numeric or a factor depending on whether lines or bands are
calculated.

level Height of contour. For contour lines, this is numeric vector that represents bin boundaries.
For contour bands, this is an ordered factor that represents bin ranges.

level_low, level_high, level_mid (contour bands only) Lower and upper bin boundaries for
each band, as well the mid point between the boundaries.

nlevel Height of contour, scaled to maximum of 1.

piece Contour piece (an integer).

See Also

geom_density_2d(): 2d density contours

Examples

Basic plot
v <- ggplot(faithfuld, aes(waiting, eruptions, z = density))
v + geom_contour()

Or compute from raw data
ggplot(faithful, aes(waiting, eruptions)) +

geom_density_2d()

use geom_contour_filled() for filled contours

74 geom_count

v + geom_contour_filled()

Setting bins creates evenly spaced contours in the range of the data
v + geom_contour(bins = 3)
v + geom_contour(bins = 5)

Setting binwidth does the same thing, parameterised by the distance
between contours
v + geom_contour(binwidth = 0.01)
v + geom_contour(binwidth = 0.001)

Other parameters
v + geom_contour(aes(colour = after_stat(level)))
v + geom_contour(colour = "red")
v + geom_raster(aes(fill = density)) +

geom_contour(colour = "white")

Irregular data
if (requireNamespace("interp")) {

Use a dataset from the interp package
data(franke, package = "interp")
origdata <- as.data.frame(interp::franke.data(1, 1, franke))
grid <- with(origdata, interp::interp(x, y, z))
griddf <- subset(data.frame(x = rep(grid$x, nrow(grid$z)),

y = rep(grid$y, each = ncol(grid$z)),
z = as.numeric(grid$z)),

!is.na(z))
ggplot(griddf, aes(x, y, z = z)) +
geom_contour_filled() +
geom_point(data = origdata)

} else
message("Irregular data requires the 'interp' package")

geom_count Count overlapping points

Description

This is a variant geom_point() that counts the number of observations at each location, then maps
the count to point area. It useful when you have discrete data and overplotting.

Usage

geom_count(
mapping = NULL,
data = NULL,
stat = "sum",
position = "identity",
...,

geom_count 75

na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

stat_sum(
mapping = NULL,
data = NULL,
geom = "point",
position = "identity",
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

geom, stat Use to override the default connection between geom_count() and stat_sum().

76 geom_count

Aesthetics

geom_point() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• alpha

• colour

• fill

• group

• shape

• size

• stroke

Learn more about setting these aesthetics in vignette("ggplot2-specs").

Computed variables

n number of observations at position

prop percent of points in that panel at that position

See Also

For continuous x and y, use geom_bin2d().

Examples

ggplot(mpg, aes(cty, hwy)) +
geom_point()

ggplot(mpg, aes(cty, hwy)) +
geom_count()

Best used in conjunction with scale_size_area which ensures that
counts of zero would be given size 0. Doesn't make much different
here because the smallest count is already close to 0.
ggplot(mpg, aes(cty, hwy)) +
geom_count() +
scale_size_area()

Display proportions instead of counts -------------------------------------
By default, all categorical variables in the plot form the groups.
Specifying geom_count without a group identifier leads to a plot which is
not useful:
d <- ggplot(diamonds, aes(x = cut, y = clarity))
d + geom_count(aes(size = after_stat(prop)))
To correct this problem and achieve a more desirable plot, we need
to specify which group the proportion is to be calculated over.
d + geom_count(aes(size = after_stat(prop), group = 1)) +

geom_crossbar 77

scale_size_area(max_size = 10)

Or group by x/y variables to have rows/columns sum to 1.
d + geom_count(aes(size = after_stat(prop), group = cut)) +

scale_size_area(max_size = 10)
d + geom_count(aes(size = after_stat(prop), group = clarity)) +

scale_size_area(max_size = 10)

geom_crossbar Vertical intervals: lines, crossbars & errorbars

Description

Various ways of representing a vertical interval defined by x, ymin and ymax. Each case draws a
single graphical object.

Usage

geom_crossbar(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
fatten = 2.5,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)

geom_errorbar(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)

geom_linerange(
mapping = NULL,
data = NULL,
stat = "identity",

78 geom_crossbar

position = "identity",
...,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)

geom_pointrange(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
fatten = 4,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer, as a string.

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

fatten A multiplicative factor used to increase the size of the middle bar in geom_crossbar()
and the middle point in geom_pointrange().

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

geom_crossbar 79

orientation The orientation of the layer. The default (NA) automatically determines the ori-
entation from the aesthetic mapping. In the rare event that this fails it can be
given explicitly by setting orientation to either "x" or "y". See the Orienta-
tion section for more detail.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Orientation

This geom treats each axis differently and, thus, can thus have two orientations. Often the orienta-
tion is easy to deduce from a combination of the given mappings and the types of positional scales
in use. Thus, ggplot2 will by default try to guess which orientation the layer should have. Under
rare circumstances, the orientation is ambiguous and guessing may fail. In that case the orientation
can be specified directly using the orientation parameter, which can be either "x" or "y". The
value gives the axis that the geom should run along, "x" being the default orientation you would
expect for the geom.

Aesthetics

geom_linerange() understands the following aesthetics (required aesthetics are in bold):

• x or y
• ymin or xmin
• ymax or xmax
• alpha

• colour

• group

• linetype

• size

Learn more about setting these aesthetics in vignette("ggplot2-specs").

See Also

stat_summary() for examples of these guys in use, geom_smooth() for continuous analogue,
geom_errorbarh() for a horizontal error bar.

Examples

Create a simple example dataset
df <- data.frame(

trt = factor(c(1, 1, 2, 2)),
resp = c(1, 5, 3, 4),
group = factor(c(1, 2, 1, 2)),

80 geom_density

upper = c(1.1, 5.3, 3.3, 4.2),
lower = c(0.8, 4.6, 2.4, 3.6)

)

p <- ggplot(df, aes(trt, resp, colour = group))
p + geom_linerange(aes(ymin = lower, ymax = upper))
p + geom_pointrange(aes(ymin = lower, ymax = upper))
p + geom_crossbar(aes(ymin = lower, ymax = upper), width = 0.2)
p + geom_errorbar(aes(ymin = lower, ymax = upper), width = 0.2)

Flip the orientation by changing mapping
ggplot(df, aes(resp, trt, colour = group)) +

geom_linerange(aes(xmin = lower, xmax = upper))

Draw lines connecting group means
p +

geom_line(aes(group = group)) +
geom_errorbar(aes(ymin = lower, ymax = upper), width = 0.2)

If you want to dodge bars and errorbars, you need to manually
specify the dodge width
p <- ggplot(df, aes(trt, resp, fill = group))
p +
geom_col(position = "dodge") +
geom_errorbar(aes(ymin = lower, ymax = upper), position = "dodge", width = 0.25)

Because the bars and errorbars have different widths
we need to specify how wide the objects we are dodging are
dodge <- position_dodge(width=0.9)
p +

geom_col(position = dodge) +
geom_errorbar(aes(ymin = lower, ymax = upper), position = dodge, width = 0.25)

When using geom_errorbar() with position_dodge2(), extra padding will be
needed between the error bars to keep them aligned with the bars.
p +
geom_col(position = "dodge2") +
geom_errorbar(

aes(ymin = lower, ymax = upper),
position = position_dodge2(width = 0.5, padding = 0.5)

)

geom_density Smoothed density estimates

Description

Computes and draws kernel density estimate, which is a smoothed version of the histogram. This
is a useful alternative to the histogram for continuous data that comes from an underlying smooth
distribution.

geom_density 81

Usage

geom_density(
mapping = NULL,
data = NULL,
stat = "density",
position = "identity",
...,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE,
outline.type = "upper"

)

stat_density(
mapping = NULL,
data = NULL,
geom = "area",
position = "stack",
...,
bw = "nrd0",
adjust = 1,
kernel = "gaussian",
n = 512,
trim = FALSE,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

82 geom_density

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

orientation The orientation of the layer. The default (NA) automatically determines the ori-
entation from the aesthetic mapping. In the rare event that this fails it can be
given explicitly by setting orientation to either "x" or "y". See the Orienta-
tion section for more detail.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

outline.type Type of the outline of the area; "both" draws both the upper and lower lines,
"upper"/"lower" draws the respective lines only. "full" draws a closed poly-
gon around the area.

geom, stat Use to override the default connection between geom_density() and stat_density().

bw The smoothing bandwidth to be used. If numeric, the standard deviation of
the smoothing kernel. If character, a rule to choose the bandwidth, as listed in
stats::bw.nrd().

adjust A multiplicate bandwidth adjustment. This makes it possible to adjust the band-
width while still using the a bandwidth estimator. For example, adjust = 1/2
means use half of the default bandwidth.

kernel Kernel. See list of available kernels in density().

n number of equally spaced points at which the density is to be estimated, should
be a power of two, see density() for details

trim If FALSE, the default, each density is computed on the full range of the data.
If TRUE, each density is computed over the range of that group: this typically
means the estimated x values will not line-up, and hence you won’t be able to
stack density values. This parameter only matters if you are displaying multiple
densities in one plot or if you are manually adjusting the scale limits.

Orientation

This geom treats each axis differently and, thus, can thus have two orientations. Often the orienta-
tion is easy to deduce from a combination of the given mappings and the types of positional scales
in use. Thus, ggplot2 will by default try to guess which orientation the layer should have. Under
rare circumstances, the orientation is ambiguous and guessing may fail. In that case the orientation
can be specified directly using the orientation parameter, which can be either "x" or "y". The
value gives the axis that the geom should run along, "x" being the default orientation you would
expect for the geom.

geom_density 83

Aesthetics

geom_density() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• alpha

• colour

• fill

• group

• linetype

• size

• weight

Learn more about setting these aesthetics in vignette("ggplot2-specs").

Computed variables

density density estimate

count density * number of points - useful for stacked density plots

scaled density estimate, scaled to maximum of 1

ndensity alias for scaled, to mirror the syntax of stat_bin()

See Also

See geom_histogram(), geom_freqpoly() for other methods of displaying continuous distribu-
tion. See geom_violin() for a compact density display.

Examples

ggplot(diamonds, aes(carat)) +
geom_density()

Map the values to y to flip the orientation
ggplot(diamonds, aes(y = carat)) +

geom_density()

ggplot(diamonds, aes(carat)) +
geom_density(adjust = 1/5)

ggplot(diamonds, aes(carat)) +
geom_density(adjust = 5)

ggplot(diamonds, aes(depth, colour = cut)) +
geom_density() +
xlim(55, 70)

ggplot(diamonds, aes(depth, fill = cut, colour = cut)) +
geom_density(alpha = 0.1) +
xlim(55, 70)

84 geom_density_2d

Stacked density plots: if you want to create a stacked density plot, you
probably want to 'count' (density * n) variable instead of the default
density

Loses marginal densities
ggplot(diamonds, aes(carat, fill = cut)) +

geom_density(position = "stack")
Preserves marginal densities
ggplot(diamonds, aes(carat, after_stat(count), fill = cut)) +

geom_density(position = "stack")

You can use position="fill" to produce a conditional density estimate
ggplot(diamonds, aes(carat, after_stat(count), fill = cut)) +

geom_density(position = "fill")

geom_density_2d Contours of a 2D density estimate

Description

Perform a 2D kernel density estimation using MASS::kde2d() and display the results with con-
tours. This can be useful for dealing with overplotting. This is a 2D version of geom_density().
geom_density_2d() draws contour lines, and geom_density_2d_filled() draws filled contour
bands.

Usage

geom_density_2d(
mapping = NULL,
data = NULL,
stat = "density_2d",
position = "identity",
...,
contour_var = "density",
lineend = "butt",
linejoin = "round",
linemitre = 10,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_density_2d_filled(
mapping = NULL,
data = NULL,
stat = "density_2d_filled",

geom_density_2d 85

position = "identity",
...,
contour_var = "density",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

stat_density_2d(
mapping = NULL,
data = NULL,
geom = "density_2d",
position = "identity",
...,
contour = TRUE,
contour_var = "density",
n = 100,
h = NULL,
adjust = c(1, 1),
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

stat_density_2d_filled(
mapping = NULL,
data = NULL,
geom = "density_2d_filled",
position = "identity",
...,
contour = TRUE,
contour_var = "density",
n = 100,
h = NULL,
adjust = c(1, 1),
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

86 geom_density_2d

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

... Arguments passed on to geom_contour

bins Number of contour bins. Overridden by binwidth.
binwidth The width of the contour bins. Overridden by breaks.
breaks Numeric vector to set the contour breaks. Overrides binwidth and

bins. By default, this is a vector of length ten with pretty() breaks.

contour_var Character string identifying the variable to contour by. Can be one of "density",
"ndensity", or "count". See the section on computed variables for details.

lineend Line end style (round, butt, square).

linejoin Line join style (round, mitre, bevel).

linemitre Line mitre limit (number greater than 1).

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

geom, stat Use to override the default connection between geom_density_2d() and stat_density_2d().

contour If TRUE, contour the results of the 2d density estimation.

n Number of grid points in each direction.

h Bandwidth (vector of length two). If NULL, estimated using MASS::bandwidth.nrd().

adjust A multiplicative bandwidth adjustment to be used if ’h’ is ’NULL’. This makes
it possible to adjust the bandwidth while still using the a bandwidth estimator.
For example, adjust = 1/2 means use half of the default bandwidth.

Aesthetics

geom_density_2d() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• alpha

• colour

• group

geom_density_2d 87

• linetype

• size

Learn more about setting these aesthetics in vignette("ggplot2-specs").

geom_density_2d_filled() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• alpha

• colour

• fill

• group

• linetype

• size

• subgroup

Learn more about setting these aesthetics in vignette("ggplot2-specs").

Computed variables

stat_density_2d() and stat_density_2d_filled() compute different variables depending on
whether contouring is turned on or off. With contouring off (contour = FALSE), both stats behave
the same, and the following variables are provided:

density The density estimate.

ndensity Density estimate, scaled to a maximum of 1.

count Density estimate * number of observations in group.

n Number of observations in each group.

With contouring on (contour = TRUE), either stat_contour() or stat_contour_filled() (for
contour lines or contour bands, respectively) is run after the density estimate has been obtained, and
the computed variables are determined by these stats. Contours are calculated for one of the three
types of density estimates obtained before contouring, density, ndensity, and count. Which of
those should be used is determined by the contour_var parameter.

See Also

geom_contour(), geom_contour_filled() for information about how contours are drawn; geom_bin2d()
for another way of dealing with overplotting.

Examples

m <- ggplot(faithful, aes(x = eruptions, y = waiting)) +
geom_point() +
xlim(0.5, 6) +
ylim(40, 110)

88 geom_dotplot

contour lines
m + geom_density_2d()

contour bands
m + geom_density_2d_filled(alpha = 0.5)

contour bands and contour lines
m + geom_density_2d_filled(alpha = 0.5) +

geom_density_2d(size = 0.25, colour = "black")

set.seed(4393)
dsmall <- diamonds[sample(nrow(diamonds), 1000),]
d <- ggplot(dsmall, aes(x, y))
If you map an aesthetic to a categorical variable, you will get a
set of contours for each value of that variable
d + geom_density_2d(aes(colour = cut))

If you draw filled contours across multiple facets, the same bins are
used across all facets
d + geom_density_2d_filled() + facet_wrap(vars(cut))
If you want to make sure the peak intensity is the same in each facet,
use `contour_var = "ndensity"`.
d + geom_density_2d_filled(contour_var = "ndensity") + facet_wrap(vars(cut))
If you want to scale intensity by the number of observations in each group,
use `contour_var = "count"`.
d + geom_density_2d_filled(contour_var = "count") + facet_wrap(vars(cut))

If we turn contouring off, we can use other geoms, such as tiles:
d + stat_density_2d(

geom = "raster",
aes(fill = after_stat(density)),
contour = FALSE

) + scale_fill_viridis_c()
Or points:
d + stat_density_2d(geom = "point", aes(size = after_stat(density)), n = 20, contour = FALSE)

geom_dotplot Dot plot

Description

In a dot plot, the width of a dot corresponds to the bin width (or maximum width, depending on the
binning algorithm), and dots are stacked, with each dot representing one observation.

Usage

geom_dotplot(
mapping = NULL,

geom_dotplot 89

data = NULL,
position = "identity",
...,
binwidth = NULL,
binaxis = "x",
method = "dotdensity",
binpositions = "bygroup",
stackdir = "up",
stackratio = 1,
dotsize = 1,
stackgroups = FALSE,
origin = NULL,
right = TRUE,
width = 0.9,
drop = FALSE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

binwidth When method is "dotdensity", this specifies maximum bin width. When method
is "histodot", this specifies bin width. Defaults to 1/30 of the range of the data

binaxis The axis to bin along, "x" (default) or "y"
method "dotdensity" (default) for dot-density binning, or "histodot" for fixed bin widths

(like stat_bin)
binpositions When method is "dotdensity", "bygroup" (default) determines positions of the

bins for each group separately. "all" determines positions of the bins with all the
data taken together; this is used for aligning dot stacks across multiple groups.

90 geom_dotplot

stackdir which direction to stack the dots. "up" (default), "down", "center", "centerw-
hole" (centered, but with dots aligned)

stackratio how close to stack the dots. Default is 1, where dots just touch. Use smaller
values for closer, overlapping dots.

dotsize The diameter of the dots relative to binwidth, default 1.

stackgroups should dots be stacked across groups? This has the effect that position =
"stack" should have, but can’t (because this geom has some odd properties).

origin When method is "histodot", origin of first bin

right When method is "histodot", should intervals be closed on the right (a, b], or not
[a, b)

width When binaxis is "y", the spacing of the dot stacks for dodging.

drop If TRUE, remove all bins with zero counts

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Details

There are two basic approaches: dot-density and histodot. With dot-density binning, the bin po-
sitions are determined by the data and binwidth, which is the maximum width of each bin. See
Wilkinson (1999) for details on the dot-density binning algorithm. With histodot binning, the bins
have fixed positions and fixed widths, much like a histogram.

When binning along the x axis and stacking along the y axis, the numbers on y axis are not mean-
ingful, due to technical limitations of ggplot2. You can hide the y axis, as in one of the examples,
or manually scale it to match the number of dots.

Aesthetics

geom_dotplot() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• alpha

• colour

• fill

• group

• linetype

• stroke

Learn more about setting these aesthetics in vignette("ggplot2-specs").

geom_dotplot 91

Computed variables

x center of each bin, if binaxis is "x"

y center of each bin, if binaxis is "x"

binwidth max width of each bin if method is "dotdensity"; width of each bin if method is "histodot"

count number of points in bin

ncount count, scaled to maximum of 1

density density of points in bin, scaled to integrate to 1, if method is "histodot"

ndensity density, scaled to maximum of 1, if method is "histodot"

References

Wilkinson, L. (1999) Dot plots. The American Statistician, 53(3), 276-281.

Examples

ggplot(mtcars, aes(x = mpg)) +
geom_dotplot()

ggplot(mtcars, aes(x = mpg)) +
geom_dotplot(binwidth = 1.5)

Use fixed-width bins
ggplot(mtcars, aes(x = mpg)) +

geom_dotplot(method="histodot", binwidth = 1.5)

Some other stacking methods
ggplot(mtcars, aes(x = mpg)) +

geom_dotplot(binwidth = 1.5, stackdir = "center")

ggplot(mtcars, aes(x = mpg)) +
geom_dotplot(binwidth = 1.5, stackdir = "centerwhole")

y axis isn't really meaningful, so hide it
ggplot(mtcars, aes(x = mpg)) + geom_dotplot(binwidth = 1.5) +

scale_y_continuous(NULL, breaks = NULL)

Overlap dots vertically
ggplot(mtcars, aes(x = mpg)) +

geom_dotplot(binwidth = 1.5, stackratio = .7)

Expand dot diameter
ggplot(mtcars, aes(x = mpg)) +

geom_dotplot(binwidth = 1.5, dotsize = 1.25)

Change dot fill colour, stroke width
ggplot(mtcars, aes(x = mpg)) +

geom_dotplot(binwidth = 1.5, fill = "white", stroke = 2)

92 geom_errorbarh

Examples with stacking along y axis instead of x
ggplot(mtcars, aes(x = 1, y = mpg)) +

geom_dotplot(binaxis = "y", stackdir = "center")

ggplot(mtcars, aes(x = factor(cyl), y = mpg)) +
geom_dotplot(binaxis = "y", stackdir = "center")

ggplot(mtcars, aes(x = factor(cyl), y = mpg)) +
geom_dotplot(binaxis = "y", stackdir = "centerwhole")

ggplot(mtcars, aes(x = factor(vs), fill = factor(cyl), y = mpg)) +
geom_dotplot(binaxis = "y", stackdir = "center", position = "dodge")

binpositions="all" ensures that the bins are aligned between groups
ggplot(mtcars, aes(x = factor(am), y = mpg)) +

geom_dotplot(binaxis = "y", stackdir = "center", binpositions="all")

Stacking multiple groups, with different fill
ggplot(mtcars, aes(x = mpg, fill = factor(cyl))) +

geom_dotplot(stackgroups = TRUE, binwidth = 1, binpositions = "all")

ggplot(mtcars, aes(x = mpg, fill = factor(cyl))) +
geom_dotplot(stackgroups = TRUE, binwidth = 1, method = "histodot")

ggplot(mtcars, aes(x = 1, y = mpg, fill = factor(cyl))) +
geom_dotplot(binaxis = "y", stackgroups = TRUE, binwidth = 1, method = "histodot")

geom_errorbarh Horizontal error bars

Description

A rotated version of geom_errorbar().

Usage

geom_errorbarh(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_errorbarh 93

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer, as a string.

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Aesthetics

geom_errorbarh() understands the following aesthetics (required aesthetics are in bold):

• xmin

• xmax

• y

• alpha

• colour

• group

• height

• linetype

• size

Learn more about setting these aesthetics in vignette("ggplot2-specs").

94 geom_freqpoly

Examples

df <- data.frame(
trt = factor(c(1, 1, 2, 2)),
resp = c(1, 5, 3, 4),
group = factor(c(1, 2, 1, 2)),
se = c(0.1, 0.3, 0.3, 0.2)

)

Define the top and bottom of the errorbars

p <- ggplot(df, aes(resp, trt, colour = group))
p +

geom_point() +
geom_errorbarh(aes(xmax = resp + se, xmin = resp - se))

p +
geom_point() +
geom_errorbarh(aes(xmax = resp + se, xmin = resp - se, height = .2))

geom_freqpoly Histograms and frequency polygons

Description

Visualise the distribution of a single continuous variable by dividing the x axis into bins and count-
ing the number of observations in each bin. Histograms (geom_histogram()) display the counts
with bars; frequency polygons (geom_freqpoly()) display the counts with lines. Frequency poly-
gons are more suitable when you want to compare the distribution across the levels of a categorical
variable.

Usage

geom_freqpoly(
mapping = NULL,
data = NULL,
stat = "bin",
position = "identity",
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_histogram(
mapping = NULL,
data = NULL,
stat = "bin",
position = "stack",

geom_freqpoly 95

...,
binwidth = NULL,
bins = NULL,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)

stat_bin(
mapping = NULL,
data = NULL,
geom = "bar",
position = "stack",
...,
binwidth = NULL,
bins = NULL,
center = NULL,
boundary = NULL,
breaks = NULL,
closed = c("right", "left"),
pad = FALSE,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

96 geom_freqpoly

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

binwidth The width of the bins. Can be specified as a numeric value or as a function that
calculates width from unscaled x. Here, "unscaled x" refers to the original x val-
ues in the data, before application of any scale transformation. When specifying
a function along with a grouping structure, the function will be called once per
group. The default is to use the number of bins in bins, covering the range of
the data. You should always override this value, exploring multiple widths to
find the best to illustrate the stories in your data.
The bin width of a date variable is the number of days in each time; the bin
width of a time variable is the number of seconds.

bins Number of bins. Overridden by binwidth. Defaults to 30.

orientation The orientation of the layer. The default (NA) automatically determines the ori-
entation from the aesthetic mapping. In the rare event that this fails it can be
given explicitly by setting orientation to either "x" or "y". See the Orienta-
tion section for more detail.

geom, stat Use to override the default connection between geom_histogram()/geom_freqpoly()
and stat_bin().

center, boundary

bin position specifiers. Only one, center or boundary, may be specified for a
single plot. center specifies the center of one of the bins. boundary specifies
the boundary between two bins. Note that if either is above or below the range of
the data, things will be shifted by the appropriate integer multiple of binwidth.
For example, to center on integers use binwidth = 1 and center = 0, even if 0 is
outside the range of the data. Alternatively, this same alignment can be specified
with binwidth = 1 and boundary = 0.5, even if 0.5 is outside the range of the
data.

breaks Alternatively, you can supply a numeric vector giving the bin boundaries. Over-
rides binwidth, bins, center, and boundary.

closed One of "right" or "left" indicating whether right or left edges of bins are
included in the bin.

pad If TRUE, adds empty bins at either end of x. This ensures frequency polygons
touch 0. Defaults to FALSE.

Details

stat_bin() is suitable only for continuous x data. If your x data is discrete, you probably want to
use stat_count().

By default, the underlying computation (stat_bin()) uses 30 bins; this is not a good default,
but the idea is to get you experimenting with different number of bins. You can also experiment

geom_freqpoly 97

modifying the binwidth with center or boundary arguments. binwidth overrides bins so you
should do one change at a time. You may need to look at a few options to uncover the full story
behind your data.

In addition to geom_histogram(), you can create a histogram plot by using scale_x_binned()
with geom_bar(). This method by default plots tick marks in between each bar.

Orientation

This geom treats each axis differently and, thus, can thus have two orientations. Often the orienta-
tion is easy to deduce from a combination of the given mappings and the types of positional scales
in use. Thus, ggplot2 will by default try to guess which orientation the layer should have. Under
rare circumstances, the orientation is ambiguous and guessing may fail. In that case the orientation
can be specified directly using the orientation parameter, which can be either "x" or "y". The
value gives the axis that the geom should run along, "x" being the default orientation you would
expect for the geom.

Aesthetics

geom_histogram() uses the same aesthetics as geom_bar(); geom_freqpoly() uses the same
aesthetics as geom_line().

Computed variables

count number of points in bin

density density of points in bin, scaled to integrate to 1

ncount count, scaled to maximum of 1

ndensity density, scaled to maximum of 1

width widths of bins

See Also

stat_count(), which counts the number of cases at each x position, without binning. It is suitable
for both discrete and continuous x data, whereas stat_bin() is suitable only for continuous x data.

Examples

ggplot(diamonds, aes(carat)) +
geom_histogram()

ggplot(diamonds, aes(carat)) +
geom_histogram(binwidth = 0.01)

ggplot(diamonds, aes(carat)) +
geom_histogram(bins = 200)

Map values to y to flip the orientation
ggplot(diamonds, aes(y = carat)) +

geom_histogram()

For histograms with tick marks between each bin, use `geom_bar()` with
`scale_x_binned()`.
ggplot(diamonds, aes(carat)) +

98 geom_freqpoly

geom_bar() +
scale_x_binned()

Rather than stacking histograms, it's easier to compare frequency
polygons
ggplot(diamonds, aes(price, fill = cut)) +

geom_histogram(binwidth = 500)
ggplot(diamonds, aes(price, colour = cut)) +

geom_freqpoly(binwidth = 500)

To make it easier to compare distributions with very different counts,
put density on the y axis instead of the default count
ggplot(diamonds, aes(price, after_stat(density), colour = cut)) +

geom_freqpoly(binwidth = 500)

if (require("ggplot2movies")) {
Often we don't want the height of the bar to represent the
count of observations, but the sum of some other variable.
For example, the following plot shows the number of movies
in each rating.
m <- ggplot(movies, aes(rating))
m + geom_histogram(binwidth = 0.1)

If, however, we want to see the number of votes cast in each
category, we need to weight by the votes variable
m +

geom_histogram(aes(weight = votes), binwidth = 0.1) +
ylab("votes")

For transformed scales, binwidth applies to the transformed data.
The bins have constant width on the transformed scale.
m +
geom_histogram() +
scale_x_log10()

m +
geom_histogram(binwidth = 0.05) +
scale_x_log10()

For transformed coordinate systems, the binwidth applies to the
raw data. The bins have constant width on the original scale.

Using log scales does not work here, because the first
bar is anchored at zero, and so when transformed becomes negative
infinity. This is not a problem when transforming the scales, because
no observations have 0 ratings.
m +

geom_histogram(boundary = 0) +
coord_trans(x = "log10")

Use boundary = 0, to make sure we don't take sqrt of negative values
m +

geom_histogram(boundary = 0) +
coord_trans(x = "sqrt")

geom_function 99

You can also transform the y axis. Remember that the base of the bars
has value 0, so log transformations are not appropriate
m <- ggplot(movies, aes(x = rating))
m +

geom_histogram(binwidth = 0.5) +
scale_y_sqrt()

}

You can specify a function for calculating binwidth, which is
particularly useful when faceting along variables with
different ranges because the function will be called once per facet
ggplot(economics_long, aes(value)) +

facet_wrap(~variable, scales = 'free_x') +
geom_histogram(binwidth = function(x) 2 * IQR(x) / (length(x)^(1/3)))

geom_function Draw a function as a continuous curve

Description

Computes and draws a function as a continuous curve. This makes it easy to superimpose a function
on top of an existing plot. The function is called with a grid of evenly spaced values along the x
axis, and the results are drawn (by default) with a line.

Usage

geom_function(
mapping = NULL,
data = NULL,
stat = "function",
position = "identity",
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

stat_function(
mapping = NULL,
data = NULL,
geom = "function",
position = "identity",
...,
fun,
xlim = NULL,
n = 101,
args = list(),
na.rm = FALSE,

100 geom_function

show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data Ignored by stat_function(), do not use.

stat The statistical transformation to use on the data for this layer, as a string.

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

geom The geometric object to use display the data

fun Function to use. Either 1) an anonymous function in the base or rlang formula
syntax (see rlang::as_function()) or 2) a quoted or character name referenc-
ing a function; see examples. Must be vectorised.

xlim Optionally, restrict the range of the function to this range.

n Number of points to interpolate along the x axis.

args List of additional arguments passed on to the function defined by fun.

Aesthetics

geom_function() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• alpha

• colour

• group

• linetype

• size

Learn more about setting these aesthetics in vignette("ggplot2-specs").

geom_function 101

Computed variables

stat_function() computes the following variables:

x x values along a grid

y value of the function evaluated at corresponding x

See Also

rlang::as_function()

Examples

geom_function() is useful for overlaying functions
set.seed(1492)
ggplot(data.frame(x = rnorm(100)), aes(x)) +

geom_density() +
geom_function(fun = dnorm, colour = "red")

To plot functions without data, specify range of x-axis
base <-

ggplot() +
xlim(-5, 5)

base + geom_function(fun = dnorm)

base + geom_function(fun = dnorm, args = list(mean = 2, sd = .5))

The underlying mechanics evaluate the function at discrete points
and connect the points with lines
base + stat_function(fun = dnorm, geom = "point")

base + stat_function(fun = dnorm, geom = "point", n = 20)

base + geom_function(fun = dnorm, n = 20)

Two functions on the same plot
base +

geom_function(aes(colour = "normal"), fun = dnorm) +
geom_function(aes(colour = "t, df = 1"), fun = dt, args = list(df = 1))

Using a custom anonymous function
base + geom_function(fun = function(x) 0.5*exp(-abs(x)))

base + geom_function(fun = ~ 0.5*exp(-abs(.x)))

Using a custom named function
f <- function(x) 0.5*exp(-abs(x))

base + geom_function(fun = f)

102 geom_hex

geom_hex Hexagonal heatmap of 2d bin counts

Description

Divides the plane into regular hexagons, counts the number of cases in each hexagon, and then
(by default) maps the number of cases to the hexagon fill. Hexagon bins avoid the visual artefacts
sometimes generated by the very regular alignment of geom_bin2d().

Usage

geom_hex(
mapping = NULL,
data = NULL,
stat = "binhex",
position = "identity",
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

stat_bin_hex(
mapping = NULL,
data = NULL,
geom = "hex",
position = "identity",
...,
bins = 30,
binwidth = NULL,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

geom_hex 103

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

geom, stat Override the default connection between geom_hex() and stat_binhex().

bins numeric vector giving number of bins in both vertical and horizontal directions.
Set to 30 by default.

binwidth Numeric vector giving bin width in both vertical and horizontal directions. Over-
rides bins if both set.

Aesthetics

geom_hex() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• alpha

• colour

• fill

• group

• linetype

• size

Learn more about setting these aesthetics in vignette("ggplot2-specs").

Computed variables

count number of points in bin

density density of points in bin, scaled to integrate to 1

ncount count, scaled to maximum of 1

ndensity density, scaled to maximum of 1

104 geom_jitter

See Also

stat_bin2d() for rectangular binning

Examples

d <- ggplot(diamonds, aes(carat, price))
d + geom_hex()

You can control the size of the bins by specifying the number of
bins in each direction:
d + geom_hex(bins = 10)
d + geom_hex(bins = 30)

Or by specifying the width of the bins
d + geom_hex(binwidth = c(1, 1000))
d + geom_hex(binwidth = c(.1, 500))

geom_jitter Jittered points

Description

The jitter geom is a convenient shortcut for geom_point(position = "jitter"). It adds a small
amount of random variation to the location of each point, and is a useful way of handling overplot-
ting caused by discreteness in smaller datasets.

Usage

geom_jitter(
mapping = NULL,
data = NULL,
stat = "identity",
position = "jitter",
...,
width = NULL,
height = NULL,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

geom_jitter 105

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer, as a string.

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

width Amount of vertical and horizontal jitter. The jitter is added in both positive and
negative directions, so the total spread is twice the value specified here.
If omitted, defaults to 40% of the resolution of the data: this means the jitter
values will occupy 80% of the implied bins. Categorical data is aligned on the
integers, so a width or height of 0.5 will spread the data so it’s not possible to
see the distinction between the categories.

height Amount of vertical and horizontal jitter. The jitter is added in both positive and
negative directions, so the total spread is twice the value specified here.
If omitted, defaults to 40% of the resolution of the data: this means the jitter
values will occupy 80% of the implied bins. Categorical data is aligned on the
integers, so a width or height of 0.5 will spread the data so it’s not possible to
see the distinction between the categories.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Aesthetics

geom_point() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• alpha

• colour

• fill

106 geom_label

• group

• shape

• size

• stroke

Learn more about setting these aesthetics in vignette("ggplot2-specs").

See Also

geom_point() for regular, unjittered points, geom_boxplot() for another way of looking at the
conditional distribution of a variable

Examples

p <- ggplot(mpg, aes(cyl, hwy))
p + geom_point()
p + geom_jitter()

Add aesthetic mappings
p + geom_jitter(aes(colour = class))

Use smaller width/height to emphasise categories
ggplot(mpg, aes(cyl, hwy)) +

geom_jitter()
ggplot(mpg, aes(cyl, hwy)) +

geom_jitter(width = 0.25)

Use larger width/height to completely smooth away discreteness
ggplot(mpg, aes(cty, hwy)) +

geom_jitter()
ggplot(mpg, aes(cty, hwy)) +

geom_jitter(width = 0.5, height = 0.5)

geom_label Text

Description

Text geoms are useful for labeling plots. They can be used by themselves as scatterplots or in
combination with other geoms, for example, for labeling points or for annotating the height of bars.
geom_text() adds only text to the plot. geom_label() draws a rectangle behind the text, making
it easier to read.

geom_label 107

Usage

geom_label(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
parse = FALSE,
nudge_x = 0,
nudge_y = 0,
label.padding = unit(0.25, "lines"),
label.r = unit(0.15, "lines"),
label.size = 0.25,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_text(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
parse = FALSE,
nudge_x = 0,
nudge_y = 0,
check_overlap = FALSE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

108 geom_label

stat The statistical transformation to use on the data for this layer, as a string.

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function. Cannot be jointy specified with nudge_x or nudge_y.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

parse If TRUE, the labels will be parsed into expressions and displayed as described in
?plotmath.

nudge_x, nudge_y

Horizontal and vertical adjustment to nudge labels by. Useful for offsetting text
from points, particularly on discrete scales. Cannot be jointly specified with
position.

label.padding Amount of padding around label. Defaults to 0.25 lines.

label.r Radius of rounded corners. Defaults to 0.15 lines.

label.size Size of label border, in mm.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

check_overlap If TRUE, text that overlaps previous text in the same layer will not be plotted.
check_overlap happens at draw time and in the order of the data. Therefore
data should be arranged by the label column before calling geom_text(). Note
that this argument is not supported by geom_label().

Details

Note that when you resize a plot, text labels stay the same size, even though the size of the plot area
changes. This happens because the "width" and "height" of a text element are 0. Obviously, text
labels do have height and width, but they are physical units, not data units. For the same reason,
stacking and dodging text will not work by default, and axis limits are not automatically expanded
to include all text.

geom_text() and geom_label() add labels for each row in the data, even if coordinates x, y are
set to single values in the call to geom_label() or geom_text(). To add labels at specified points
use annotate() with annotate(geom = "text", ...) or annotate(geom = "label", ...).

To automatically position non-overlapping text labels see the ggrepel package.

Aesthetics

geom_text() understands the following aesthetics (required aesthetics are in bold):

• x

https://cran.r-project.org/package=ggrepel

geom_label 109

• y

• label

• alpha

• angle

• colour

• family

• fontface

• group

• hjust

• lineheight

• size

• vjust

Learn more about setting these aesthetics in vignette("ggplot2-specs").

geom_label()

Currently geom_label() does not support the check_overlap argument or the angle aesthetic.
Also, it is considerably slower than geom_text(). The fill aesthetic controls the background
colour of the label.

Alignment

You can modify text alignment with the vjust and hjust aesthetics. These can either be a number
between 0 (right/bottom) and 1 (top/left) or a character ("left", "middle", "right", "bottom",
"center", "top"). There are two special alignments: "inward" and "outward". Inward always
aligns text towards the center, and outward aligns it away from the center.

Examples

p <- ggplot(mtcars, aes(wt, mpg, label = rownames(mtcars)))

p + geom_text()
Avoid overlaps
p + geom_text(check_overlap = TRUE)
Labels with background
p + geom_label()
Change size of the label
p + geom_text(size = 10)

Set aesthetics to fixed value
p +

geom_point() +
geom_text(hjust = 0, nudge_x = 0.05)

p +
geom_point() +
geom_text(vjust = 0, nudge_y = 0.5)

p +

110 geom_label

geom_point() +
geom_text(angle = 45)

Not run:
Doesn't work on all systems
p +

geom_text(family = "Times New Roman")

End(Not run)

Add aesthetic mappings
p + geom_text(aes(colour = factor(cyl)))
p + geom_text(aes(colour = factor(cyl))) +

scale_colour_discrete(l = 40)
p + geom_label(aes(fill = factor(cyl)), colour = "white", fontface = "bold")

p + geom_text(aes(size = wt))
Scale height of text, rather than sqrt(height)
p +

geom_text(aes(size = wt)) +
scale_radius(range = c(3,6))

You can display expressions by setting parse = TRUE. The
details of the display are described in ?plotmath, but note that
geom_text uses strings, not expressions.
p +

geom_text(
aes(label = paste(wt, "^(", cyl, ")", sep = "")),
parse = TRUE

)

Add a text annotation
p +

geom_text() +
annotate(

"text", label = "plot mpg vs. wt",
x = 2, y = 15, size = 8, colour = "red"

)

Aligning labels and bars --
df <- data.frame(

x = factor(c(1, 1, 2, 2)),
y = c(1, 3, 2, 1),
grp = c("a", "b", "a", "b")

)

ggplot2 doesn't know you want to give the labels the same virtual width
as the bars:
ggplot(data = df, aes(x, y, group = grp)) +

geom_col(aes(fill = grp), position = "dodge") +
geom_text(aes(label = y), position = "dodge")

So tell it:
ggplot(data = df, aes(x, y, group = grp)) +

geom_map 111

geom_col(aes(fill = grp), position = "dodge") +
geom_text(aes(label = y), position = position_dodge(0.9))

Use you can't nudge and dodge text, so instead adjust the y position
ggplot(data = df, aes(x, y, group = grp)) +

geom_col(aes(fill = grp), position = "dodge") +
geom_text(
aes(label = y, y = y + 0.05),
position = position_dodge(0.9),
vjust = 0

)

To place text in the middle of each bar in a stacked barplot, you
need to set the vjust parameter of position_stack()
ggplot(data = df, aes(x, y, group = grp)) +
geom_col(aes(fill = grp)) +
geom_text(aes(label = y), position = position_stack(vjust = 0.5))

Justification ---
df <- data.frame(

x = c(1, 1, 2, 2, 1.5),
y = c(1, 2, 1, 2, 1.5),
text = c("bottom-left", "bottom-right", "top-left", "top-right", "center")

)
ggplot(df, aes(x, y)) +

geom_text(aes(label = text))
ggplot(df, aes(x, y)) +

geom_text(aes(label = text), vjust = "inward", hjust = "inward")

geom_map Polygons from a reference map

Description

This is pure annotation, so does not affect position scales.

Usage

geom_map(
mapping = NULL,
data = NULL,
stat = "identity",
...,
map,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

112 geom_map

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer, as a string.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

map Data frame that contains the map coordinates. This will typically be created
using fortify() on a spatial object. It must contain columns x or long, y or
lat, and region or id.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Aesthetics

geom_map() understands the following aesthetics (required aesthetics are in bold):

• map_id

• alpha

• colour

• fill

• group

• linetype

• size

• subgroup

Learn more about setting these aesthetics in vignette("ggplot2-specs").

geom_map 113

Examples

When using geom_polygon, you will typically need two data frames:
one contains the coordinates of each polygon (positions), and the
other the values associated with each polygon (values). An id
variable links the two together

ids <- factor(c("1.1", "2.1", "1.2", "2.2", "1.3", "2.3"))

values <- data.frame(
id = ids,
value = c(3, 3.1, 3.1, 3.2, 3.15, 3.5)

)

positions <- data.frame(
id = rep(ids, each = 4),
x = c(2, 1, 1.1, 2.2, 1, 0, 0.3, 1.1, 2.2, 1.1, 1.2, 2.5, 1.1, 0.3,
0.5, 1.2, 2.5, 1.2, 1.3, 2.7, 1.2, 0.5, 0.6, 1.3),
y = c(-0.5, 0, 1, 0.5, 0, 0.5, 1.5, 1, 0.5, 1, 2.1, 1.7, 1, 1.5,
2.2, 2.1, 1.7, 2.1, 3.2, 2.8, 2.1, 2.2, 3.3, 3.2)

)

ggplot(values) +
geom_map(aes(map_id = id), map = positions) +
expand_limits(positions)

ggplot(values, aes(fill = value)) +
geom_map(aes(map_id = id), map = positions) +
expand_limits(positions)

ggplot(values, aes(fill = value)) +
geom_map(aes(map_id = id), map = positions) +
expand_limits(positions) + ylim(0, 3)

Better example
if (require(maps)) {

crimes <- data.frame(state = tolower(rownames(USArrests)), USArrests)

Equivalent to crimes %>% tidyr::pivot_longer(Murder:Rape)
vars <- lapply(names(crimes)[-1], function(j) {
data.frame(state = crimes$state, variable = j, value = crimes[[j]])

})
crimes_long <- do.call("rbind", vars)

states_map <- map_data("state")
ggplot(crimes, aes(map_id = state)) +

geom_map(aes(fill = Murder), map = states_map) +
expand_limits(x = states_map$long, y = states_map$lat)

last_plot() + coord_map()
ggplot(crimes_long, aes(map_id = state)) +

geom_map(aes(fill = value), map = states_map) +
expand_limits(x = states_map$long, y = states_map$lat) +
facet_wrap(~ variable)

114 geom_path

}

geom_path Connect observations

Description

geom_path() connects the observations in the order in which they appear in the data. geom_line()
connects them in order of the variable on the x axis. geom_step() creates a stairstep plot, high-
lighting exactly when changes occur. The group aesthetic determines which cases are connected
together.

Usage

geom_path(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
lineend = "butt",
linejoin = "round",
linemitre = 10,
arrow = NULL,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_line(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE,
...

)

geom_step(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
direction = "hv",

geom_path 115

na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...

)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer, as a string.

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

lineend Line end style (round, butt, square).

linejoin Line join style (round, mitre, bevel).

linemitre Line mitre limit (number greater than 1).

arrow Arrow specification, as created by grid::arrow().

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

orientation The orientation of the layer. The default (NA) automatically determines the ori-
entation from the aesthetic mapping. In the rare event that this fails it can be
given explicitly by setting orientation to either "x" or "y". See the Orienta-
tion section for more detail.

direction direction of stairs: ’vh’ for vertical then horizontal, ’hv’ for horizontal then
vertical, or ’mid’ for step half-way between adjacent x-values.

116 geom_path

Details

An alternative parameterisation is geom_segment(), where each line corresponds to a single case
which provides the start and end coordinates.

Orientation

This geom treats each axis differently and, thus, can thus have two orientations. Often the orienta-
tion is easy to deduce from a combination of the given mappings and the types of positional scales
in use. Thus, ggplot2 will by default try to guess which orientation the layer should have. Under
rare circumstances, the orientation is ambiguous and guessing may fail. In that case the orientation
can be specified directly using the orientation parameter, which can be either "x" or "y". The
value gives the axis that the geom should run along, "x" being the default orientation you would
expect for the geom.

Aesthetics

geom_path() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• alpha

• colour

• group

• linetype

• size

Learn more about setting these aesthetics in vignette("ggplot2-specs").

Missing value handling

geom_path(), geom_line(), and geom_step() handle NA as follows:

• If an NA occurs in the middle of a line, it breaks the line. No warning is shown, regardless of
whether na.rm is TRUE or FALSE.

• If an NA occurs at the start or the end of the line and na.rm is FALSE (default), the NA is removed
with a warning.

• If an NA occurs at the start or the end of the line and na.rm is TRUE, the NA is removed silently,
without warning.

See Also

geom_polygon(): Filled paths (polygons); geom_segment(): Line segments

geom_path 117

Examples

geom_line() is suitable for time series
ggplot(economics, aes(date, unemploy)) + geom_line()
ggplot(economics_long, aes(date, value01, colour = variable)) +

geom_line()

You can get a timeseries that run vertically by setting the orientation
ggplot(economics, aes(unemploy, date)) + geom_line(orientation = "y")

geom_step() is useful when you want to highlight exactly when
the y value changes
recent <- economics[economics$date > as.Date("2013-01-01"),]
ggplot(recent, aes(date, unemploy)) + geom_line()
ggplot(recent, aes(date, unemploy)) + geom_step()

geom_path lets you explore how two variables are related over time,
e.g. unemployment and personal savings rate
m <- ggplot(economics, aes(unemploy/pop, psavert))
m + geom_path()
m + geom_path(aes(colour = as.numeric(date)))

Changing parameters --
ggplot(economics, aes(date, unemploy)) +

geom_line(colour = "red")

Use the arrow parameter to add an arrow to the line
See ?arrow for more details
c <- ggplot(economics, aes(x = date, y = pop))
c + geom_line(arrow = arrow())
c + geom_line(

arrow = arrow(angle = 15, ends = "both", type = "closed")
)

Control line join parameters
df <- data.frame(x = 1:3, y = c(4, 1, 9))
base <- ggplot(df, aes(x, y))
base + geom_path(size = 10)
base + geom_path(size = 10, lineend = "round")
base + geom_path(size = 10, linejoin = "mitre", lineend = "butt")

You can use NAs to break the line.
df <- data.frame(x = 1:5, y = c(1, 2, NA, 4, 5))
ggplot(df, aes(x, y)) + geom_point() + geom_line()

Setting line type vs colour/size
Line type needs to be applied to a line as a whole, so it can
not be used with colour or size that vary across a line
x <- seq(0.01, .99, length.out = 100)
df <- data.frame(

x = rep(x, 2),
y = c(qlogis(x), 2 * qlogis(x)),

118 geom_point

group = rep(c("a","b"),
each = 100)

)
p <- ggplot(df, aes(x=x, y=y, group=group))
These work
p + geom_line(linetype = 2)
p + geom_line(aes(colour = group), linetype = 2)
p + geom_line(aes(colour = x))
But this doesn't
should_stop(p + geom_line(aes(colour = x), linetype=2))

geom_point Points

Description

The point geom is used to create scatterplots. The scatterplot is most useful for displaying the rela-
tionship between two continuous variables. It can be used to compare one continuous and one cat-
egorical variable, or two categorical variables, but a variation like geom_jitter(), geom_count(),
or geom_bin2d() is usually more appropriate. A bubblechart is a scatterplot with a third variable
mapped to the size of points.

Usage

geom_point(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

geom_point 119

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer, as a string.

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Overplotting

The biggest potential problem with a scatterplot is overplotting: whenever you have more than a few
points, points may be plotted on top of one another. This can severely distort the visual appearance
of the plot. There is no one solution to this problem, but there are some techniques that can help. You
can add additional information with geom_smooth(), geom_quantile() or geom_density_2d().
If you have few unique x values, geom_boxplot() may also be useful.

Alternatively, you can summarise the number of points at each location and display that in some
way, using geom_count(), geom_hex(), or geom_density2d().

Another technique is to make the points transparent (e.g. geom_point(alpha = 0.05)) or very
small (e.g. geom_point(shape = ".")).

Aesthetics

geom_point() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• alpha

• colour

• fill

• group

• shape

• size

• stroke

Learn more about setting these aesthetics in vignette("ggplot2-specs").

120 geom_polygon

Examples

p <- ggplot(mtcars, aes(wt, mpg))
p + geom_point()

Add aesthetic mappings
p + geom_point(aes(colour = factor(cyl)))
p + geom_point(aes(shape = factor(cyl)))
A "bubblechart":
p + geom_point(aes(size = qsec))

Set aesthetics to fixed value
ggplot(mtcars, aes(wt, mpg)) + geom_point(colour = "red", size = 3)

Varying alpha is useful for large datasets
d <- ggplot(diamonds, aes(carat, price))
d + geom_point(alpha = 1/10)
d + geom_point(alpha = 1/20)
d + geom_point(alpha = 1/100)

For shapes that have a border (like 21), you can colour the inside and
outside separately. Use the stroke aesthetic to modify the width of the
border
ggplot(mtcars, aes(wt, mpg)) +

geom_point(shape = 21, colour = "black", fill = "white", size = 5, stroke = 5)

You can create interesting shapes by layering multiple points of
different sizes
p <- ggplot(mtcars, aes(mpg, wt, shape = factor(cyl)))
p +

geom_point(aes(colour = factor(cyl)), size = 4) +
geom_point(colour = "grey90", size = 1.5)

p +
geom_point(colour = "black", size = 4.5) +
geom_point(colour = "pink", size = 4) +
geom_point(aes(shape = factor(cyl)))

geom_point warns when missing values have been dropped from the data set
and not plotted, you can turn this off by setting na.rm = TRUE
mtcars2 <- transform(mtcars, mpg = ifelse(runif(32) < 0.2, NA, mpg))
ggplot(mtcars2, aes(wt, mpg)) +

geom_point()
ggplot(mtcars2, aes(wt, mpg)) +

geom_point(na.rm = TRUE)

geom_polygon Polygons

geom_polygon 121

Description

Polygons are very similar to paths (as drawn by geom_path()) except that the start and end points
are connected and the inside is coloured by fill. The group aesthetic determines which cases
are connected together into a polygon. From R 3.6 and onwards it is possible to draw polygons
with holes by providing a subgroup aesthetic that differentiates the outer ring points from those
describing holes in the polygon.

Usage

geom_polygon(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
rule = "evenodd",
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer, as a string.

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

rule Either "evenodd" or "winding". If polygons with holes are being drawn (us-
ing the subgroup aesthetic) this argument defines how the hole coordinates are
interpreted. See the examples in grid::pathGrob() for an explanation.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

122 geom_polygon

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Aesthetics

geom_polygon() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• alpha

• colour

• fill

• group

• linetype

• size

• subgroup

Learn more about setting these aesthetics in vignette("ggplot2-specs").

See Also

geom_path() for an unfilled polygon, geom_ribbon() for a polygon anchored on the x-axis

Examples

When using geom_polygon, you will typically need two data frames:
one contains the coordinates of each polygon (positions), and the
other the values associated with each polygon (values). An id
variable links the two together

ids <- factor(c("1.1", "2.1", "1.2", "2.2", "1.3", "2.3"))

values <- data.frame(
id = ids,
value = c(3, 3.1, 3.1, 3.2, 3.15, 3.5)

)

positions <- data.frame(
id = rep(ids, each = 4),
x = c(2, 1, 1.1, 2.2, 1, 0, 0.3, 1.1, 2.2, 1.1, 1.2, 2.5, 1.1, 0.3,
0.5, 1.2, 2.5, 1.2, 1.3, 2.7, 1.2, 0.5, 0.6, 1.3),
y = c(-0.5, 0, 1, 0.5, 0, 0.5, 1.5, 1, 0.5, 1, 2.1, 1.7, 1, 1.5,
2.2, 2.1, 1.7, 2.1, 3.2, 2.8, 2.1, 2.2, 3.3, 3.2)

)

geom_qq_line 123

Currently we need to manually merge the two together
datapoly <- merge(values, positions, by = c("id"))

p <- ggplot(datapoly, aes(x = x, y = y)) +
geom_polygon(aes(fill = value, group = id))

p

Which seems like a lot of work, but then it's easy to add on
other features in this coordinate system, e.g.:

stream <- data.frame(
x = cumsum(runif(50, max = 0.1)),
y = cumsum(runif(50,max = 0.1))

)

p + geom_line(data = stream, colour = "grey30", size = 5)

And if the positions are in longitude and latitude, you can use
coord_map to produce different map projections.

if (packageVersion("grid") >= "3.6") {
As of R version 3.6 geom_polygon() supports polygons with holes
Use the subgroup aesthetic to differentiate holes from the main polygon

holes <- do.call(rbind, lapply(split(datapoly, datapoly$id), function(df) {
df$x <- df$x + 0.5 * (mean(df$x) - df$x)
df$y <- df$y + 0.5 * (mean(df$y) - df$y)
df

}))
datapoly$subid <- 1L
holes$subid <- 2L
datapoly <- rbind(datapoly, holes)

p <- ggplot(datapoly, aes(x = x, y = y)) +
geom_polygon(aes(fill = value, group = id, subgroup = subid))

p
}

geom_qq_line A quantile-quantile plot

Description

geom_qq() and stat_qq() produce quantile-quantile plots. geom_qq_line() and stat_qq_line()
compute the slope and intercept of the line connecting the points at specified quartiles of the theo-
retical and sample distributions.

124 geom_qq_line

Usage

geom_qq_line(
mapping = NULL,
data = NULL,
geom = "path",
position = "identity",
...,
distribution = stats::qnorm,
dparams = list(),
line.p = c(0.25, 0.75),
fullrange = FALSE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

stat_qq_line(
mapping = NULL,
data = NULL,
geom = "path",
position = "identity",
...,
distribution = stats::qnorm,
dparams = list(),
line.p = c(0.25, 0.75),
fullrange = FALSE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_qq(
mapping = NULL,
data = NULL,
geom = "point",
position = "identity",
...,
distribution = stats::qnorm,
dparams = list(),
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

stat_qq(
mapping = NULL,
data = NULL,
geom = "point",

geom_qq_line 125

position = "identity",
...,
distribution = stats::qnorm,
dparams = list(),
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom The geometric object to use display the data

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

distribution Distribution function to use, if x not specified

dparams Additional parameters passed on to distribution function.

line.p Vector of quantiles to use when fitting the Q-Q line, defaults defaults to c(.25,
.75).

fullrange Should the q-q line span the full range of the plot, or just the data

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

126 geom_qq_line

Aesthetics

stat_qq() understands the following aesthetics (required aesthetics are in bold):

• sample

• group

• x

• y

Learn more about setting these aesthetics in vignette("ggplot2-specs").

stat_qq_line() understands the following aesthetics (required aesthetics are in bold):

• sample

• group

• x

• y

Learn more about setting these aesthetics in vignette("ggplot2-specs").

Computed variables

Variables computed by stat_qq():

sample sample quantiles

theoretical theoretical quantiles

Variables computed by stat_qq_line():

x x-coordinates of the endpoints of the line segment connecting the points at the chosen quantiles
of the theoretical and the sample distributions

y y-coordinates of the endpoints

Examples

df <- data.frame(y = rt(200, df = 5))
p <- ggplot(df, aes(sample = y))
p + stat_qq() + stat_qq_line()

Use fitdistr from MASS to estimate distribution params
params <- as.list(MASS::fitdistr(df$y, "t")$estimate)
ggplot(df, aes(sample = y)) +

stat_qq(distribution = qt, dparams = params["df"]) +
stat_qq_line(distribution = qt, dparams = params["df"])

Using to explore the distribution of a variable
ggplot(mtcars, aes(sample = mpg)) +

stat_qq() +
stat_qq_line()

ggplot(mtcars, aes(sample = mpg, colour = factor(cyl))) +

geom_quantile 127

stat_qq() +
stat_qq_line()

geom_quantile Quantile regression

Description

This fits a quantile regression to the data and draws the fitted quantiles with lines. This is as a
continuous analogue to geom_boxplot().

Usage

geom_quantile(
mapping = NULL,
data = NULL,
stat = "quantile",
position = "identity",
...,
lineend = "butt",
linejoin = "round",
linemitre = 10,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

stat_quantile(
mapping = NULL,
data = NULL,
geom = "quantile",
position = "identity",
...,
quantiles = c(0.25, 0.5, 0.75),
formula = NULL,
method = "rq",
method.args = list(),
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

128 geom_quantile

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

lineend Line end style (round, butt, square).

linejoin Line join style (round, mitre, bevel).

linemitre Line mitre limit (number greater than 1).

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

geom, stat Use to override the default connection between geom_quantile() and stat_quantile().

quantiles conditional quantiles of y to calculate and display

formula formula relating y variables to x variables

method Quantile regression method to use. Available options are "rq" (for quantreg::rq())
and "rqss" (for quantreg::rqss()).

method.args List of additional arguments passed on to the modelling function defined by
method.

Aesthetics

geom_quantile() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• alpha

• colour

• group

• linetype

geom_raster 129

• size

• weight

Learn more about setting these aesthetics in vignette("ggplot2-specs").

Computed variables

quantile quantile of distribution

Examples

m <-
ggplot(mpg, aes(displ, 1 / hwy)) +
geom_point()

m + geom_quantile()
m + geom_quantile(quantiles = 0.5)
q10 <- seq(0.05, 0.95, by = 0.05)
m + geom_quantile(quantiles = q10)

You can also use rqss to fit smooth quantiles
m + geom_quantile(method = "rqss")
Note that rqss doesn't pick a smoothing constant automatically, so
you'll need to tweak lambda yourself
m + geom_quantile(method = "rqss", lambda = 0.1)

Set aesthetics to fixed value
m + geom_quantile(colour = "red", size = 2, alpha = 0.5)

geom_raster Rectangles

Description

geom_rect() and geom_tile() do the same thing, but are parameterised differently: geom_rect()
uses the locations of the four corners (xmin, xmax, ymin and ymax), while geom_tile() uses the
center of the tile and its size (x, y, width, height). geom_raster() is a high performance special
case for when all the tiles are the same size.

Usage

geom_raster(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
hjust = 0.5,
vjust = 0.5,
interpolate = FALSE,

130 geom_raster

na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_rect(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
linejoin = "mitre",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_tile(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
linejoin = "mitre",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer, as a string.

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

geom_raster 131

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

hjust, vjust horizontal and vertical justification of the grob. Each justification value should
be a number between 0 and 1. Defaults to 0.5 for both, centering each pixel over
its data location.

interpolate If TRUE interpolate linearly, if FALSE (the default) don’t interpolate.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

linejoin Line join style (round, mitre, bevel).

Aesthetics

geom_tile() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• alpha

• colour

• fill

• group

• height

• linetype

• size

• width

Learn more about setting these aesthetics in vignette("ggplot2-specs").

Examples

The most common use for rectangles is to draw a surface. You always want
to use geom_raster here because it's so much faster, and produces
smaller output when saving to PDF
ggplot(faithfuld, aes(waiting, eruptions)) +
geom_raster(aes(fill = density))

Interpolation smooths the surface & is most helpful when rendering images.
ggplot(faithfuld, aes(waiting, eruptions)) +
geom_raster(aes(fill = density), interpolate = TRUE)

132 geom_ribbon

If you want to draw arbitrary rectangles, use geom_tile() or geom_rect()
df <- data.frame(

x = rep(c(2, 5, 7, 9, 12), 2),
y = rep(c(1, 2), each = 5),
z = factor(rep(1:5, each = 2)),
w = rep(diff(c(0, 4, 6, 8, 10, 14)), 2)

)
ggplot(df, aes(x, y)) +

geom_tile(aes(fill = z), colour = "grey50")
ggplot(df, aes(x, y, width = w)) +

geom_tile(aes(fill = z), colour = "grey50")
ggplot(df, aes(xmin = x - w / 2, xmax = x + w / 2, ymin = y, ymax = y + 1)) +

geom_rect(aes(fill = z), colour = "grey50")

Justification controls where the cells are anchored
df <- expand.grid(x = 0:5, y = 0:5)
df$z <- runif(nrow(df))
default is compatible with geom_tile()
ggplot(df, aes(x, y, fill = z)) +

geom_raster()
zero padding
ggplot(df, aes(x, y, fill = z)) +

geom_raster(hjust = 0, vjust = 0)

Inspired by the image-density plots of Ken Knoblauch
cars <- ggplot(mtcars, aes(mpg, factor(cyl)))
cars + geom_point()
cars + stat_bin2d(aes(fill = after_stat(count)), binwidth = c(3,1))
cars + stat_bin2d(aes(fill = after_stat(density)), binwidth = c(3,1))

cars +
stat_density(
aes(fill = after_stat(density)),
geom = "raster",
position = "identity"
)

cars +
stat_density(
aes(fill = after_stat(count)),
geom = "raster",
position = "identity"

)

geom_ribbon Ribbons and area plots

geom_ribbon 133

Description

For each x value, geom_ribbon() displays a y interval defined by ymin and ymax. geom_area() is
a special case of geom_ribbon(), where the ymin is fixed to 0 and y is used instead of ymax.

Usage

geom_ribbon(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE,
outline.type = "both"

)

geom_area(
mapping = NULL,
data = NULL,
stat = "identity",
position = "stack",
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE,
...,
outline.type = "upper"

)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer, as a string.

134 geom_ribbon

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

orientation The orientation of the layer. The default (NA) automatically determines the ori-
entation from the aesthetic mapping. In the rare event that this fails it can be
given explicitly by setting orientation to either "x" or "y". See the Orienta-
tion section for more detail.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

outline.type Type of the outline of the area; "both" draws both the upper and lower lines,
"upper"/"lower" draws the respective lines only. "full" draws a closed poly-
gon around the area.

Details

An area plot is the continuous analogue of a stacked bar chart (see geom_bar()), and can be used to
show how composition of the whole varies over the range of x. Choosing the order in which different
components is stacked is very important, as it becomes increasing hard to see the individual pattern
as you move up the stack. See position_stack() for the details of stacking algorithm.

Orientation

This geom treats each axis differently and, thus, can thus have two orientations. Often the orienta-
tion is easy to deduce from a combination of the given mappings and the types of positional scales
in use. Thus, ggplot2 will by default try to guess which orientation the layer should have. Under
rare circumstances, the orientation is ambiguous and guessing may fail. In that case the orientation
can be specified directly using the orientation parameter, which can be either "x" or "y". The
value gives the axis that the geom should run along, "x" being the default orientation you would
expect for the geom.

Aesthetics

geom_ribbon() understands the following aesthetics (required aesthetics are in bold):

• x or y
• ymin or xmin
• ymax or xmax
• alpha

• colour

geom_rug 135

• fill

• group

• linetype

• size

Learn more about setting these aesthetics in vignette("ggplot2-specs").

See Also

geom_bar() for discrete intervals (bars), geom_linerange() for discrete intervals (lines), geom_polygon()
for general polygons

Examples

Generate data
huron <- data.frame(year = 1875:1972, level = as.vector(LakeHuron))
h <- ggplot(huron, aes(year))

h + geom_ribbon(aes(ymin=0, ymax=level))
h + geom_area(aes(y = level))

Orientation cannot be deduced by mapping, so must be given explicitly for
flipped orientation
h + geom_area(aes(x = level, y = year), orientation = "y")

Add aesthetic mappings
h +

geom_ribbon(aes(ymin = level - 1, ymax = level + 1), fill = "grey70") +
geom_line(aes(y = level))

geom_rug Rug plots in the margins

Description

A rug plot is a compact visualisation designed to supplement a 2d display with the two 1d marginal
distributions. Rug plots display individual cases so are best used with smaller datasets.

Usage

geom_rug(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
outside = FALSE,
sides = "bl",

136 geom_rug

length = unit(0.03, "npc"),
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer, as a string.

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

outside logical that controls whether to move the rug tassels outside of the plot area.
Default is off (FALSE). You will also need to use coord_cartesian(clip =
"off"). When set to TRUE, also consider changing the sides argument to "tr".
See examples.

sides A string that controls which sides of the plot the rugs appear on. It can be set to
a string containing any of "trbl", for top, right, bottom, and left.

length A grid::unit() object that sets the length of the rug lines. Use scale expansion
to avoid overplotting of data.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

geom_rug 137

Details

By default, the rug lines are drawn with a length that corresponds to 3% of the total plot size. Since
the default scale expansion of for continuous variables is 5% at both ends of the scale, the rug will
not overlap with any data points under the default settings.

Aesthetics

geom_rug() understands the following aesthetics (required aesthetics are in bold):

• alpha

• colour

• group

• linetype

• size

• x

• y

Learn more about setting these aesthetics in vignette("ggplot2-specs").

Examples

p <- ggplot(mtcars, aes(wt, mpg)) +
geom_point()

p
p + geom_rug()
p + geom_rug(sides="b") # Rug on bottom only
p + geom_rug(sides="trbl") # All four sides

Use jittering to avoid overplotting for smaller datasets
ggplot(mpg, aes(displ, cty)) +

geom_point() +
geom_rug()

ggplot(mpg, aes(displ, cty)) +
geom_jitter() +
geom_rug(alpha = 1/2, position = "jitter")

move the rug tassels to outside the plot
remember to set clip = "off".
p +

geom_rug(outside = TRUE) +
coord_cartesian(clip = "off")

set sides to top right, and then move the margins
p +

geom_rug(outside = TRUE, sides = "tr") +
coord_cartesian(clip = "off") +
theme(plot.margin = margin(1, 1, 1, 1, "cm"))

increase the line length and

138 geom_segment

expand axis to avoid overplotting
p +

geom_rug(length = unit(0.05, "npc")) +
scale_y_continuous(expand = c(0.1, 0.1))

geom_segment Line segments and curves

Description

geom_segment() draws a straight line between points (x, y) and (xend, yend). geom_curve()
draws a curved line. See the underlying drawing function grid::curveGrob() for the parameters
that control the curve.

Usage

geom_segment(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
arrow = NULL,
arrow.fill = NULL,
lineend = "butt",
linejoin = "round",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_curve(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
curvature = 0.5,
angle = 90,
ncp = 5,
arrow = NULL,
arrow.fill = NULL,
lineend = "butt",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_segment 139

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer, as a string.
position Position adjustment, either as a string, or the result of a call to a position adjust-

ment function.
... Other arguments passed on to layer(). These are often aesthetics, used to set

an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

arrow specification for arrow heads, as created by arrow().
arrow.fill fill colour to use for the arrow head (if closed). NULL means use colour aes-

thetic.
lineend Line end style (round, butt, square).
linejoin Line join style (round, mitre, bevel).
na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,

missing values are silently removed.
show.legend logical. Should this layer be included in the legends? NA, the default, includes if

any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

curvature A numeric value giving the amount of curvature. Negative values produce left-
hand curves, positive values produce right-hand curves, and zero produces a
straight line.

angle A numeric value between 0 and 180, giving an amount to skew the control points
of the curve. Values less than 90 skew the curve towards the start point and
values greater than 90 skew the curve towards the end point.

ncp The number of control points used to draw the curve. More control points creates
a smoother curve.

Details

Both geoms draw a single segment/curve per case. See geom_path() if you need to connect points
across multiple cases.

140 geom_segment

Aesthetics

geom_segment() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• xend

• yend

• alpha

• colour

• group

• linetype

• size

Learn more about setting these aesthetics in vignette("ggplot2-specs").

See Also

geom_path() and geom_line() for multi- segment lines and paths.

geom_spoke() for a segment parameterised by a location (x, y), and an angle and radius.

Examples

b <- ggplot(mtcars, aes(wt, mpg)) +
geom_point()

df <- data.frame(x1 = 2.62, x2 = 3.57, y1 = 21.0, y2 = 15.0)
b +
geom_curve(aes(x = x1, y = y1, xend = x2, yend = y2, colour = "curve"), data = df) +
geom_segment(aes(x = x1, y = y1, xend = x2, yend = y2, colour = "segment"), data = df)

b + geom_curve(aes(x = x1, y = y1, xend = x2, yend = y2), data = df, curvature = -0.2)
b + geom_curve(aes(x = x1, y = y1, xend = x2, yend = y2), data = df, curvature = 1)
b + geom_curve(

aes(x = x1, y = y1, xend = x2, yend = y2),
data = df,
arrow = arrow(length = unit(0.03, "npc"))

)

ggplot(seals, aes(long, lat)) +
geom_segment(aes(xend = long + delta_long, yend = lat + delta_lat),
arrow = arrow(length = unit(0.1,"cm"))) +

borders("state")

Use lineend and linejoin to change the style of the segments
df2 <- expand.grid(

lineend = c('round', 'butt', 'square'),
linejoin = c('round', 'mitre', 'bevel'),
stringsAsFactors = FALSE

geom_smooth 141

)
df2 <- data.frame(df2, y = 1:9)
ggplot(df2, aes(x = 1, y = y, xend = 2, yend = y, label = paste(lineend, linejoin))) +

geom_segment(
lineend = df2$lineend, linejoin = df2$linejoin,
size = 3, arrow = arrow(length = unit(0.3, "inches"))

) +
geom_text(hjust = 'outside', nudge_x = -0.2) +
xlim(0.5, 2)

You can also use geom_segment to recreate plot(type = "h") :
counts <- as.data.frame(table(x = rpois(100,5)))
counts$x <- as.numeric(as.character(counts$x))
with(counts, plot(x, Freq, type = "h", lwd = 10))

ggplot(counts, aes(x, Freq)) +
geom_segment(aes(xend = x, yend = 0), size = 10, lineend = "butt")

geom_smooth Smoothed conditional means

Description

Aids the eye in seeing patterns in the presence of overplotting. geom_smooth() and stat_smooth()
are effectively aliases: they both use the same arguments. Use stat_smooth() if you want to
display the results with a non-standard geom.

Usage

geom_smooth(
mapping = NULL,
data = NULL,
stat = "smooth",
position = "identity",
...,
method = NULL,
formula = NULL,
se = TRUE,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)

stat_smooth(
mapping = NULL,
data = NULL,
geom = "smooth",

142 geom_smooth

position = "identity",
...,
method = NULL,
formula = NULL,
se = TRUE,
n = 80,
span = 0.75,
fullrange = FALSE,
level = 0.95,
method.args = list(),
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

method Smoothing method (function) to use, accepts either NULL or a character vector,
e.g. "lm", "glm", "gam", "loess" or a function, e.g. MASS::rlm or mgcv::gam,
stats::lm, or stats::loess. "auto" is also accepted for backwards compat-
ibility. It is equivalent to NULL.
For method = NULL the smoothing method is chosen based on the size of the
largest group (across all panels). stats::loess() is used for less than 1,000
observations; otherwise mgcv::gam() is used with formula = y ~ s(x, bs = "cs")
with method = "REML". Somewhat anecdotally, loess gives a better appearance,
but is O(N2) in memory, so does not work for larger datasets.
If you have fewer than 1,000 observations but want to use the same gam() model
that method = NULL would use, then set method = "gam", formula = y ~ s(x, bs = "cs").

geom_smooth 143

formula Formula to use in smoothing function, eg. y ~ x, y ~ poly(x, 2), y ~ log(x).
NULL by default, in which case method = NULL implies formula = y ~ x when
there are fewer than 1,000 observations and formula = y ~ s(x, bs = "cs") oth-
erwise.

se Display confidence interval around smooth? (TRUE by default, see level to
control.)

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

orientation The orientation of the layer. The default (NA) automatically determines the ori-
entation from the aesthetic mapping. In the rare event that this fails it can be
given explicitly by setting orientation to either "x" or "y". See the Orienta-
tion section for more detail.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

geom, stat Use to override the default connection between geom_smooth() and stat_smooth().

n Number of points at which to evaluate smoother.

span Controls the amount of smoothing for the default loess smoother. Smaller num-
bers produce wigglier lines, larger numbers produce smoother lines. Only used
with loess, i.e. when method = "loess", or when method = NULL (the default)
and there are fewer than 1,000 observations.

fullrange Should the fit span the full range of the plot, or just the data?

level Level of confidence interval to use (0.95 by default).

method.args List of additional arguments passed on to the modelling function defined by
method.

Details

Calculation is performed by the (currently undocumented) predictdf() generic and its methods.
For most methods the standard error bounds are computed using the predict() method – the ex-
ceptions are loess(), which uses a t-based approximation, and glm(), where the normal confidence
interval is constructed on the link scale and then back-transformed to the response scale.

Orientation

This geom treats each axis differently and, thus, can thus have two orientations. Often the orienta-
tion is easy to deduce from a combination of the given mappings and the types of positional scales
in use. Thus, ggplot2 will by default try to guess which orientation the layer should have. Under
rare circumstances, the orientation is ambiguous and guessing may fail. In that case the orientation
can be specified directly using the orientation parameter, which can be either "x" or "y". The
value gives the axis that the geom should run along, "x" being the default orientation you would
expect for the geom.

144 geom_smooth

Aesthetics

geom_smooth() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• alpha

• colour

• fill

• group

• linetype

• size

• weight

• ymax

• ymin

Learn more about setting these aesthetics in vignette("ggplot2-specs").

Computed variables

stat_smooth() provides the following variables, some of which depend on the orientation:

y or x predicted value

ymin or xmin lower pointwise confidence interval around the mean

ymax or xmax upper pointwise confidence interval around the mean

se standard error

See Also

See individual modelling functions for more details: lm() for linear smooths, glm() for generalised
linear smooths, and loess() for local smooths.

Examples

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
geom_smooth()

If you need the fitting to be done along the y-axis set the orientation
ggplot(mpg, aes(displ, hwy)) +

geom_point() +
geom_smooth(orientation = "y")

Use span to control the "wiggliness" of the default loess smoother.
The span is the fraction of points used to fit each local regression:
small numbers make a wigglier curve, larger numbers make a smoother curve.
ggplot(mpg, aes(displ, hwy)) +

geom_point() +

geom_spoke 145

geom_smooth(span = 0.3)

Instead of a loess smooth, you can use any other modelling function:
ggplot(mpg, aes(displ, hwy)) +

geom_point() +
geom_smooth(method = lm, se = FALSE)

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
geom_smooth(method = lm, formula = y ~ splines::bs(x, 3), se = FALSE)

Smooths are automatically fit to each group (defined by categorical
aesthetics or the group aesthetic) and for each facet.

ggplot(mpg, aes(displ, hwy, colour = class)) +
geom_point() +
geom_smooth(se = FALSE, method = lm)

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
geom_smooth(span = 0.8) +
facet_wrap(~drv)

binomial_smooth <- function(...) {
geom_smooth(method = "glm", method.args = list(family = "binomial"), ...)

}
To fit a logistic regression, you need to coerce the values to
a numeric vector lying between 0 and 1.
ggplot(rpart::kyphosis, aes(Age, Kyphosis)) +

geom_jitter(height = 0.05) +
binomial_smooth()

ggplot(rpart::kyphosis, aes(Age, as.numeric(Kyphosis) - 1)) +
geom_jitter(height = 0.05) +
binomial_smooth()

ggplot(rpart::kyphosis, aes(Age, as.numeric(Kyphosis) - 1)) +
geom_jitter(height = 0.05) +
binomial_smooth(formula = y ~ splines::ns(x, 2))

But in this case, it's probably better to fit the model yourself
so you can exercise more control and see whether or not it's a good model.

geom_spoke Line segments parameterised by location, direction and distance

Description

This is a polar parameterisation of geom_segment(). It is useful when you have variables that
describe direction and distance. The angles start from east and increase counterclockwise.

146 geom_spoke

Usage

geom_spoke(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer, as a string.

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Aesthetics

geom_spoke() understands the following aesthetics (required aesthetics are in bold):

• x

geom_violin 147

• y

• angle

• radius

• alpha

• colour

• group

• linetype

• size

Learn more about setting these aesthetics in vignette("ggplot2-specs").

Examples

df <- expand.grid(x = 1:10, y=1:10)
df$angle <- runif(100, 0, 2*pi)
df$speed <- runif(100, 0, sqrt(0.1 * df$x))

ggplot(df, aes(x, y)) +
geom_point() +
geom_spoke(aes(angle = angle), radius = 0.5)

ggplot(df, aes(x, y)) +
geom_point() +
geom_spoke(aes(angle = angle, radius = speed))

geom_violin Violin plot

Description

A violin plot is a compact display of a continuous distribution. It is a blend of geom_boxplot() and
geom_density(): a violin plot is a mirrored density plot displayed in the same way as a boxplot.

Usage

geom_violin(
mapping = NULL,
data = NULL,
stat = "ydensity",
position = "dodge",
...,
draw_quantiles = NULL,
trim = TRUE,
scale = "area",
na.rm = FALSE,
orientation = NA,

148 geom_violin

show.legend = NA,
inherit.aes = TRUE

)

stat_ydensity(
mapping = NULL,
data = NULL,
geom = "violin",
position = "dodge",
...,
bw = "nrd0",
adjust = 1,
kernel = "gaussian",
trim = TRUE,
scale = "area",
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

draw_quantiles If not(NULL) (default), draw horizontal lines at the given quantiles of the density
estimate.

trim If TRUE (default), trim the tails of the violins to the range of the data. If FALSE,
don’t trim the tails.

scale if "area" (default), all violins have the same area (before trimming the tails).
If "count", areas are scaled proportionally to the number of observations. If
"width", all violins have the same maximum width.

geom_violin 149

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

orientation The orientation of the layer. The default (NA) automatically determines the ori-
entation from the aesthetic mapping. In the rare event that this fails it can be
given explicitly by setting orientation to either "x" or "y". See the Orienta-
tion section for more detail.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

geom, stat Use to override the default connection between geom_violin() and stat_ydensity().

bw The smoothing bandwidth to be used. If numeric, the standard deviation of
the smoothing kernel. If character, a rule to choose the bandwidth, as listed in
stats::bw.nrd().

adjust A multiplicate bandwidth adjustment. This makes it possible to adjust the band-
width while still using the a bandwidth estimator. For example, adjust = 1/2
means use half of the default bandwidth.

kernel Kernel. See list of available kernels in density().

Orientation

This geom treats each axis differently and, thus, can thus have two orientations. Often the orienta-
tion is easy to deduce from a combination of the given mappings and the types of positional scales
in use. Thus, ggplot2 will by default try to guess which orientation the layer should have. Under
rare circumstances, the orientation is ambiguous and guessing may fail. In that case the orientation
can be specified directly using the orientation parameter, which can be either "x" or "y". The
value gives the axis that the geom should run along, "x" being the default orientation you would
expect for the geom.

Aesthetics

geom_violin() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• alpha

• colour

• fill

• group

• linetype

• size

• weight

Learn more about setting these aesthetics in vignette("ggplot2-specs").

150 geom_violin

Computed variables

density density estimate

scaled density estimate, scaled to maximum of 1

count density * number of points - probably useless for violin plots

violinwidth density scaled for the violin plot, according to area, counts or to a constant maximum
width

n number of points

width width of violin bounding box

References

Hintze, J. L., Nelson, R. D. (1998) Violin Plots: A Box Plot-Density Trace Synergism. The Ameri-
can Statistician 52, 181-184.

See Also

geom_violin() for examples, and stat_density() for examples with data along the x axis.

Examples

p <- ggplot(mtcars, aes(factor(cyl), mpg))
p + geom_violin()

Orientation follows the discrete axis
ggplot(mtcars, aes(mpg, factor(cyl))) +

geom_violin()

p + geom_violin() + geom_jitter(height = 0, width = 0.1)

Scale maximum width proportional to sample size:
p + geom_violin(scale = "count")

Scale maximum width to 1 for all violins:
p + geom_violin(scale = "width")

Default is to trim violins to the range of the data. To disable:
p + geom_violin(trim = FALSE)

Use a smaller bandwidth for closer density fit (default is 1).
p + geom_violin(adjust = .5)

Add aesthetic mappings
Note that violins are automatically dodged when any aesthetic is
a factor
p + geom_violin(aes(fill = cyl))
p + geom_violin(aes(fill = factor(cyl)))
p + geom_violin(aes(fill = factor(vs)))
p + geom_violin(aes(fill = factor(am)))

get_alt_text 151

Set aesthetics to fixed value
p + geom_violin(fill = "grey80", colour = "#3366FF")

Show quartiles
p + geom_violin(draw_quantiles = c(0.25, 0.5, 0.75))

Scales vs. coordinate transforms -------
if (require("ggplot2movies")) {
Scale transformations occur before the density statistics are computed.
Coordinate transformations occur afterwards. Observe the effect on the
number of outliers.
m <- ggplot(movies, aes(y = votes, x = rating, group = cut_width(rating, 0.5)))
m + geom_violin()
m +

geom_violin() +
scale_y_log10()

m +
geom_violin() +
coord_trans(y = "log10")

m +
geom_violin() +
scale_y_log10() + coord_trans(y = "log10")

Violin plots with continuous x:
Use the group aesthetic to group observations in violins
ggplot(movies, aes(year, budget)) +

geom_violin()
ggplot(movies, aes(year, budget)) +

geom_violin(aes(group = cut_width(year, 10)), scale = "width")
}

get_alt_text Extract alt text from a plot

Description

This function returns a text that can be used as alt-text in webpages etc. Currently it will use the
alt label, added with + labs(alt = <...>), or a return an empty string, but in the future it might
try to generate an alt text from the information stored in the plot.

Usage

get_alt_text(p, ...)

Arguments

p a ggplot object

... Currently ignored

152 ggplot

Value

A text string

Examples

p <- ggplot(mpg, aes(displ, hwy)) +
geom_point()

Returns an empty string
get_alt_text(p)

A user provided alt text
p <- p + labs(

alt = paste("A scatterplot showing the negative correlation between engine",
"displacement as a function of highway miles per gallon")

)

get_alt_text(p)

ggplot Create a new ggplot

Description

ggplot() initializes a ggplot object. It can be used to declare the input data frame for a graphic and
to specify the set of plot aesthetics intended to be common throughout all subsequent layers unless
specifically overridden.

Usage

ggplot(data = NULL, mapping = aes(), ..., environment = parent.frame())

Arguments

data Default dataset to use for plot. If not already a data.frame, will be converted to
one by fortify(). If not specified, must be supplied in each layer added to the
plot.

mapping Default list of aesthetic mappings to use for plot. If not specified, must be sup-
plied in each layer added to the plot.

... Other arguments passed on to methods. Not currently used.

environment DEPRECATED. Used prior to tidy evaluation.

ggplot 153

Details

ggplot() is used to construct the initial plot object, and is almost always followed by + to add
component to the plot. There are three common ways to invoke ggplot():

• ggplot(df, aes(x, y, other aesthetics))

• ggplot(df)

• ggplot()

The first method is recommended if all layers use the same data and the same set of aesthetics,
although this method can also be used to add a layer using data from another data frame. See the
first example below. The second method specifies the default data frame to use for the plot, but
no aesthetics are defined up front. This is useful when one data frame is used predominantly as
layers are added, but the aesthetics may vary from one layer to another. The third method initializes
a skeleton ggplot object which is fleshed out as layers are added. This method is useful when
multiple data frames are used to produce different layers, as is often the case in complex graphics.

Examples

Generate some sample data, then compute mean and standard deviation
in each group
df <- data.frame(

gp = factor(rep(letters[1:3], each = 10)),
y = rnorm(30)

)
ds <- do.call(rbind, lapply(split(df, df$gp), function(d) {

data.frame(mean = mean(d$y), sd = sd(d$y), gp = d$gp)
}))

The summary data frame ds is used to plot larger red points on top
of the raw data. Note that we don't need to supply `data` or `mapping`
in each layer because the defaults from ggplot() are used.
ggplot(df, aes(gp, y)) +

geom_point() +
geom_point(data = ds, aes(y = mean), colour = 'red', size = 3)

Same plot as above, declaring only the data frame in ggplot().
Note how the x and y aesthetics must now be declared in
each geom_point() layer.
ggplot(df) +

geom_point(aes(gp, y)) +
geom_point(data = ds, aes(gp, mean), colour = 'red', size = 3)

Alternatively we can fully specify the plot in each layer. This
is not useful here, but can be more clear when working with complex
mult-dataset graphics
ggplot() +

geom_point(data = df, aes(gp, y)) +
geom_point(data = ds, aes(gp, mean), colour = 'red', size = 3) +
geom_errorbar(

data = ds,
aes(gp, mean, ymin = mean - sd, ymax = mean + sd),

154 ggproto

colour = 'red',
width = 0.4

)

ggproto Create a new ggproto object

Description

Construct a new object with ggproto(), test with is.ggproto(), and access parent methods/fields
with ggproto_parent().

Usage

ggproto(`_class` = NULL, `_inherit` = NULL, ...)

ggproto_parent(parent, self)

is.ggproto(x)

Arguments

_class Class name to assign to the object. This is stored as the class attribute of the
object. This is optional: if NULL (the default), no class name will be added to the
object.

_inherit ggproto object to inherit from. If NULL, don’t inherit from any object.

... A list of members in the ggproto object.

parent, self Access parent class parent of object self.

x An object to test.

Details

ggproto implements a protype based OO system which blurs the lines between classes and instances.
It is inspired by the proto package, but it has some important differences. Notably, it cleanly sup-
ports cross-package inheritance, and has faster performance.

In most cases, creating a new OO system to be used by a single package is not a good idea. How-
ever, it was the least-bad solution for ggplot2 because it required the fewest changes to an already
complex code base.

Calling methods

ggproto methods can take an optional self argument: if it is present, it is a regular method; if it’s
absent, it’s a "static" method (i.e. it doesn’t use any fields).

Imagine you have a ggproto object Adder, which has a method addx = function(self, n) n +
self$x. Then, to call this function, you would use Adder$addx(10) – the self is passed in auto-
matically by the wrapper function. self be located anywhere in the function signature, although
customarily it comes first.

ggsave 155

Calling methods in a parent

To explicitly call a methods in a parent, use ggproto_parent(Parent, self).

Examples

Adder <- ggproto("Adder",
x = 0,
add = function(self, n) {
self$x <- self$x + n
self$x

}
)

is.ggproto(Adder)

Adder$add(10)
Adder$add(10)

Doubler <- ggproto("Doubler", Adder,
add = function(self, n) {

ggproto_parent(Adder, self)$add(n * 2)
}

)
Doubler$x
Doubler$add(10)

ggsave Save a ggplot (or other grid object) with sensible defaults

Description

ggsave() is a convenient function for saving a plot. It defaults to saving the last plot that you
displayed, using the size of the current graphics device. It also guesses the type of graphics device
from the extension.

Usage

ggsave(
filename,
plot = last_plot(),
device = NULL,
path = NULL,
scale = 1,
width = NA,
height = NA,
units = c("in", "cm", "mm", "px"),
dpi = 300,
limitsize = TRUE,
bg = NULL,

156 ggsave

...
)

Arguments

filename File name to create on disk.

plot Plot to save, defaults to last plot displayed.

device Device to use. Can either be a device function (e.g. png), or one of "eps", "ps",
"tex" (pictex), "pdf", "jpeg", "tiff", "png", "bmp", "svg" or "wmf" (windows
only).

path Path of the directory to save plot to: path and filename are combined to create
the fully qualified file name. Defaults to the working directory.

scale Multiplicative scaling factor.
width, height, units

Plot size in units ("in", "cm", "mm", or "px"). If not supplied, uses the size of
current graphics device.

dpi Plot resolution. Also accepts a string input: "retina" (320), "print" (300), or
"screen" (72). Applies only to raster output types.

limitsize When TRUE (the default), ggsave() will not save images larger than 50x50
inches, to prevent the common error of specifying dimensions in pixels.

bg Background colour. If NULL, uses the plot.background fill value from the plot
theme.

... Other arguments passed on to the graphics device function, as specified by
device.

Details

Note: Filenames with page numbers can be generated by including a C integer format expres-
sion, such as %03d (as in the default file name for most R graphics devices, see e.g. png()). Thus,
filename = "figure%03d.png" will produce successive filenames figure001.png, figure002.png,
figure003.png, etc. To write a filename containing the % sign, use %%. For example, filename =
"figure-100%%.png" will produce the filename figure-100%.png.

Saving images without ggsave()

In most cases ggsave() is the simplest way to save your plot, but sometimes you may wish to save
the plot by writing directly to a graphics device. To do this, you can open a regular R graphics
device such as png() or pdf(), print the plot, and then close the device using dev.off(). This
technique is illustrated in the examples section.

Examples

Not run:
ggplot(mtcars, aes(mpg, wt)) +

geom_point()

ggsave("mtcars.pdf")

ggtheme 157

ggsave("mtcars.png")

ggsave("mtcars.pdf", width = 4, height = 4)
ggsave("mtcars.pdf", width = 20, height = 20, units = "cm")

delete files with base::unlink()
unlink("mtcars.pdf")
unlink("mtcars.png")

specify device when saving to a file with unknown extension
(for example a server supplied temporary file)
file <- tempfile()
ggsave(file, device = "pdf")
unlink(file)

save plot to file without using ggsave
p <-

ggplot(mtcars, aes(mpg, wt)) +
geom_point()

png("mtcars.png")
print(p)
dev.off()

End(Not run)

ggtheme Complete themes

Description

These are complete themes which control all non-data display. Use theme() if you just need to
tweak the display of an existing theme.

Usage

theme_grey(
base_size = 11,
base_family = "",
base_line_size = base_size/22,
base_rect_size = base_size/22

)

theme_gray(
base_size = 11,
base_family = "",
base_line_size = base_size/22,
base_rect_size = base_size/22

)

158 ggtheme

theme_bw(
base_size = 11,
base_family = "",
base_line_size = base_size/22,
base_rect_size = base_size/22

)

theme_linedraw(
base_size = 11,
base_family = "",
base_line_size = base_size/22,
base_rect_size = base_size/22

)

theme_light(
base_size = 11,
base_family = "",
base_line_size = base_size/22,
base_rect_size = base_size/22

)

theme_dark(
base_size = 11,
base_family = "",
base_line_size = base_size/22,
base_rect_size = base_size/22

)

theme_minimal(
base_size = 11,
base_family = "",
base_line_size = base_size/22,
base_rect_size = base_size/22

)

theme_classic(
base_size = 11,
base_family = "",
base_line_size = base_size/22,
base_rect_size = base_size/22

)

theme_void(
base_size = 11,
base_family = "",
base_line_size = base_size/22,
base_rect_size = base_size/22

ggtheme 159

)

theme_test(
base_size = 11,
base_family = "",
base_line_size = base_size/22,
base_rect_size = base_size/22

)

Arguments

base_size base font size, given in pts.

base_family base font family

base_line_size base size for line elements

base_rect_size base size for rect elements

Details

theme_gray() The signature ggplot2 theme with a grey background and white gridlines, designed
to put the data forward yet make comparisons easy.

theme_bw() The classic dark-on-light ggplot2 theme. May work better for presentations displayed
with a projector.

theme_linedraw() A theme with only black lines of various widths on white backgrounds, remi-
niscent of a line drawing. Serves a purpose similar to theme_bw(). Note that this theme has
some very thin lines (« 1 pt) which some journals may refuse.

theme_light() A theme similar to theme_linedraw() but with light grey lines and axes, to direct
more attention towards the data.

theme_dark() The dark cousin of theme_light(), with similar line sizes but a dark background.
Useful to make thin coloured lines pop out.

theme_minimal() A minimalistic theme with no background annotations.

theme_classic() A classic-looking theme, with x and y axis lines and no gridlines.

theme_void() A completely empty theme.

theme_test() A theme for visual unit tests. It should ideally never change except for new features.

Examples

mtcars2 <- within(mtcars, {
vs <- factor(vs, labels = c("V-shaped", "Straight"))
am <- factor(am, labels = c("Automatic", "Manual"))
cyl <- factor(cyl)
gear <- factor(gear)

})

p1 <- ggplot(mtcars2) +
geom_point(aes(x = wt, y = mpg, colour = gear)) +
labs(
title = "Fuel economy declines as weight increases",

160 guides

subtitle = "(1973-74)",
caption = "Data from the 1974 Motor Trend US magazine.",
tag = "Figure 1",
x = "Weight (1000 lbs)",
y = "Fuel economy (mpg)",
colour = "Gears"

)

p1 + theme_gray() # the default
p1 + theme_bw()
p1 + theme_linedraw()
p1 + theme_light()
p1 + theme_dark()
p1 + theme_minimal()
p1 + theme_classic()
p1 + theme_void()

Theme examples with panels

p2 <- p1 + facet_grid(vs ~ am)

p2 + theme_gray() # the default
p2 + theme_bw()
p2 + theme_linedraw()
p2 + theme_light()
p2 + theme_dark()
p2 + theme_minimal()
p2 + theme_classic()
p2 + theme_void()

guides Set guides for each scale

Description

Guides for each scale can be set scale-by-scale with the guide argument, or en masse with guides().

Usage

guides(...)

Arguments

... List of scale name-guide pairs. The guide can either be a string (i.e. "color-
bar" or "legend"), or a call to a guide function (i.e. guide_colourbar() or
guide_legend()) specifying additional arguments.

Value

A list containing the mapping between scale and guide.

guides 161

See Also

Other guides: guide_bins(), guide_colourbar(), guide_coloursteps(), guide_legend()

Examples

ggplot object

dat <- data.frame(x = 1:5, y = 1:5, p = 1:5, q = factor(1:5),
r = factor(1:5))

p <-
ggplot(dat, aes(x, y, colour = p, size = q, shape = r)) +
geom_point()

without guide specification
p

Show colorbar guide for colour.
All these examples below have a same effect.

p + guides(colour = "colorbar", size = "legend", shape = "legend")
p + guides(colour = guide_colorbar(), size = guide_legend(),

shape = guide_legend())
p +
scale_colour_continuous(guide = "colorbar") +
scale_size_discrete(guide = "legend") +
scale_shape(guide = "legend")

Remove some guides
p + guides(colour = "none")
p + guides(colour = "colorbar",size = "none")

Guides are integrated where possible

p +
guides(
colour = guide_legend("title"),
size = guide_legend("title"),
shape = guide_legend("title")

)
same as
g <- guide_legend("title")
p + guides(colour = g, size = g, shape = g)

p + theme(legend.position = "bottom")

position of guides

Set order for multiple guides
ggplot(mpg, aes(displ, cty)) +

geom_point(aes(size = hwy, colour = cyl, shape = drv)) +
guides(

162 guide_axis

colour = guide_colourbar(order = 1),
shape = guide_legend(order = 2),
size = guide_legend(order = 3)

)

guide_axis Axis guide

Description

Axis guides are the visual representation of position scales like those created with scale_(x|y)_continuous()
and scale_(x|y)_discrete().

Usage

guide_axis(
title = waiver(),
check.overlap = FALSE,
angle = NULL,
n.dodge = 1,
order = 0,
position = waiver()

)

Arguments

title A character string or expression indicating a title of guide. If NULL, the title is
not shown. By default (waiver()), the name of the scale object or the name
specified in labs() is used for the title.

check.overlap silently remove overlapping labels, (recursively) prioritizing the first, last, and
middle labels.

angle Compared to setting the angle in theme() / element_text(), this also uses
some heuristics to automatically pick the hjust and vjust that you probably
want.

n.dodge The number of rows (for vertical axes) or columns (for horizontal axes) that
should be used to render the labels. This is useful for displaying labels that
would otherwise overlap.

order Used to determine the order of the guides (left-to-right, top-to-bottom), if more
than one guide must be drawn at the same location.

position Where this guide should be drawn: one of top, bottom, left, or right.

guide_bins 163

Examples

plot with overlapping text
p <- ggplot(mpg, aes(cty * 100, hwy * 100)) +

geom_point() +
facet_wrap(vars(class))

axis guides can be customized in the scale_* functions or
using guides()
p + scale_x_continuous(guide = guide_axis(n.dodge = 2))
p + guides(x = guide_axis(angle = 90))

can also be used to add a duplicate guide
p + guides(x = guide_axis(n.dodge = 2), y.sec = guide_axis())

guide_bins A binned version of guide_legend

Description

This guide is a version of the guide_legend() guide for binned scales. It differs in that it places
ticks correctly between the keys, and sports a small axis to better show the binning. Like guide_legend()
it can be used for all non-position aesthetics though colour and fill defaults to guide_coloursteps(),
and it will merge aesthetics together into the same guide if they are mapped in the same way.

Usage

guide_bins(
title = waiver(),
title.position = NULL,
title.theme = NULL,
title.hjust = NULL,
title.vjust = NULL,
label = TRUE,
label.position = NULL,
label.theme = NULL,
label.hjust = NULL,
label.vjust = NULL,
keywidth = NULL,
keyheight = NULL,
axis = TRUE,
axis.colour = "black",
axis.linewidth = 0.5,
axis.arrow = NULL,
direction = NULL,
default.unit = "line",
override.aes = list(),

164 guide_bins

reverse = FALSE,
order = 0,
show.limits = NULL,
...

)

Arguments

title A character string or expression indicating a title of guide. If NULL, the title is
not shown. By default (waiver()), the name of the scale object or the name
specified in labs() is used for the title.

title.position A character string indicating the position of a title. One of "top" (default for a
vertical guide), "bottom", "left" (default for a horizontal guide), or "right."

title.theme A theme object for rendering the title text. Usually the object of element_text()
is expected. By default, the theme is specified by legend.title in theme() or
theme.

title.hjust A number specifying horizontal justification of the title text.
title.vjust A number specifying vertical justification of the title text.
label logical. If TRUE then the labels are drawn. If FALSE then the labels are invisible.
label.position A character string indicating the position of a label. One of "top", "bottom"

(default for horizontal guide), "left", or "right" (default for vertical guide).
label.theme A theme object for rendering the label text. Usually the object of element_text()

is expected. By default, the theme is specified by legend.text in theme().
label.hjust A numeric specifying horizontal justification of the label text.
label.vjust A numeric specifying vertical justification of the label text.
keywidth A numeric or a grid::unit() object specifying the width of the legend key.

Default value is legend.key.width or legend.key.size in theme().
keyheight A numeric or a grid::unit() object specifying the height of the legend key.

Default value is legend.key.height or legend.key.size in theme().
axis Logical. Should a small axis be drawn along the guide
axis.colour, axis.linewidth

Graphic specifications for the look of the axis.
axis.arrow A call to arrow() to specify arrows at the end of the axis line, thus showing an

open interval.
direction A character string indicating the direction of the guide. One of "horizontal" or

"vertical."
default.unit A character string indicating grid::unit() for keywidth and keyheight.
override.aes A list specifying aesthetic parameters of legend key. See details and examples.
reverse logical. If TRUE the order of legends is reversed.
order positive integer less than 99 that specifies the order of this guide among multiple

guides. This controls the order in which multiple guides are displayed, not the
contents of the guide itself. If 0 (default), the order is determined by a secret
algorithm.

show.limits Logical. Should the limits of the scale be shown with labels and ticks.
... ignored.

guide_colourbar 165

Value

A guide object

Use with discrete scale

This guide is intended to show binned data and work together with ggplot2’s binning scales. How-
ever, it is sometimes desirable to perform the binning in a separate step, either as part of a stat (e.g.
stat_contour_filled()) or prior to the visualisation. If you want to use this guide for discrete
data the levels must follow the naming scheme implemented by base::cut(). This means that
a bin must be encoded as "(<lower>, <upper>]" with <lower> giving the lower bound of the
bin and <upper> giving the upper bound ("[<lower>, <upper>)" is also accepted). If you use
base::cut() to perform the binning everything should work as expected, if not, some recoding
may be needed.

See Also

Other guides: guide_colourbar(), guide_coloursteps(), guide_legend(), guides()

Examples

p <- ggplot(mtcars) +
geom_point(aes(disp, mpg, size = hp)) +
scale_size_binned()

Standard look
p

Remove the axis or style it
p + guides(size = guide_bins(axis = FALSE))

p + guides(size = guide_bins(show.limits = TRUE))

p + guides(size = guide_bins(
axis.arrow = arrow(length = unit(1.5, 'mm'), ends = 'both')

))

Guides are merged together if possible
ggplot(mtcars) +

geom_point(aes(disp, mpg, size = hp, colour = hp)) +
scale_size_binned() +
scale_colour_binned(guide = "bins")

guide_colourbar Continuous colour bar guide

166 guide_colourbar

Description

Colour bar guide shows continuous colour scales mapped onto values. Colour bar is available
with scale_fill and scale_colour. For more information, see the inspiration for this function:
Matlab’s colorbar function.

Usage

guide_colourbar(
title = waiver(),
title.position = NULL,
title.theme = NULL,
title.hjust = NULL,
title.vjust = NULL,
label = TRUE,
label.position = NULL,
label.theme = NULL,
label.hjust = NULL,
label.vjust = NULL,
barwidth = NULL,
barheight = NULL,
nbin = 300,
raster = TRUE,
frame.colour = NULL,
frame.linewidth = 0.5,
frame.linetype = 1,
ticks = TRUE,
ticks.colour = "white",
ticks.linewidth = 0.5,
draw.ulim = TRUE,
draw.llim = TRUE,
direction = NULL,
default.unit = "line",
reverse = FALSE,
order = 0,
available_aes = c("colour", "color", "fill"),
...

)

guide_colorbar(
title = waiver(),
title.position = NULL,
title.theme = NULL,
title.hjust = NULL,
title.vjust = NULL,
label = TRUE,
label.position = NULL,
label.theme = NULL,
label.hjust = NULL,

http://www.mathworks.com/help/techdoc/ref/colorbar.html

guide_colourbar 167

label.vjust = NULL,
barwidth = NULL,
barheight = NULL,
nbin = 300,
raster = TRUE,
frame.colour = NULL,
frame.linewidth = 0.5,
frame.linetype = 1,
ticks = TRUE,
ticks.colour = "white",
ticks.linewidth = 0.5,
draw.ulim = TRUE,
draw.llim = TRUE,
direction = NULL,
default.unit = "line",
reverse = FALSE,
order = 0,
available_aes = c("colour", "color", "fill"),
...

)

Arguments

title A character string or expression indicating a title of guide. If NULL, the title is
not shown. By default (waiver()), the name of the scale object or the name
specified in labs() is used for the title.

title.position A character string indicating the position of a title. One of "top" (default for a
vertical guide), "bottom", "left" (default for a horizontal guide), or "right."

title.theme A theme object for rendering the title text. Usually the object of element_text()
is expected. By default, the theme is specified by legend.title in theme() or
theme.

title.hjust A number specifying horizontal justification of the title text.

title.vjust A number specifying vertical justification of the title text.

label logical. If TRUE then the labels are drawn. If FALSE then the labels are invisible.

label.position A character string indicating the position of a label. One of "top", "bottom"
(default for horizontal guide), "left", or "right" (default for vertical guide).

label.theme A theme object for rendering the label text. Usually the object of element_text()
is expected. By default, the theme is specified by legend.text in theme().

label.hjust A numeric specifying horizontal justification of the label text.

label.vjust A numeric specifying vertical justification of the label text.

barwidth A numeric or a grid::unit() object specifying the width of the colourbar.
Default value is legend.key.width or legend.key.size in theme() or theme.

barheight A numeric or a grid::unit() object specifying the height of the colourbar. De-
fault value is legend.key.height or legend.key.size in theme() or theme.

nbin A numeric specifying the number of bins for drawing the colourbar. A smoother
colourbar results from a larger value.

168 guide_colourbar

raster A logical. If TRUE then the colourbar is rendered as a raster object. If FALSE
then the colourbar is rendered as a set of rectangles. Note that not all graphics
devices are capable of rendering raster image.

frame.colour A string specifying the colour of the frame drawn around the bar. If NULL (the
default), no frame is drawn.

frame.linewidth

A numeric specifying the width of the frame drawn around the bar.

frame.linetype A numeric specifying the linetype of the frame drawn around the bar.

ticks A logical specifying if tick marks on the colourbar should be visible.

ticks.colour A string specifying the colour of the tick marks.

ticks.linewidth

A numeric specifying the width of the tick marks.

draw.ulim A logical specifying if the upper limit tick marks should be visible.

draw.llim A logical specifying if the lower limit tick marks should be visible.

direction A character string indicating the direction of the guide. One of "horizontal" or
"vertical."

default.unit A character string indicating grid::unit() for barwidth and barheight.

reverse logical. If TRUE the colourbar is reversed. By default, the highest value is on the
top and the lowest value is on the bottom

order positive integer less than 99 that specifies the order of this guide among multiple
guides. This controls the order in which multiple guides are displayed, not the
contents of the guide itself. If 0 (default), the order is determined by a secret
algorithm.

available_aes A vector of character strings listing the aesthetics for which a colourbar can be
drawn.

... ignored.

Details

Guides can be specified in each scale_* or in guides(). guide="legend" in scale_* is syntactic
sugar for guide=guide_legend() (e.g. scale_colour_manual(guide = "legend")). As for how
to specify the guide for each scale in more detail, see guides().

Value

A guide object

See Also

Other guides: guide_bins(), guide_coloursteps(), guide_legend(), guides()

guide_colourbar 169

Examples

df <- expand.grid(X1 = 1:10, X2 = 1:10)
df$value <- df$X1 * df$X2

p1 <- ggplot(df, aes(X1, X2)) + geom_tile(aes(fill = value))
p2 <- p1 + geom_point(aes(size = value))

Basic form
p1 + scale_fill_continuous(guide = "colourbar")
p1 + scale_fill_continuous(guide = guide_colourbar())
p1 + guides(fill = guide_colourbar())

Control styles

bar size
p1 + guides(fill = guide_colourbar(barwidth = 0.5, barheight = 10))

no label
p1 + guides(fill = guide_colourbar(label = FALSE))

no tick marks
p1 + guides(fill = guide_colourbar(ticks = FALSE))

label position
p1 + guides(fill = guide_colourbar(label.position = "left"))

label theme
p1 + guides(fill = guide_colourbar(label.theme = element_text(colour = "blue", angle = 0)))

small number of bins
p1 + guides(fill = guide_colourbar(nbin = 3))

large number of bins
p1 + guides(fill = guide_colourbar(nbin = 100))

make top- and bottom-most ticks invisible
p1 +

scale_fill_continuous(
limits = c(0,20), breaks = c(0, 5, 10, 15, 20),
guide = guide_colourbar(nbin = 100, draw.ulim = FALSE, draw.llim = FALSE)
)

guides can be controlled independently
p2 +

scale_fill_continuous(guide = "colourbar") +
scale_size(guide = "legend")

p2 + guides(fill = "colourbar", size = "legend")

p2 +
scale_fill_continuous(guide = guide_colourbar(direction = "horizontal")) +
scale_size(guide = guide_legend(direction = "vertical"))

170 guide_coloursteps

guide_coloursteps Discretized colourbar guide

Description

This guide is version of guide_colourbar() for binned colour and fill scales. It shows areas
between breaks as a single constant colour instead of the gradient known from the colourbar coun-
terpart.

Usage

guide_coloursteps(even.steps = TRUE, show.limits = NULL, ticks = FALSE, ...)

guide_colorsteps(even.steps = TRUE, show.limits = NULL, ticks = FALSE, ...)

Arguments

even.steps Should the rendered size of the bins be equal, or should they be proportional to
their length in the data space? Defaults to TRUE

show.limits Should labels for the outer limits of the bins be printed? Default is NULL which
makes the guide use the setting from the scale

ticks A logical specifying if tick marks on the colourbar should be visible.

... Arguments passed on to guide_colourbar

barwidth A numeric or a grid::unit() object specifying the width of the
colourbar. Default value is legend.key.width or legend.key.size in
theme() or theme.

barheight A numeric or a grid::unit() object specifying the height of the
colourbar. Default value is legend.key.height or legend.key.size in
theme() or theme.

frame.colour A string specifying the colour of the frame drawn around the
bar. If NULL (the default), no frame is drawn.

frame.linewidth A numeric specifying the width of the frame drawn around
the bar.

frame.linetype A numeric specifying the linetype of the frame drawn around
the bar.

ticks.colour A string specifying the colour of the tick marks.
ticks.linewidth A numeric specifying the width of the tick marks.
draw.ulim A logical specifying if the upper limit tick marks should be visible.
draw.llim A logical specifying if the lower limit tick marks should be visible.
direction A character string indicating the direction of the guide. One of

"horizontal" or "vertical."
default.unit A character string indicating grid::unit() for barwidth and

barheight.

guide_coloursteps 171

reverse logical. If TRUE the colourbar is reversed. By default, the highest value
is on the top and the lowest value is on the bottom

title A character string or expression indicating a title of guide. If NULL, the
title is not shown. By default (waiver()), the name of the scale object or
the name specified in labs() is used for the title.

title.position A character string indicating the position of a title. One of
"top" (default for a vertical guide), "bottom", "left" (default for a horizontal
guide), or "right."

title.theme A theme object for rendering the title text. Usually the object
of element_text() is expected. By default, the theme is specified by
legend.title in theme() or theme.

title.hjust A number specifying horizontal justification of the title text.
title.vjust A number specifying vertical justification of the title text.
label logical. If TRUE then the labels are drawn. If FALSE then the labels are

invisible.
label.position A character string indicating the position of a label. One of

"top", "bottom" (default for horizontal guide), "left", or "right" (default for
vertical guide).

label.theme A theme object for rendering the label text. Usually the object
of element_text() is expected. By default, the theme is specified by
legend.text in theme().

label.hjust A numeric specifying horizontal justification of the label text.
label.vjust A numeric specifying vertical justification of the label text.
order positive integer less than 99 that specifies the order of this guide among

multiple guides. This controls the order in which multiple guides are dis-
played, not the contents of the guide itself. If 0 (default), the order is deter-
mined by a secret algorithm.

Value

A guide object

Use with discrete scale

This guide is intended to show binned data and work together with ggplot2’s binning scales. How-
ever, it is sometimes desirable to perform the binning in a separate step, either as part of a stat (e.g.
stat_contour_filled()) or prior to the visualisation. If you want to use this guide for discrete
data the levels must follow the naming scheme implemented by base::cut(). This means that
a bin must be encoded as "(<lower>, <upper>]" with <lower> giving the lower bound of the
bin and <upper> giving the upper bound ("[<lower>, <upper>)" is also accepted). If you use
base::cut() to perform the binning everything should work as expected, if not, some recoding
may be needed.

See Also

Other guides: guide_bins(), guide_colourbar(), guide_legend(), guides()

172 guide_legend

Examples

df <- expand.grid(X1 = 1:10, X2 = 1:10)
df$value <- df$X1 * df$X2

p <- ggplot(df, aes(X1, X2)) + geom_tile(aes(fill = value))

Coloursteps guide is the default for binned colour scales
p + scale_fill_binned()

By default each bin in the guide is the same size irrespectively of how
their sizes relate in data space
p + scale_fill_binned(breaks = c(10, 25, 50))

This can be changed with the `even.steps` argument
p + scale_fill_binned(

breaks = c(10, 25, 50),
guide = guide_coloursteps(even.steps = FALSE)

)

By default the limits is not shown, but this can be changed
p + scale_fill_binned(guide = guide_coloursteps(show.limits = TRUE))

(can also be set in the scale)
p + scale_fill_binned(show.limits = TRUE)

guide_legend Legend guide

Description

Legend type guide shows key (i.e., geoms) mapped onto values. Legend guides for various scales
are integrated if possible.

Usage

guide_legend(
title = waiver(),
title.position = NULL,
title.theme = NULL,
title.hjust = NULL,
title.vjust = NULL,
label = TRUE,
label.position = NULL,
label.theme = NULL,
label.hjust = NULL,
label.vjust = NULL,
keywidth = NULL,

guide_legend 173

keyheight = NULL,
direction = NULL,
default.unit = "line",
override.aes = list(),
nrow = NULL,
ncol = NULL,
byrow = FALSE,
reverse = FALSE,
order = 0,
...

)

Arguments

title A character string or expression indicating a title of guide. If NULL, the title is
not shown. By default (waiver()), the name of the scale object or the name
specified in labs() is used for the title.

title.position A character string indicating the position of a title. One of "top" (default for a
vertical guide), "bottom", "left" (default for a horizontal guide), or "right."

title.theme A theme object for rendering the title text. Usually the object of element_text()
is expected. By default, the theme is specified by legend.title in theme() or
theme.

title.hjust A number specifying horizontal justification of the title text.

title.vjust A number specifying vertical justification of the title text.

label logical. If TRUE then the labels are drawn. If FALSE then the labels are invisible.

label.position A character string indicating the position of a label. One of "top", "bottom"
(default for horizontal guide), "left", or "right" (default for vertical guide).

label.theme A theme object for rendering the label text. Usually the object of element_text()
is expected. By default, the theme is specified by legend.text in theme().

label.hjust A numeric specifying horizontal justification of the label text.

label.vjust A numeric specifying vertical justification of the label text.

keywidth A numeric or a grid::unit() object specifying the width of the legend key.
Default value is legend.key.width or legend.key.size in theme().

keyheight A numeric or a grid::unit() object specifying the height of the legend key.
Default value is legend.key.height or legend.key.size in theme().

direction A character string indicating the direction of the guide. One of "horizontal" or
"vertical."

default.unit A character string indicating grid::unit() for keywidth and keyheight.

override.aes A list specifying aesthetic parameters of legend key. See details and examples.

nrow The desired number of rows of legends.

ncol The desired number of column of legends.

byrow logical. If FALSE (the default) the legend-matrix is filled by columns, otherwise
the legend-matrix is filled by rows.

174 guide_legend

reverse logical. If TRUE the order of legends is reversed.

order positive integer less than 99 that specifies the order of this guide among multiple
guides. This controls the order in which multiple guides are displayed, not the
contents of the guide itself. If 0 (default), the order is determined by a secret
algorithm.

... ignored.

Details

Guides can be specified in each scale_* or in guides(). guide = "legend" in scale_* is syntactic
sugar for guide = guide_legend() (e.g. scale_color_manual(guide = "legend")). As for how
to specify the guide for each scale in more detail, see guides().

See Also

Other guides: guide_bins(), guide_colourbar(), guide_coloursteps(), guides()

Examples

df <- expand.grid(X1 = 1:10, X2 = 1:10)
df$value <- df$X1 * df$X2

p1 <- ggplot(df, aes(X1, X2)) + geom_tile(aes(fill = value))
p2 <- p1 + geom_point(aes(size = value))

Basic form
p1 + scale_fill_continuous(guide = guide_legend())

Control styles

title position
p1 + guides(fill = guide_legend(title = "LEFT", title.position = "left"))

title text styles via element_text
p1 + guides(fill =

guide_legend(
title.theme = element_text(

size = 15,
face = "italic",
colour = "red",
angle = 0

)
)

)

label position
p1 + guides(fill = guide_legend(label.position = "left", label.hjust = 1))

label styles
p1 +

guide_none 175

scale_fill_continuous(
breaks = c(5, 10, 15),
labels = paste("long", c(5, 10, 15)),
guide = guide_legend(

direction = "horizontal",
title.position = "top",
label.position = "bottom",
label.hjust = 0.5,
label.vjust = 1,
label.theme = element_text(angle = 90)

)
)

Set aesthetic of legend key
very low alpha value make it difficult to see legend key
p3 <- ggplot(mtcars, aes(vs, am, colour = factor(cyl))) +

geom_jitter(alpha = 1/5, width = 0.01, height = 0.01)
p3
override.aes overwrites the alpha
p3 + guides(colour = guide_legend(override.aes = list(alpha = 1)))

multiple row/col legends
df <- data.frame(x = 1:20, y = 1:20, color = letters[1:20])
p <- ggplot(df, aes(x, y)) +

geom_point(aes(colour = color))
p + guides(col = guide_legend(nrow = 8))
p + guides(col = guide_legend(ncol = 8))
p + guides(col = guide_legend(nrow = 8, byrow = TRUE))

reversed order legend
p + guides(col = guide_legend(reverse = TRUE))

guide_none Empty guide

Description

This guide draws nothing.

Usage

guide_none(title = waiver(), position = waiver())

Arguments

title A character string or expression indicating a title of guide. If NULL, the title is
not shown. By default (waiver()), the name of the scale object or the name
specified in labs() is used for the title.

position Where this guide should be drawn: one of top, bottom, left, or right.

176 hmisc

hmisc A selection of summary functions from Hmisc

Description

These are wrappers around functions from Hmisc designed to make them easier to use with stat_summary().
See the Hmisc documentation for more details:

• Hmisc::smean.cl.boot()

• Hmisc::smean.cl.normal()

• Hmisc::smean.sdl()

• Hmisc::smedian.hilow()

Usage

mean_cl_boot(x, ...)

mean_cl_normal(x, ...)

mean_sdl(x, ...)

median_hilow(x, ...)

Arguments

x a numeric vector

... other arguments passed on to the respective Hmisc function.

Value

A data frame with columns y, ymin, and ymax.

Examples

if (requireNamespace("Hmisc", quietly = TRUE)) {
x <- rnorm(100)
mean_cl_boot(x)
mean_cl_normal(x)
mean_sdl(x)
median_hilow(x)
}

labeller 177

labeller Construct labelling specification

Description

This function makes it easy to assign different labellers to different factors. The labeller can be a
function or it can be a named character vectors that will serve as a lookup table.

Usage

labeller(
...,
.rows = NULL,
.cols = NULL,
keep.as.numeric = NULL,
.multi_line = TRUE,
.default = label_value

)

Arguments

... Named arguments of the form variable = labeller. Each labeller is passed
to as_labeller() and can be a lookup table, a function taking and returning
character vectors, or simply a labeller function.

.rows, .cols Labeller for a whole margin (either the rows or the columns). It is passed to
as_labeller(). When a margin-wide labeller is set, make sure you don’t men-
tion in ... any variable belonging to the margin.

keep.as.numeric

Deprecated. All supplied labellers and on-labeller functions should be able to
work with character labels.

.multi_line Whether to display the labels of multiple factors on separate lines. This is passed
to the labeller function.

.default Default labeller for variables not specified. Also used with lookup tables or
non-labeller functions.

Details

In case of functions, if the labeller has class labeller, it is directly applied on the data frame of
labels. Otherwise, it is applied to the columns of the data frame of labels. The data frame is then
processed with the function specified in the .default argument. This is intended to be used with
functions taking a character vector such as Hmisc::capitalize().

Value

A labeller function to supply to facet_grid() or facet_wrap() for the argument labeller.

178 labeller

See Also

as_labeller(), labellers

Examples

p1 <- ggplot(mtcars, aes(x = mpg, y = wt)) + geom_point()

You can assign different labellers to variables:
p1 + facet_grid(

vs + am ~ gear,
labeller = labeller(vs = label_both, am = label_value)

)

Or whole margins:
p1 + facet_grid(

vs + am ~ gear,
labeller = labeller(.rows = label_both, .cols = label_value)

)

You can supply functions operating on strings:
capitalize <- function(string) {

substr(string, 1, 1) <- toupper(substr(string, 1, 1))
string

}
p2 <- ggplot(msleep, aes(x = sleep_total, y = awake)) + geom_point()
p2 + facet_grid(vore ~ conservation, labeller = labeller(vore = capitalize))

Or use character vectors as lookup tables:
conservation_status <- c(

cd = "Conservation Dependent",
en = "Endangered",
lc = "Least concern",
nt = "Near Threatened",
vu = "Vulnerable",
domesticated = "Domesticated"

)
Source: http://en.wikipedia.org/wiki/Wikipedia:Conservation_status

p2 + facet_grid(vore ~ conservation, labeller = labeller(
.default = capitalize,
conservation = conservation_status

))

In the following example, we rename the levels to the long form,
then apply a wrap labeller to the columns to prevent cropped text
idx <- match(msleep$conservation, names(conservation_status))
msleep$conservation2 <- conservation_status[idx]

p3 <- ggplot(msleep, aes(x = sleep_total, y = awake)) + geom_point()
p3 +

facet_grid(vore ~ conservation2,

labellers 179

labeller = labeller(conservation2 = label_wrap_gen(10))
)

labeller() is especially useful to act as a global labeller. You
can set it up once and use it on a range of different plots with
different facet specifications.

global_labeller <- labeller(
vore = capitalize,
conservation = conservation_status,
conservation2 = label_wrap_gen(10),
.default = label_both

)

p2 + facet_grid(vore ~ conservation, labeller = global_labeller)
p3 + facet_wrap(~conservation2, labeller = global_labeller)

labellers Useful labeller functions

Description

Labeller functions are in charge of formatting the strip labels of facet grids and wraps. Most of
them accept a multi_line argument to control whether multiple factors (defined in formulae such
as ~first + second) should be displayed on a single line separated with commas, or each on their
own line.

Usage

label_value(labels, multi_line = TRUE)

label_both(labels, multi_line = TRUE, sep = ": ")

label_context(labels, multi_line = TRUE, sep = ": ")

label_parsed(labels, multi_line = TRUE)

label_wrap_gen(width = 25, multi_line = TRUE)

Arguments

labels Data frame of labels. Usually contains only one element, but faceting over mul-
tiple factors entails multiple label variables.

multi_line Whether to display the labels of multiple factors on separate lines.

sep String separating variables and values.

width Maximum number of characters before wrapping the strip.

180 labellers

Details

label_value() only displays the value of a factor while label_both() displays both the variable
name and the factor value. label_context() is context-dependent and uses label_value() for
single factor faceting and label_both() when multiple factors are involved. label_wrap_gen()
uses base::strwrap() for line wrapping.

label_parsed() interprets the labels as plotmath expressions. label_bquote() offers a more
flexible way of constructing plotmath expressions. See examples and bquote() for details on the
syntax of the argument.

Writing New Labeller Functions

Note that an easy way to write a labeller function is to transform a function operating on character
vectors with as_labeller().

A labeller function accepts a data frame of labels (character vectors) containing one column for
each factor. Multiple factors occur with formula of the type ~first + second.

The return value must be a rectangular list where each ’row’ characterises a single facet. The list
elements can be either character vectors or lists of plotmath expressions. When multiple elements
are returned, they get displayed on their own new lines (i.e., each facet gets a multi-line strip of
labels).

To illustrate, let’s say your labeller returns a list of two character vectors of length 3. This is a
rectangular list because all elements have the same length. The first facet will get the first elements
of each vector and display each of them on their own line. Then the second facet gets the second
elements of each vector, and so on.

If it’s useful to your labeller, you can retrieve the type attribute of the incoming data frame of
labels. The value of this attribute reflects the kind of strips your labeller is dealing with: "cols"
for columns and "rows" for rows. Note that facet_wrap() has columns by default and rows when
the strips are switched with the switch option. The facet attribute also provides metadata on the
labels. It takes the values "grid" or "wrap".

For compatibility with labeller(), each labeller function must have the labeller S3 class.

See Also

labeller(), as_labeller(), label_bquote()

Examples

mtcars$cyl2 <- factor(mtcars$cyl, labels = c("alpha", "beta", "gamma"))
p <- ggplot(mtcars, aes(wt, mpg)) + geom_point()

The default is label_value
p + facet_grid(. ~ cyl, labeller = label_value)

Displaying both the values and the variables
p + facet_grid(. ~ cyl, labeller = label_both)

Displaying only the values or both the values and variables
depending on whether multiple factors are facetted over

label_bquote 181

p + facet_grid(am ~ vs+cyl, labeller = label_context)

Interpreting the labels as plotmath expressions
p + facet_grid(. ~ cyl2)
p + facet_grid(. ~ cyl2, labeller = label_parsed)

label_bquote Label with mathematical expressions

Description

label_bquote() offers a flexible way of labelling facet rows or columns with plotmath expressions.
Backquoted variables will be replaced with their value in the facet.

Usage

label_bquote(rows = NULL, cols = NULL, default)

Arguments

rows Backquoted labelling expression for rows.

cols Backquoted labelling expression for columns.

default Unused, kept for compatibility.

See Also

labellers, labeller(),

Examples

The variables mentioned in the plotmath expression must be
backquoted and referred to by their names.
p <- ggplot(mtcars, aes(wt, mpg)) + geom_point()
p + facet_grid(vs ~ ., labeller = label_bquote(alpha ^ .(vs)))
p + facet_grid(. ~ vs, labeller = label_bquote(cols = .(vs) ^ .(vs)))
p + facet_grid(. ~ vs + am, labeller = label_bquote(cols = .(am) ^ .(vs)))

182 labs

labs Modify axis, legend, and plot labels

Description

Good labels are critical for making your plots accessible to a wider audience. Always ensure the
axis and legend labels display the full variable name. Use the plot title and subtitle to explain
the main findings. It’s common to use the caption to provide information about the data source.
tag can be used for adding identification tags to differentiate between multiple plots.

Usage

labs(
...,
title = waiver(),
subtitle = waiver(),
caption = waiver(),
tag = waiver(),
alt = waiver(),
alt_insight = waiver()

)

xlab(label)

ylab(label)

ggtitle(label, subtitle = waiver())

Arguments

... A list of new name-value pairs. The name should be an aesthetic.

title The text for the title.

subtitle The text for the subtitle for the plot which will be displayed below the title.

caption The text for the caption which will be displayed in the bottom-right of the plot
by default.

tag The text for the tag label which will be displayed at the top-left of the plot by
default.

alt, alt_insight

Text used for the generation of alt-text for the plot. See get_alt_text for exam-
ples.

label The title of the respective axis (for xlab() or ylab()) or of the plot (for ggtitle()).

lims 183

Details

You can also set axis and legend labels in the individual scales (using the first argument, the name).
If you’re changing other scale options, this is recommended.

If a plot already has a title, subtitle, caption, etc., and you want to remove it, you can do so by setting
the respective argument to NULL. For example, if plot p has a subtitle, then p + labs(subtitle =
NULL) will remove the subtitle from the plot.

Examples

p <- ggplot(mtcars, aes(mpg, wt, colour = cyl)) + geom_point()
p + labs(colour = "Cylinders")
p + labs(x = "New x label")

The plot title appears at the top-left, with the subtitle
display in smaller text underneath it
p + labs(title = "New plot title")
p + labs(title = "New plot title", subtitle = "A subtitle")

The caption appears in the bottom-right, and is often used for
sources, notes or copyright
p + labs(caption = "(based on data from ...)")

The plot tag appears at the top-left, and is typically used
for labelling a subplot with a letter.
p + labs(title = "title", tag = "A")

If you want to remove a label, set it to NULL.
p +
labs(title = "title") +
labs(title = NULL)

lims Set scale limits

Description

This is a shortcut for supplying the limits argument to the individual scales. By default, any values
outside the limits specified are replaced with NA. Be warned that this will remove data outside the
limits and this can produce unintended results. For changing x or y axis limits without dropping
data observations, see coord_cartesian().

Usage

lims(...)

xlim(...)

ylim(...)

184 lims

Arguments

... For xlim() and ylim(): Two numeric values, specifying the left/lower limit
and the right/upper limit of the scale. If the larger value is given first, the scale
will be reversed. You can leave one value as NA if you want to compute the
corresponding limit from the range of the data.
For lims(): A name–value pair. The name must be an aesthetic, and the value
must be either a length-2 numeric, a character, a factor, or a date/time. A nu-
meric value will create a continuous scale. If the larger value comes first, the
scale will be reversed. You can leave one value as NA if you want to compute
the corresponding limit from the range of the data. A character or factor value
will create a discrete scale. A date-time value will create a continuous date/time
scale.

See Also

To expand the range of a plot to always include certain values, see expand_limits(). For other
types of data, see scale_x_discrete(), scale_x_continuous(), scale_x_date().

Examples

Zoom into a specified area
ggplot(mtcars, aes(mpg, wt)) +

geom_point() +
xlim(15, 20)

reverse scale
ggplot(mtcars, aes(mpg, wt)) +

geom_point() +
xlim(20, 15)

with automatic lower limit
ggplot(mtcars, aes(mpg, wt)) +

geom_point() +
xlim(NA, 20)

You can also supply limits that are larger than the data.
This is useful if you want to match scales across different plots
small <- subset(mtcars, cyl == 4)
big <- subset(mtcars, cyl > 4)

ggplot(small, aes(mpg, wt, colour = factor(cyl))) +
geom_point() +
lims(colour = c("4", "6", "8"))

ggplot(big, aes(mpg, wt, colour = factor(cyl))) +
geom_point() +
lims(colour = c("4", "6", "8"))

There are two ways of setting the axis limits: with limits or
with coordinate systems. They work in two rather different ways.

luv_colours 185

last_month <- Sys.Date() - 0:59
df <- data.frame(

date = last_month,
price = c(rnorm(30, mean = 15), runif(30) + 0.2 * (1:30))

)

p <- ggplot(df, aes(date, price)) +
geom_line() +
stat_smooth()

p

Setting the limits with the scale discards all data outside the range.
p + lims(x= c(Sys.Date() - 30, NA), y = c(10, 20))

For changing x or y axis limits **without** dropping data
observations use [coord_cartesian()]. Setting the limits on the
coordinate system performs a visual zoom.
p + coord_cartesian(xlim =c(Sys.Date() - 30, NA), ylim = c(10, 20))

luv_colours colors() in Luv space

Description

All built-in colors() translated into Luv colour space.

Usage

luv_colours

Format

A data frame with 657 observations and 4 variables:

L,u,v Position in Luv colour space

col Colour name

186 margin

margin Theme elements

Description

In conjunction with the theme system, the element_ functions specify the display of how non-data
components of the plot are drawn.

• element_blank(): draws nothing, and assigns no space.

• element_rect(): borders and backgrounds.

• element_line(): lines.

• element_text(): text.

rel() is used to specify sizes relative to the parent, margin() is used to specify the margins of
elements.

Usage

margin(t = 0, r = 0, b = 0, l = 0, unit = "pt")

element_blank()

element_rect(
fill = NULL,
colour = NULL,
size = NULL,
linetype = NULL,
color = NULL,
inherit.blank = FALSE

)

element_line(
colour = NULL,
size = NULL,
linetype = NULL,
lineend = NULL,
color = NULL,
arrow = NULL,
inherit.blank = FALSE

)

element_text(
family = NULL,
face = NULL,
colour = NULL,
size = NULL,
hjust = NULL,

margin 187

vjust = NULL,
angle = NULL,
lineheight = NULL,
color = NULL,
margin = NULL,
debug = NULL,
inherit.blank = FALSE

)

rel(x)

Arguments

t, r, b, l Dimensions of each margin. (To remember order, think trouble).

unit Default units of dimensions. Defaults to "pt" so it can be most easily scaled with
the text.

fill Fill colour.

colour, color Line/border colour. Color is an alias for colour.

size Line/border size in mm; text size in pts.

linetype Line type. An integer (0:8), a name (blank, solid, dashed, dotted, dotdash, long-
dash, twodash), or a string with an even number (up to eight) of hexadecimal
digits which give the lengths in consecutive positions in the string.

inherit.blank Should this element inherit the existence of an element_blank among its par-
ents? If TRUE the existence of a blank element among its parents will cause this
element to be blank as well. If FALSE any blank parent element will be ignored
when calculating final element state.

lineend Line end Line end style (round, butt, square)

arrow Arrow specification, as created by grid::arrow()

family Font family

face Font face ("plain", "italic", "bold", "bold.italic")

hjust Horizontal justification (in [0, 1])

vjust Vertical justification (in [0, 1])

angle Angle (in [0, 360])

lineheight Line height

margin Margins around the text. See margin() for more details. When creating a
theme, the margins should be placed on the side of the text facing towards the
center of the plot.

debug If TRUE, aids visual debugging by drawing a solid rectangle behind the complete
text area, and a point where each label is anchored.

x A single number specifying size relative to parent element.

Value

An S3 object of class element, rel, or margin.

188 mean_se

Examples

plot <- ggplot(mpg, aes(displ, hwy)) + geom_point()

plot + theme(
panel.background = element_blank(),
axis.text = element_blank()

)

plot + theme(
axis.text = element_text(colour = "red", size = rel(1.5))

)

plot + theme(
axis.line = element_line(arrow = arrow())

)

plot + theme(
panel.background = element_rect(fill = "white"),
plot.margin = margin(2, 2, 2, 2, "cm"),
plot.background = element_rect(
fill = "grey90",
colour = "black",
size = 1

)
)

mean_se Calculate mean and standard error of the mean

Description

For use with stat_summary()

Usage

mean_se(x, mult = 1)

Arguments

x numeric vector.

mult number of multiples of standard error.

Value

A data frame with three columns:

y The mean.

ymin The mean minus the multiples of the standard error.

ymax The mean plus the multiples of the standard error.

midwest 189

Examples

x <- rnorm(100)
mean_se(x)

midwest Midwest demographics

Description

Demographic information of midwest counties from 2000 US census

Usage

midwest

Format

A data frame with 437 rows and 28 variables:

PID Unique county identifier.

county County name.

state State to which county belongs to.

area Area of county (units unknown).

poptotal Total population.

popdensity Population density (person/unit area).

popwhite Number of whites.

popblack Number of blacks.

popamerindian Number of American Indians.

popasian Number of Asians.

popother Number of other races.

percwhite Percent white.

percblack Percent black.

percamerindan Percent American Indian.

percasian Percent Asian.

percother Percent other races.

popadults Number of adults.

perchsd Percent with high school diploma.

percollege Percent college educated.

percprof Percent with professional degree.

poppovertyknown Population with known poverty status.

percpovertyknown Percent of population with known poverty status.

190 mpg

percbelowpoverty Percent of people below poverty line.

percchildbelowpovert Percent of children below poverty line.

percadultpoverty Percent of adults below poverty line.

percelderlypoverty Percent of elderly below poverty line.

inmetro County considered in a metro area.

category Miscellaneous.

Details

Note: this dataset is included for illustrative purposes. The original descriptions were not docu-
mented and the current descriptions here are based on speculation. For more accurate and up-to-date
US census data, see the acs package.

mpg Fuel economy data from 1999 to 2008 for 38 popular models of cars

Description

This dataset contains a subset of the fuel economy data that the EPA makes available on https:
//fueleconomy.gov/. It contains only models which had a new release every year between 1999
and 2008 - this was used as a proxy for the popularity of the car.

Usage

mpg

Format

A data frame with 234 rows and 11 variables:

manufacturer manufacturer name

model model name

displ engine displacement, in litres

year year of manufacture

cyl number of cylinders

trans type of transmission

drv the type of drive train, where f = front-wheel drive, r = rear wheel drive, 4 = 4wd

cty city miles per gallon

hwy highway miles per gallon

fl fuel type

class "type" of car

https://cran.r-project.org/package=acs
https://fueleconomy.gov/
https://fueleconomy.gov/

msleep 191

msleep An updated and expanded version of the mammals sleep dataset

Description

This is an updated and expanded version of the mammals sleep dataset. Updated sleep times and
weights were taken from V. M. Savage and G. B. West. A quantitative, theoretical framework for
understanding mammalian sleep. Proceedings of the National Academy of Sciences, 104 (3):1051-
1056, 2007.

Usage

msleep

Format

A data frame with 83 rows and 11 variables:

name common name

genus

vore carnivore, omnivore or herbivore?

order

conservation the conservation status of the animal

sleep_total total amount of sleep, in hours

sleep_rem rem sleep, in hours

sleep_cycle length of sleep cycle, in hours

awake amount of time spent awake, in hours

brainwt brain weight in kilograms

bodywt body weight in kilograms

Details

Additional variables order, conservation status and vore were added from wikipedia.

192 position_dodge

position_dodge Dodge overlapping objects side-to-side

Description

Dodging preserves the vertical position of an geom while adjusting the horizontal position. position_dodge()
requires the grouping variable to be be specified in the global or geom_* layer. Unlike position_dodge(),
position_dodge2() works without a grouping variable in a layer. position_dodge2() works
with bars and rectangles, but is particulary useful for arranging box plots, which can have variable
widths.

Usage

position_dodge(width = NULL, preserve = c("total", "single"))

position_dodge2(
width = NULL,
preserve = c("total", "single"),
padding = 0.1,
reverse = FALSE

)

Arguments

width Dodging width, when different to the width of the individual elements. This
is useful when you want to align narrow geoms with wider geoms. See the
examples.

preserve Should dodging preserve the total width of all elements at a position, or the
width of a single element?

padding Padding between elements at the same position. Elements are shrunk by this
proportion to allow space between them. Defaults to 0.1.

reverse If TRUE, will reverse the default stacking order. This is useful if you’re rotating
both the plot and legend.

See Also

Other position adjustments: position_identity(), position_jitterdodge(), position_jitter(),
position_nudge(), position_stack()

Examples

ggplot(mtcars, aes(factor(cyl), fill = factor(vs))) +
geom_bar(position = "dodge2")

By default, dodging with `position_dodge2()` preserves the total width of
the elements. You can choose to preserve the width of each element with:
ggplot(mtcars, aes(factor(cyl), fill = factor(vs))) +

position_dodge 193

geom_bar(position = position_dodge2(preserve = "single"))

ggplot(diamonds, aes(price, fill = cut)) +
geom_histogram(position="dodge2")

see ?geom_bar for more examples

In this case a frequency polygon is probably a better choice
ggplot(diamonds, aes(price, colour = cut)) +

geom_freqpoly()

Dodging with various widths -------------------------------------
To dodge items with different widths, you need to be explicit
df <- data.frame(

x = c("a","a","b","b"),
y = 2:5,
g = rep(1:2, 2)

)
p <- ggplot(df, aes(x, y, group = g)) +

geom_col(position = "dodge", fill = "grey50", colour = "black")
p

A line range has no width:
p + geom_linerange(aes(ymin = y - 1, ymax = y + 1), position = "dodge")

So you must explicitly specify the width
p + geom_linerange(

aes(ymin = y - 1, ymax = y + 1),
position = position_dodge(width = 0.9)

)

The same principle applies to error bars, which are usually
narrower than the bars
p + geom_errorbar(

aes(ymin = y - 1, ymax = y + 1),
width = 0.2,
position = "dodge"

)
p + geom_errorbar(

aes(ymin = y - 1, ymax = y + 1),
width = 0.2,
position = position_dodge(width = 0.9)

)

Box plots use position_dodge2 by default, and bars can use it too
ggplot(mpg, aes(factor(year), displ)) +

geom_boxplot(aes(colour = hwy < 30))

ggplot(mpg, aes(factor(year), displ)) +
geom_boxplot(aes(colour = hwy < 30), varwidth = TRUE)

ggplot(mtcars, aes(factor(cyl), fill = factor(vs))) +

194 position_jitter

geom_bar(position = position_dodge2(preserve = "single"))

ggplot(mtcars, aes(factor(cyl), fill = factor(vs))) +
geom_bar(position = position_dodge2(preserve = "total"))

position_identity Don’t adjust position

Description

Don’t adjust position

Usage

position_identity()

See Also

Other position adjustments: position_dodge(), position_jitterdodge(), position_jitter(),
position_nudge(), position_stack()

position_jitter Jitter points to avoid overplotting

Description

Counterintuitively adding random noise to a plot can sometimes make it easier to read. Jittering is
particularly useful for small datasets with at least one discrete position.

Usage

position_jitter(width = NULL, height = NULL, seed = NA)

Arguments

width, height Amount of vertical and horizontal jitter. The jitter is added in both positive and
negative directions, so the total spread is twice the value specified here.
If omitted, defaults to 40% of the resolution of the data: this means the jitter
values will occupy 80% of the implied bins. Categorical data is aligned on the
integers, so a width or height of 0.5 will spread the data so it’s not possible to
see the distinction between the categories.

seed A random seed to make the jitter reproducible. Useful if you need to apply the
same jitter twice, e.g., for a point and a corresponding label. The random seed is
reset after jittering. If NA (the default value), the seed is initialised with a random
value; this makes sure that two subsequent calls start with a different seed. Use
NULL to use the current random seed and also avoid resetting (the behaviour of
ggplot 2.2.1 and earlier).

position_jitterdodge 195

See Also

Other position adjustments: position_dodge(), position_identity(), position_jitterdodge(),
position_nudge(), position_stack()

Examples

Jittering is useful when you have a discrete position, and a relatively
small number of points
take up as much space as a boxplot or a bar
ggplot(mpg, aes(class, hwy)) +

geom_boxplot(colour = "grey50") +
geom_jitter()

If the default jittering is too much, as in this plot:
ggplot(mtcars, aes(am, vs)) +

geom_jitter()

You can adjust it in two ways
ggplot(mtcars, aes(am, vs)) +

geom_jitter(width = 0.1, height = 0.1)
ggplot(mtcars, aes(am, vs)) +

geom_jitter(position = position_jitter(width = 0.1, height = 0.1))

Create a jitter object for reproducible jitter:
jitter <- position_jitter(width = 0.1, height = 0.1)
ggplot(mtcars, aes(am, vs)) +

geom_point(position = jitter) +
geom_point(position = jitter, color = "red", aes(am + 0.2, vs + 0.2))

position_jitterdodge Simultaneously dodge and jitter

Description

This is primarily used for aligning points generated through geom_point() with dodged boxplots
(e.g., a geom_boxplot() with a fill aesthetic supplied).

Usage

position_jitterdodge(
jitter.width = NULL,
jitter.height = 0,
dodge.width = 0.75,
seed = NA

)

196 position_nudge

Arguments

jitter.width degree of jitter in x direction. Defaults to 40% of the resolution of the data.

jitter.height degree of jitter in y direction. Defaults to 0.

dodge.width the amount to dodge in the x direction. Defaults to 0.75, the default position_dodge()
width.

seed A random seed to make the jitter reproducible. Useful if you need to apply the
same jitter twice, e.g., for a point and a corresponding label. The random seed is
reset after jittering. If NA (the default value), the seed is initialised with a random
value; this makes sure that two subsequent calls start with a different seed. Use
NULL to use the current random seed and also avoid resetting (the behaviour of
ggplot 2.2.1 and earlier).

See Also

Other position adjustments: position_dodge(), position_identity(), position_jitter(),
position_nudge(), position_stack()

Examples

dsub <- diamonds[sample(nrow(diamonds), 1000),]
ggplot(dsub, aes(x = cut, y = carat, fill = clarity)) +

geom_boxplot(outlier.size = 0) +
geom_point(pch = 21, position = position_jitterdodge())

position_nudge Nudge points a fixed distance

Description

position_nudge() is generally useful for adjusting the position of items on discrete scales by a
small amount. Nudging is built in to geom_text() because it’s so useful for moving labels a small
distance from what they’re labelling.

Usage

position_nudge(x = 0, y = 0)

Arguments

x, y Amount of vertical and horizontal distance to move.

See Also

Other position adjustments: position_dodge(), position_identity(), position_jitterdodge(),
position_jitter(), position_stack()

position_stack 197

Examples

df <- data.frame(
x = c(1,3,2,5),
y = c("a","c","d","c")

)

ggplot(df, aes(x, y)) +
geom_point() +
geom_text(aes(label = y))

ggplot(df, aes(x, y)) +
geom_point() +
geom_text(aes(label = y), position = position_nudge(y = -0.1))

Or, in brief
ggplot(df, aes(x, y)) +

geom_point() +
geom_text(aes(label = y), nudge_y = -0.1)

position_stack Stack overlapping objects on top of each another

Description

position_stack() stacks bars on top of each other; position_fill() stacks bars and standard-
ises each stack to have constant height.

Usage

position_stack(vjust = 1, reverse = FALSE)

position_fill(vjust = 1, reverse = FALSE)

Arguments

vjust Vertical adjustment for geoms that have a position (like points or lines), not a
dimension (like bars or areas). Set to 0 to align with the bottom, 0.5 for the
middle, and 1 (the default) for the top.

reverse If TRUE, will reverse the default stacking order. This is useful if you’re rotating
both the plot and legend.

Details

position_fill() and position_stack() automatically stack values in reverse order of the group
aesthetic, which for bar charts is usually defined by the fill aesthetic (the default group aesthetic is
formed by the combination of all discrete aesthetics except for x and y). This default ensures that
bar colours align with the default legend.

There are three ways to override the defaults depending on what you want:

198 position_stack

1. Change the order of the levels in the underlying factor. This will change the stacking order,
and the order of keys in the legend.

2. Set the legend breaks to change the order of the keys without affecting the stacking.

3. Manually set the group aesthetic to change the stacking order without affecting the legend.

Stacking of positive and negative values are performed separately so that positive values stack up-
wards from the x-axis and negative values stack downward.

See Also

See geom_bar() and geom_area() for more examples.

Other position adjustments: position_dodge(), position_identity(), position_jitterdodge(),
position_jitter(), position_nudge()

Examples

Stacking and filling --

Stacking is the default behaviour for most area plots.
Fill makes it easier to compare proportions
ggplot(mtcars, aes(factor(cyl), fill = factor(vs))) +

geom_bar()
ggplot(mtcars, aes(factor(cyl), fill = factor(vs))) +

geom_bar(position = "fill")

ggplot(diamonds, aes(price, fill = cut)) +
geom_histogram(binwidth = 500)

ggplot(diamonds, aes(price, fill = cut)) +
geom_histogram(binwidth = 500, position = "fill")

Stacking is also useful for time series
series <- data.frame(

time = c(rep(1, 4),rep(2, 4), rep(3, 4), rep(4, 4)),
type = rep(c('a', 'b', 'c', 'd'), 4),
value = rpois(16, 10)

)
ggplot(series, aes(time, value)) +

geom_area(aes(fill = type))

Stacking order --
The stacking order is carefully designed so that the plot matches
the legend.

You control the stacking order by setting the levels of the underlying
factor. See the forcats package for convenient helpers.
series$type2 <- factor(series$type, levels = c('c', 'b', 'd', 'a'))
ggplot(series, aes(time, value)) +

geom_area(aes(fill = type2))

You can change the order of the levels in the legend using the scale
ggplot(series, aes(time, value)) +

position_stack 199

geom_area(aes(fill = type)) +
scale_fill_discrete(breaks = c('a', 'b', 'c', 'd'))

If you've flipped the plot, use reverse = TRUE so the levels
continue to match
ggplot(series, aes(time, value)) +

geom_area(aes(fill = type2), position = position_stack(reverse = TRUE)) +
coord_flip() +
theme(legend.position = "top")

Non-area plots --

When stacking across multiple layers it's a good idea to always set
the `group` aesthetic in the ggplot() call. This ensures that all layers
are stacked in the same way.
ggplot(series, aes(time, value, group = type)) +

geom_line(aes(colour = type), position = "stack") +
geom_point(aes(colour = type), position = "stack")

ggplot(series, aes(time, value, group = type)) +
geom_area(aes(fill = type)) +
geom_line(aes(group = type), position = "stack")

You can also stack labels, but the default position is suboptimal.
ggplot(series, aes(time, value, group = type)) +

geom_area(aes(fill = type)) +
geom_text(aes(label = type), position = "stack")

You can override this with the vjust parameter. A vjust of 0.5
will center the labels inside the corresponding area
ggplot(series, aes(time, value, group = type)) +

geom_area(aes(fill = type)) +
geom_text(aes(label = type), position = position_stack(vjust = 0.5))

Negative values ---

df <- tibble::tribble(
~x, ~y, ~grp,
"a", 1, "x",
"a", 2, "y",
"b", 1, "x",
"b", 3, "y",
"b", -1, "y"

)
ggplot(data = df, aes(x, y, group = grp)) +

geom_col(aes(fill = grp), position = position_stack(reverse = TRUE)) +
geom_hline(yintercept = 0)

ggplot(data = df, aes(x, y, group = grp)) +
geom_col(aes(fill = grp)) +
geom_hline(yintercept = 0) +
geom_text(aes(label = grp), position = position_stack(vjust = 0.5))

200 print.ggplot

presidential Terms of 11 presidents from Eisenhower to Obama

Description

The names of each president, the start and end date of their term, and their party of 11 US presidents
from Eisenhower to Obama.

Usage

presidential

Format

A data frame with 11 rows and 4 variables:

name Last name of president

start Presidency start date

end Presidency end date

party Party of president

print.ggplot Explicitly draw plot

Description

Generally, you do not need to print or plot a ggplot2 plot explicitly: the default top-level print
method will do it for you. You will, however, need to call print() explicitly if you want to draw a
plot inside a function or for loop.

Usage

S3 method for class 'ggplot'
print(x, newpage = is.null(vp), vp = NULL, ...)

S3 method for class 'ggplot'
plot(x, newpage = is.null(vp), vp = NULL, ...)

Arguments

x plot to display

newpage draw new (empty) page first?

vp viewport to draw plot in

... other arguments not used by this method

print.ggproto 201

Value

Invisibly returns the result of ggplot_build(), which is a list with components that contain the
plot itself, the data, information about the scales, panels etc.

Examples

colours <- list(~class, ~drv, ~fl)

Doesn't seem to do anything!
for (colour in colours) {

ggplot(mpg, aes_(~ displ, ~ hwy, colour = colour)) +
geom_point()

}

Works when we explicitly print the plots
for (colour in colours) {

print(ggplot(mpg, aes_(~ displ, ~ hwy, colour = colour)) +
geom_point())

}

print.ggproto Format or print a ggproto object

Description

If a ggproto object has a $print method, this will call that method. Otherwise, it will print out the
members of the object, and optionally, the members of the inherited objects.

Usage

S3 method for class 'ggproto'
print(x, ..., flat = TRUE)

S3 method for class 'ggproto'
format(x, ..., flat = TRUE)

Arguments

x A ggproto object to print.

... If the ggproto object has a print method, further arguments will be passed to it.
Otherwise, these arguments are unused.

flat If TRUE (the default), show a flattened list of all local and inherited members. If
FALSE, show the inheritance hierarchy.

202 qplot

Examples

Dog <- ggproto(
print = function(self, n) {
cat("Woof!\n")

}
)

Dog
cat(format(Dog), "\n")

qplot Quick plot

Description

qplot() is a shortcut designed to be familiar if you’re used to base plot(). It’s a convenient
wrapper for creating a number of different types of plots using a consistent calling scheme. It’s
great for allowing you to produce plots quickly, but I highly recommend learning ggplot() as it
makes it easier to create complex graphics.

Usage

qplot(
x,
y,
...,
data,
facets = NULL,
margins = FALSE,
geom = "auto",
xlim = c(NA, NA),
ylim = c(NA, NA),
log = "",
main = NULL,
xlab = NULL,
ylab = NULL,
asp = NA,
stat = NULL,
position = NULL

)

quickplot(
x,
y,
...,
data,
facets = NULL,
margins = FALSE,

qplot 203

geom = "auto",
xlim = c(NA, NA),
ylim = c(NA, NA),
log = "",
main = NULL,
xlab = NULL,
ylab = NULL,
asp = NA,
stat = NULL,
position = NULL

)

Arguments

x, y, ... Aesthetics passed into each layer

data Data frame to use (optional). If not specified, will create one, extracting vectors
from the current environment.

facets faceting formula to use. Picks facet_wrap() or facet_grid() depending on
whether the formula is one- or two-sided

margins See facet_grid(): display marginal facets?

geom Character vector specifying geom(s) to draw. Defaults to "point" if x and y are
specified, and "histogram" if only x is specified.

xlim, ylim X and y axis limits

log Which variables to log transform ("x", "y", or "xy")
main, xlab, ylab

Character vector (or expression) giving plot title, x axis label, and y axis label
respectively.

asp The y/x aspect ratio

stat, position DEPRECATED.

Examples

Use data from data.frame
qplot(mpg, wt, data = mtcars)
qplot(mpg, wt, data = mtcars, colour = cyl)
qplot(mpg, wt, data = mtcars, size = cyl)
qplot(mpg, wt, data = mtcars, facets = vs ~ am)

qplot(1:10, rnorm(10), colour = runif(10))
qplot(1:10, letters[1:10])
mod <- lm(mpg ~ wt, data = mtcars)
qplot(resid(mod), fitted(mod))

f <- function() {
a <- 1:10
b <- a ^ 2
qplot(a, b)

204 resolution

}
f()

To set aesthetics, wrap in I()
qplot(mpg, wt, data = mtcars, colour = I("red"))

qplot will attempt to guess what geom you want depending on the input
both x and y supplied = scatterplot
qplot(mpg, wt, data = mtcars)
just x supplied = histogram
qplot(mpg, data = mtcars)
just y supplied = scatterplot, with x = seq_along(y)
qplot(y = mpg, data = mtcars)

Use different geoms
qplot(mpg, wt, data = mtcars, geom = "path")
qplot(factor(cyl), wt, data = mtcars, geom = c("boxplot", "jitter"))
qplot(mpg, data = mtcars, geom = "dotplot")

resolution Compute the "resolution" of a numeric vector

Description

The resolution is the smallest non-zero distance between adjacent values. If there is only one unique
value, then the resolution is defined to be one. If x is an integer vector, then it is assumed to represent
a discrete variable, and the resolution is 1.

Usage

resolution(x, zero = TRUE)

Arguments

x numeric vector

zero should a zero value be automatically included in the computation of resolution

Examples

resolution(1:10)
resolution((1:10) - 0.5)
resolution((1:10) - 0.5, FALSE)

Note the difference between numeric and integer vectors
resolution(c(2, 10, 20, 50))
resolution(c(2L, 10L, 20L, 50L))

scale_alpha 205

scale_alpha Alpha transparency scales

Description

Alpha-transparency scales are not tremendously useful, but can be a convenient way to visually
down-weight less important observations. scale_alpha() is an alias for scale_alpha_continuous()
since that is the most common use of alpha, and it saves a bit of typing.

Usage

scale_alpha(..., range = c(0.1, 1))

scale_alpha_continuous(..., range = c(0.1, 1))

scale_alpha_binned(..., range = c(0.1, 1))

scale_alpha_discrete(...)

scale_alpha_ordinal(..., range = c(0.1, 1))

Arguments

... Other arguments passed on to continuous_scale(), binned_scale, or discrete_scale()
as appropriate, to control name, limits, breaks, labels and so forth.

range Output range of alpha values. Must lie between 0 and 1.

See Also

Other colour scales: scale_colour_brewer(), scale_colour_continuous(), scale_colour_gradient(),
scale_colour_grey(), scale_colour_hue(), scale_colour_steps(), scale_colour_viridis_d()

Examples

p <- ggplot(mpg, aes(displ, hwy)) +
geom_point(aes(alpha = year))

p
p + scale_alpha("cylinders")
p + scale_alpha(range = c(0.4, 0.8))

206 scale_binned

scale_binned Positional scales for binning continuous data (x & y)

Description

scale_x_binned() and scale_y_binned() are scales that discretize continuous position data.
You can use these scales to transform continuous inputs before using it with a geom that requires
discrete positions. An example is using scale_x_binned() with geom_bar() to create a histogram.

Usage

scale_x_binned(
name = waiver(),
n.breaks = 10,
nice.breaks = TRUE,
breaks = waiver(),
labels = waiver(),
limits = NULL,
expand = waiver(),
oob = squish,
na.value = NA_real_,
right = TRUE,
show.limits = FALSE,
trans = "identity",
guide = waiver(),
position = "bottom"

)

scale_y_binned(
name = waiver(),
n.breaks = 10,
nice.breaks = TRUE,
breaks = waiver(),
labels = waiver(),
limits = NULL,
expand = waiver(),
oob = squish,
na.value = NA_real_,
right = TRUE,
show.limits = FALSE,
trans = "identity",
guide = waiver(),
position = "left"

)

scale_binned 207

Arguments

name The name of the scale. Used as the axis or legend title. If waiver(), the default,
the name of the scale is taken from the first mapping used for that aesthetic. If
NULL, the legend title will be omitted.

n.breaks The number of break points to create if breaks are not given directly.

nice.breaks Logical. Should breaks be attempted placed at nice values instead of exactly
evenly spaced between the limits. If TRUE (default) the scale will ask the trans-
formation object to create breaks, and this may result in a different number of
breaks than requested. Ignored if breaks are given explicitly.

breaks One of:

• NULL for no breaks
• waiver() for the default breaks computed by the transformation object
• A numeric vector of positions
• A function that takes the limits as input and returns breaks as output (e.g.,

a function returned by scales::extended_breaks()). Also accepts rlang
lambda function notation.

labels One of:

• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• A function that takes the breaks as input and returns labels as output. Also

accepts rlang lambda function notation.

limits One of:

• NULL to use the default scale range
• A numeric vector of length two providing limits of the scale. Use NA to

refer to the existing minimum or maximum
• A function that accepts the existing (automatic) limits and returns new

limits. Also accepts rlang lambda function notation. Note that setting
limits on positional scales will remove data outside of the limits. If the
purpose is to zoom, use the limit argument in the coordinate system (see
coord_cartesian()).

expand For position scales, a vector of range expansion constants used to add some
padding around the data to ensure that they are placed some distance away from
the axes. Use the convenience function expansion() to generate the values for
the expand argument. The defaults are to expand the scale by 5% on each side
for continuous variables, and by 0.6 units on each side for discrete variables.

oob One of:

• Function that handles limits outside of the scale limits (out of bounds). Also
accepts rlang lambda function notation.

• The default (scales::censor()) replaces out of bounds values with NA.
• scales::squish() for squishing out of bounds values into range.
• scales::squish_infinite() for squishing infinite values into range.

na.value Missing values will be replaced with this value.

208 scale_colour_brewer

right Should values on the border between bins be part of the right (upper) bin?

show.limits should the limits of the scale appear as ticks

trans For continuous scales, the name of a transformation object or the object itself.
Built-in transformations include "asn", "atanh", "boxcox", "date", "exp", "hms",
"identity", "log", "log10", "log1p", "log2", "logit", "modulus", "probability",
"probit", "pseudo_log", "reciprocal", "reverse", "sqrt" and "time".
A transformation object bundles together a transform, its inverse, and methods
for generating breaks and labels. Transformation objects are defined in the scales
package, and are called <name>_trans (e.g., scales::boxcox_trans()). You
can create your own transformation with scales::trans_new().

guide A function used to create a guide or its name. See guides() for more informa-
tion.

position For position scales, The position of the axis. left or right for y axes, top or
bottom for x axes.

See Also

Other position scales: scale_x_continuous(), scale_x_date(), scale_x_discrete()

Examples

Create a histogram by binning the x-axis
ggplot(mtcars) +

geom_bar(aes(mpg)) +
scale_x_binned()

scale_colour_brewer Sequential, diverging and qualitative colour scales from ColorBrewer

Description

The brewer scales provide sequential, diverging and qualitative colour schemes from ColorBrewer.
These are particularly well suited to display discrete values on a map. See https://colorbrewer2.
org for more information.

Usage

scale_colour_brewer(
...,
type = "seq",
palette = 1,
direction = 1,
aesthetics = "colour"

)

scale_fill_brewer(

https://colorbrewer2.org
https://colorbrewer2.org

scale_colour_brewer 209

...,
type = "seq",
palette = 1,
direction = 1,
aesthetics = "fill"

)

scale_colour_distiller(
...,
type = "seq",
palette = 1,
direction = -1,
values = NULL,
space = "Lab",
na.value = "grey50",
guide = "colourbar",
aesthetics = "colour"

)

scale_fill_distiller(
...,
type = "seq",
palette = 1,
direction = -1,
values = NULL,
space = "Lab",
na.value = "grey50",
guide = "colourbar",
aesthetics = "fill"

)

scale_colour_fermenter(
...,
type = "seq",
palette = 1,
direction = -1,
na.value = "grey50",
guide = "coloursteps",
aesthetics = "colour"

)

scale_fill_fermenter(
...,
type = "seq",
palette = 1,
direction = -1,
na.value = "grey50",
guide = "coloursteps",

210 scale_colour_brewer

aesthetics = "fill"
)

Arguments

... Other arguments passed on to discrete_scale(), continuous_scale(), or
binned_scale(), for brewer, distiller, and fermenter variants respectively,
to control name, limits, breaks, labels and so forth.

type One of seq (sequential), div (diverging) or qual (qualitative)

palette If a string, will use that named palette. If a number, will index into the list
of palettes of appropriate type. The list of available palettes can found in the
Palettes section.

direction Sets the order of colours in the scale. If 1, the default, colours are as output by
RColorBrewer::brewer.pal(). If -1, the order of colours is reversed.

aesthetics Character string or vector of character strings listing the name(s) of the aes-
thetic(s) that this scale works with. This can be useful, for example, to ap-
ply colour settings to the colour and fill aesthetics at the same time, via
aesthetics = c("colour", "fill").

values if colours should not be evenly positioned along the gradient this vector gives
the position (between 0 and 1) for each colour in the colours vector. See
rescale() for a convenience function to map an arbitrary range to between
0 and 1.

space colour space in which to calculate gradient. Must be "Lab" - other values are
deprecated.

na.value Colour to use for missing values

guide Type of legend. Use "colourbar" for continuous colour bar, or "legend" for
discrete colour legend.

Details

The brewer scales were carefully designed and tested on discrete data. They were not designed to
be extended to continuous data, but results often look good. Your mileage may vary.

Palettes

The following palettes are available for use with these scales:

Diverging BrBG, PiYG, PRGn, PuOr, RdBu, RdGy, RdYlBu, RdYlGn, Spectral

Qualitative Accent, Dark2, Paired, Pastel1, Pastel2, Set1, Set2, Set3

Sequential Blues, BuGn, BuPu, GnBu, Greens, Greys, Oranges, OrRd, PuBu, PuBuGn, PuRd,
Purples, RdPu, Reds, YlGn, YlGnBu, YlOrBr, YlOrRd

Modify the palette through the palette argument.

Note

The distiller scales extend brewer scales by smoothly interpolating 7 colours from any palette
to a continuous scale. The fermenter scales provide binned versions of the brewer scales.

scale_colour_continuous 211

See Also

Other colour scales: scale_alpha(), scale_colour_continuous(), scale_colour_gradient(),
scale_colour_grey(), scale_colour_hue(), scale_colour_steps(), scale_colour_viridis_d()

Examples

dsamp <- diamonds[sample(nrow(diamonds), 1000),]
(d <- ggplot(dsamp, aes(carat, price)) +

geom_point(aes(colour = clarity)))
d + scale_colour_brewer()

Change scale label
d + scale_colour_brewer("Diamond\nclarity")

Select brewer palette to use, see ?scales::brewer_pal for more details
d + scale_colour_brewer(palette = "Greens")
d + scale_colour_brewer(palette = "Set1")

scale_fill_brewer works just the same as
scale_colour_brewer but for fill colours
p <- ggplot(diamonds, aes(x = price, fill = cut)) +

geom_histogram(position = "dodge", binwidth = 1000)
p + scale_fill_brewer()
the order of colour can be reversed
p + scale_fill_brewer(direction = -1)
the brewer scales look better on a darker background
p +

scale_fill_brewer(direction = -1) +
theme_dark()

Use distiller variant with continous data
v <- ggplot(faithfuld) +

geom_tile(aes(waiting, eruptions, fill = density))
v
v + scale_fill_distiller()
v + scale_fill_distiller(palette = "Spectral")

or use blender variants to discretise continuous data
v + scale_fill_fermenter()

scale_colour_continuous

Continuous and binned colour scales

212 scale_colour_continuous

Description

The scales scale_colour_continuous() and scale_fill_continuous() are the default colour
scales ggplot2 uses when continuous data values are mapped onto the colour or fill aesthetics,
respectively. The scales scale_colour_binned() and scale_fill_binned() are equivalent scale
functions that assign discrete color bins to the continuous values instead of using a continuous color
spectrum.

Usage

scale_colour_continuous(..., type = getOption("ggplot2.continuous.colour"))

scale_fill_continuous(..., type = getOption("ggplot2.continuous.fill"))

scale_colour_binned(..., type = getOption("ggplot2.binned.colour"))

scale_fill_binned(..., type = getOption("ggplot2.binned.fill"))

Arguments

... Additional parameters passed on to the scale type

type One of the following:

• "gradient" (the default)
• "viridis"
• A function that returns a continuous colour scale.

Details

All these colour scales use the options() mechanism to determine default settings. Continuous
colour scales default to the values of the ggplot2.continuous.colour and ggplot2.continuous.fill
options, and binned colour scales default to the values of the ggplot2.binned.colour and ggplot2.binned.fill
options. These option values default to "gradient", which means that the scale functions ac-
tually used are scale_colour_gradient()/scale_fill_gradient() for continuous scales and
scale_colour_steps()/scale_fill_steps() for binned scales. Alternative option values are
"viridis" or a different scale function. See description of the type argument for details.

Note that the binned colour scales will use the settings of ggplot2.continuous.colour and
ggplot2.continuous.fill as fallback, respectively, if ggplot2.binned.colour or ggplot2.binned.fill
are not set.

These scale functions are meant to provide simple defaults. If you want to manually set the colors
of a scale, consider using scale_colour_gradient() or scale_colour_steps().

Color Blindness

Many color palettes derived from RGB combinations (like the "rainbow" color palette) are not
suitable to support all viewers, especially those with color vision deficiencies. Using viridis type,
which is perceptually uniform in both colour and black-and-white display is an easy option to ensure
good perceptive properties of your visulizations. The colorspace package offers functionalities

• to generate color palettes with good perceptive properties,

scale_colour_discrete 213

• to analyse a given color palette, like emulating color blindness,
• and to modify a given color palette for better perceptivity.

For more information on color vision deficiencies and suitable color choices see the paper on the
colorspace package and references therein.

See Also

scale_colour_gradient(), scale_colour_viridis_c(), scale_colour_steps(), scale_colour_viridis_b(),
scale_fill_gradient(), scale_fill_viridis_c(), scale_fill_steps(), and scale_fill_viridis_b()

Other colour scales: scale_alpha(), scale_colour_brewer(), scale_colour_gradient(), scale_colour_grey(),
scale_colour_hue(), scale_colour_steps(), scale_colour_viridis_d()

Examples

v <- ggplot(faithfuld, aes(waiting, eruptions, fill = density)) +
geom_tile()
v

v + scale_fill_continuous(type = "gradient")
v + scale_fill_continuous(type = "viridis")

The above are equivalent to
v + scale_fill_gradient()
v + scale_fill_viridis_c()

To make a binned version of this plot
v + scale_fill_binned(type = "viridis")

Set a different default scale using the options
mechanism
tmp <- getOption("ggplot2.continuous.fill") # store current setting
options(ggplot2.continuous.fill = scale_fill_distiller)
v
options(ggplot2.continuous.fill = tmp) # restore previous setting

scale_colour_discrete Discrete colour scales

Description

The default discrete colour scale. Defaults to scale_fill_hue()/scale_fill_brewer() unless
type (which defaults to the ggplot2.discrete.fill/ggplot2.discrete.colour options) is spec-
ified.

Usage

scale_colour_discrete(..., type = getOption("ggplot2.discrete.colour"))

scale_fill_discrete(..., type = getOption("ggplot2.discrete.fill"))

https://arxiv.org/abs/1903.06490
https://arxiv.org/abs/1903.06490

214 scale_colour_discrete

Arguments

... Additional parameters passed on to the scale type,

type One of the following:

• A character vector of color codes. The codes are used for a ’manual’ color
scale as long as the number of codes exceeds the number of data levels (if
there are more levels than codes, scale_colour_hue()/scale_fill_hue()
are used to construct the default scale). If this is a named vector, then the
color values will be matched to levels based on the names of the vectors.
Data values that don’t match will be set as na.value.

• A list of character vectors of color codes. The minimum length vector that
exceeds the number of data levels is chosen for the color scaling. This is
useful if you want to change the color palette based on the number of levels.

• A function that returns a discrete colour/fill scale (e.g., scale_fill_hue(),
scale_fill_brewer(), etc).

Examples

Template function for creating densities grouped by a variable
cty_by_var <- function(var) {

ggplot(mpg, aes(cty, colour = factor({{var}}), fill = factor({{var}}))) +
geom_density(alpha = 0.2)

}

The default, scale_fill_hue(), is not colour-blind safe
cty_by_var(class)

(Temporarily) set the default to Okabe-Ito (which is colour-blind safe)
okabe <- c("#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7")
withr::with_options(

list(ggplot2.discrete.fill = okabe),
print(cty_by_var(class))

)

Define a collection of palettes to alter the default based on number of levels to encode
discrete_palettes <- list(

c("skyblue", "orange"),
RColorBrewer::brewer.pal(3, "Set2"),
RColorBrewer::brewer.pal(6, "Accent")

)
withr::with_options(

list(ggplot2.discrete.fill = discrete_palettes), {
1st palette is used when there 1-2 levels (e.g., year)
print(cty_by_var(year))
2nd palette is used when there are 3 levels
print(cty_by_var(drv))
3rd palette is used when there are 4-6 levels
print(cty_by_var(fl))

})

scale_colour_gradient 215

scale_colour_gradient Gradient colour scales

Description
scale_*_gradient creates a two colour gradient (low-high), scale_*_gradient2 creates a diverg-
ing colour gradient (low-mid-high), scale_*_gradientn creates a n-colour gradient. For binned
variants of these scales, see the color steps scales.

Usage

scale_colour_gradient(
...,
low = "#132B43",
high = "#56B1F7",
space = "Lab",
na.value = "grey50",
guide = "colourbar",
aesthetics = "colour"

)

scale_fill_gradient(
...,
low = "#132B43",
high = "#56B1F7",
space = "Lab",
na.value = "grey50",
guide = "colourbar",
aesthetics = "fill"

)

scale_colour_gradient2(
...,
low = muted("red"),
mid = "white",
high = muted("blue"),
midpoint = 0,
space = "Lab",
na.value = "grey50",
guide = "colourbar",
aesthetics = "colour"

)

scale_fill_gradient2(
...,
low = muted("red"),
mid = "white",

216 scale_colour_gradient

high = muted("blue"),
midpoint = 0,
space = "Lab",
na.value = "grey50",
guide = "colourbar",
aesthetics = "fill"

)

scale_colour_gradientn(
...,
colours,
values = NULL,
space = "Lab",
na.value = "grey50",
guide = "colourbar",
aesthetics = "colour",
colors

)

scale_fill_gradientn(
...,
colours,
values = NULL,
space = "Lab",
na.value = "grey50",
guide = "colourbar",
aesthetics = "fill",
colors

)

Arguments

... Arguments passed on to continuous_scale

scale_name The name of the scale that should be used for error messages as-
sociated with this scale.

palette A palette function that when called with a numeric vector with values
between 0 and 1 returns the corresponding output values (e.g., scales::area_pal()).

name The name of the scale. Used as the axis or legend title. If waiver(), the
default, the name of the scale is taken from the first mapping used for that
aesthetic. If NULL, the legend title will be omitted.

breaks One of:
• NULL for no breaks
• waiver() for the default breaks computed by the transformation object
• A numeric vector of positions
• A function that takes the limits as input and returns breaks as output

(e.g., a function returned by scales::extended_breaks()). Also ac-
cepts rlang lambda function notation.

scale_colour_gradient 217

minor_breaks One of:
• NULL for no minor breaks
• waiver() for the default breaks (one minor break between each major

break)
• A numeric vector of positions
• A function that given the limits returns a vector of minor breaks. Also

accepts rlang lambda function notation.
n.breaks An integer guiding the number of major breaks. The algorithm may

choose a slightly different number to ensure nice break labels. Will only
have an effect if breaks = waiver(). Use NULL to use the default number
of breaks given by the transformation.

labels One of:
• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• A function that takes the breaks as input and returns labels as output.

Also accepts rlang lambda function notation.
limits One of:

• NULL to use the default scale range
• A numeric vector of length two providing limits of the scale. Use NA to

refer to the existing minimum or maximum
• A function that accepts the existing (automatic) limits and returns new

limits. Also accepts rlang lambda function notation. Note that setting
limits on positional scales will remove data outside of the limits. If
the purpose is to zoom, use the limit argument in the coordinate system
(see coord_cartesian()).

rescaler A function used to scale the input values to the range [0, 1]. This is
always scales::rescale(), except for diverging and n colour gradients
(i.e., scale_colour_gradient2(), scale_colour_gradientn()). The
rescaler is ignored by position scales, which always use scales::rescale().
Also accepts rlang lambda function notation.

oob One of:
• Function that handles limits outside of the scale limits (out of bounds).

Also accepts rlang lambda function notation.
• The default (scales::censor()) replaces out of bounds values with
NA.

• scales::squish() for squishing out of bounds values into range.
• scales::squish_infinite() for squishing infinite values into range.

trans For continuous scales, the name of a transformation object or the object
itself. Built-in transformations include "asn", "atanh", "boxcox", "date",
"exp", "hms", "identity", "log", "log10", "log1p", "log2", "logit", "modu-
lus", "probability", "probit", "pseudo_log", "reciprocal", "reverse", "sqrt"
and "time".
A transformation object bundles together a transform, its inverse, and meth-
ods for generating breaks and labels. Transformation objects are defined in

218 scale_colour_gradient

the scales package, and are called <name>_trans (e.g., scales::boxcox_trans()).
You can create your own transformation with scales::trans_new().

expand For position scales, a vector of range expansion constants used to add
some padding around the data to ensure that they are placed some distance
away from the axes. Use the convenience function expansion() to gen-
erate the values for the expand argument. The defaults are to expand the
scale by 5% on each side for continuous variables, and by 0.6 units on each
side for discrete variables.

position For position scales, The position of the axis. left or right for y
axes, top or bottom for x axes.

super The super class to use for the constructed scale

low, high Colours for low and high ends of the gradient.

space colour space in which to calculate gradient. Must be "Lab" - other values are
deprecated.

na.value Colour to use for missing values

guide Type of legend. Use "colourbar" for continuous colour bar, or "legend" for
discrete colour legend.

aesthetics Character string or vector of character strings listing the name(s) of the aes-
thetic(s) that this scale works with. This can be useful, for example, to ap-
ply colour settings to the colour and fill aesthetics at the same time, via
aesthetics = c("colour", "fill").

mid colour for mid point

midpoint The midpoint (in data value) of the diverging scale. Defaults to 0.

colours, colors

Vector of colours to use for n-colour gradient.

values if colours should not be evenly positioned along the gradient this vector gives
the position (between 0 and 1) for each colour in the colours vector. See
rescale() for a convenience function to map an arbitrary range to between
0 and 1.

Details

Default colours are generated with munsell and mnsl(c("2.5PB 2/4", "2.5PB 7/10")). Gener-
ally, for continuous colour scales you want to keep hue constant, but vary chroma and luminance.
The munsell package makes this easy to do using the Munsell colour system.

See Also

scales::seq_gradient_pal() for details on underlying palette, scale_colour_steps() for binned
variants of these scales.

Other colour scales: scale_alpha(), scale_colour_brewer(), scale_colour_continuous(),
scale_colour_grey(), scale_colour_hue(), scale_colour_steps(), scale_colour_viridis_d()

scale_colour_gradient 219

Examples

df <- data.frame(
x = runif(100),
y = runif(100),
z1 = rnorm(100),
z2 = abs(rnorm(100))

)

df_na <- data.frame(
value = seq(1, 20),
x = runif(20),
y = runif(20),
z1 = c(rep(NA, 10), rnorm(10))

)

Default colour scale colours from light blue to dark blue
ggplot(df, aes(x, y)) +

geom_point(aes(colour = z2))

For diverging colour scales use gradient2
ggplot(df, aes(x, y)) +

geom_point(aes(colour = z1)) +
scale_colour_gradient2()

Use your own colour scale with gradientn
ggplot(df, aes(x, y)) +

geom_point(aes(colour = z1)) +
scale_colour_gradientn(colours = terrain.colors(10))

Equivalent fill scales do the same job for the fill aesthetic
ggplot(faithfuld, aes(waiting, eruptions)) +

geom_raster(aes(fill = density)) +
scale_fill_gradientn(colours = terrain.colors(10))

Adjust colour choices with low and high
ggplot(df, aes(x, y)) +

geom_point(aes(colour = z2)) +
scale_colour_gradient(low = "white", high = "black")

Avoid red-green colour contrasts because ~10% of men have difficulty
seeing them

Use `na.value = NA` to hide missing values but keep the original axis range
ggplot(df_na, aes(x = value, y)) +

geom_bar(aes(fill = z1), stat = "identity") +
scale_fill_gradient(low = "yellow", high = "red", na.value = NA)

ggplot(df_na, aes(x, y)) +
geom_point(aes(colour = z1)) +
scale_colour_gradient(low = "yellow", high = "red", na.value = NA)

220 scale_colour_grey

scale_colour_grey Sequential grey colour scales

Description

Based on gray.colors(). This is black and white equivalent of scale_colour_gradient().

Usage

scale_colour_grey(
...,
start = 0.2,
end = 0.8,
na.value = "red",
aesthetics = "colour"

)

scale_fill_grey(
...,
start = 0.2,
end = 0.8,
na.value = "red",
aesthetics = "fill"

)

Arguments

... Arguments passed on to discrete_scale

palette A palette function that when called with a single integer argument (the
number of levels in the scale) returns the values that they should take (e.g.,
scales::hue_pal()).

breaks One of:
• NULL for no breaks
• waiver() for the default breaks (the scale limits)
• A character vector of breaks
• A function that takes the limits as input and returns breaks as output.

Also accepts rlang lambda function notation.
limits One of:

• NULL to use the default scale values
• A character vector that defines possible values of the scale and their

order
• A function that accepts the existing (automatic) values and returns new

ones. Also accepts rlang lambda function notation.
drop Should unused factor levels be omitted from the scale? The default, TRUE,

uses the levels that appear in the data; FALSE uses all the levels in the factor.

scale_colour_grey 221

na.translate Unlike continuous scales, discrete scales can easily show miss-
ing values, and do so by default. If you want to remove missing values from
a discrete scale, specify na.translate = FALSE.

scale_name The name of the scale that should be used for error messages as-
sociated with this scale.

name The name of the scale. Used as the axis or legend title. If waiver(), the
default, the name of the scale is taken from the first mapping used for that
aesthetic. If NULL, the legend title will be omitted.

labels One of:
• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• A function that takes the breaks as input and returns labels as output.

Also accepts rlang lambda function notation.
expand For position scales, a vector of range expansion constants used to add

some padding around the data to ensure that they are placed some distance
away from the axes. Use the convenience function expansion() to gen-
erate the values for the expand argument. The defaults are to expand the
scale by 5% on each side for continuous variables, and by 0.6 units on each
side for discrete variables.

guide A function used to create a guide or its name. See guides() for more
information.

position For position scales, The position of the axis. left or right for y
axes, top or bottom for x axes.

super The super class to use for the constructed scale

start grey value at low end of palette

end grey value at high end of palette

na.value Colour to use for missing values

aesthetics Character string or vector of character strings listing the name(s) of the aes-
thetic(s) that this scale works with. This can be useful, for example, to ap-
ply colour settings to the colour and fill aesthetics at the same time, via
aesthetics = c("colour", "fill").

See Also

Other colour scales: scale_alpha(), scale_colour_brewer(), scale_colour_continuous(),
scale_colour_gradient(), scale_colour_hue(), scale_colour_steps(), scale_colour_viridis_d()

Examples

p <- ggplot(mtcars, aes(mpg, wt)) + geom_point(aes(colour = factor(cyl)))
p + scale_colour_grey()
p + scale_colour_grey(end = 0)

You may want to turn off the pale grey background with this scale
p + scale_colour_grey() + theme_bw()

222 scale_colour_hue

Colour of missing values is controlled with na.value:
miss <- factor(sample(c(NA, 1:5), nrow(mtcars), replace = TRUE))
ggplot(mtcars, aes(mpg, wt)) +

geom_point(aes(colour = miss)) +
scale_colour_grey()

ggplot(mtcars, aes(mpg, wt)) +
geom_point(aes(colour = miss)) +
scale_colour_grey(na.value = "green")

scale_colour_hue Evenly spaced colours for discrete data

Description

Maps each level to an evenly spaced hue on the colour wheel. It does not generate colour-blind safe
palettes.

Usage

scale_colour_hue(
...,
h = c(0, 360) + 15,
c = 100,
l = 65,
h.start = 0,
direction = 1,
na.value = "grey50",
aesthetics = "colour"

)

scale_fill_hue(
...,
h = c(0, 360) + 15,
c = 100,
l = 65,
h.start = 0,
direction = 1,
na.value = "grey50",
aesthetics = "fill"

)

Arguments

... Arguments passed on to discrete_scale

palette A palette function that when called with a single integer argument (the
number of levels in the scale) returns the values that they should take (e.g.,
scales::hue_pal()).

scale_colour_hue 223

breaks One of:
• NULL for no breaks
• waiver() for the default breaks (the scale limits)
• A character vector of breaks
• A function that takes the limits as input and returns breaks as output.

Also accepts rlang lambda function notation.
limits One of:

• NULL to use the default scale values
• A character vector that defines possible values of the scale and their

order
• A function that accepts the existing (automatic) values and returns new

ones. Also accepts rlang lambda function notation.
drop Should unused factor levels be omitted from the scale? The default, TRUE,

uses the levels that appear in the data; FALSE uses all the levels in the factor.
na.translate Unlike continuous scales, discrete scales can easily show miss-

ing values, and do so by default. If you want to remove missing values from
a discrete scale, specify na.translate = FALSE.

scale_name The name of the scale that should be used for error messages as-
sociated with this scale.

name The name of the scale. Used as the axis or legend title. If waiver(), the
default, the name of the scale is taken from the first mapping used for that
aesthetic. If NULL, the legend title will be omitted.

labels One of:
• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• A function that takes the breaks as input and returns labels as output.

Also accepts rlang lambda function notation.
expand For position scales, a vector of range expansion constants used to add

some padding around the data to ensure that they are placed some distance
away from the axes. Use the convenience function expansion() to gen-
erate the values for the expand argument. The defaults are to expand the
scale by 5% on each side for continuous variables, and by 0.6 units on each
side for discrete variables.

guide A function used to create a guide or its name. See guides() for more
information.

position For position scales, The position of the axis. left or right for y
axes, top or bottom for x axes.

super The super class to use for the constructed scale

h range of hues to use, in [0, 360]

c chroma (intensity of colour), maximum value varies depending on combination
of hue and luminance.

l luminance (lightness), in [0, 100]

h.start hue to start at

224 scale_colour_hue

direction direction to travel around the colour wheel, 1 = clockwise, -1 = counter-clockwise

na.value Colour to use for missing values

aesthetics Character string or vector of character strings listing the name(s) of the aes-
thetic(s) that this scale works with. This can be useful, for example, to ap-
ply colour settings to the colour and fill aesthetics at the same time, via
aesthetics = c("colour", "fill").

See Also

Other colour scales: scale_alpha(), scale_colour_brewer(), scale_colour_continuous(),
scale_colour_gradient(), scale_colour_grey(), scale_colour_steps(), scale_colour_viridis_d()

Examples

dsamp <- diamonds[sample(nrow(diamonds), 1000),]
(d <- ggplot(dsamp, aes(carat, price)) + geom_point(aes(colour = clarity)))

Change scale label
d + scale_colour_hue()
d + scale_colour_hue("clarity")
d + scale_colour_hue(expression(clarity[beta]))

Adjust luminosity and chroma
d + scale_colour_hue(l = 40, c = 30)
d + scale_colour_hue(l = 70, c = 30)
d + scale_colour_hue(l = 70, c = 150)
d + scale_colour_hue(l = 80, c = 150)

Change range of hues used
d + scale_colour_hue(h = c(0, 90))
d + scale_colour_hue(h = c(90, 180))
d + scale_colour_hue(h = c(180, 270))
d + scale_colour_hue(h = c(270, 360))

Vary opacity
(only works with pdf, quartz and cairo devices)
d <- ggplot(dsamp, aes(carat, price, colour = clarity))
d + geom_point(alpha = 0.9)
d + geom_point(alpha = 0.5)
d + geom_point(alpha = 0.2)

Colour of missing values is controlled with na.value:
miss <- factor(sample(c(NA, 1:5), nrow(mtcars), replace = TRUE))
ggplot(mtcars, aes(mpg, wt)) +

geom_point(aes(colour = miss))
ggplot(mtcars, aes(mpg, wt)) +

geom_point(aes(colour = miss)) +
scale_colour_hue(na.value = "black")

scale_colour_steps 225

scale_colour_steps Binned gradient colour scales

Description
scale_*_steps creates a two colour binned gradient (low-high), scale_*_steps2 creates a di-
verging binned colour gradient (low-mid-high), and scale_*_stepsn creates a n-colour binned
gradient. These scales are binned variants of the gradient scale family and works in the same way.

Usage

scale_colour_steps(
...,
low = "#132B43",
high = "#56B1F7",
space = "Lab",
na.value = "grey50",
guide = "coloursteps",
aesthetics = "colour"

)

scale_colour_steps2(
...,
low = muted("red"),
mid = "white",
high = muted("blue"),
midpoint = 0,
space = "Lab",
na.value = "grey50",
guide = "coloursteps",
aesthetics = "colour"

)

scale_colour_stepsn(
...,
colours,
values = NULL,
space = "Lab",
na.value = "grey50",
guide = "coloursteps",
aesthetics = "colour",
colors

)

scale_fill_steps(
...,
low = "#132B43",

226 scale_colour_steps

high = "#56B1F7",
space = "Lab",
na.value = "grey50",
guide = "coloursteps",
aesthetics = "fill"

)

scale_fill_steps2(
...,
low = muted("red"),
mid = "white",
high = muted("blue"),
midpoint = 0,
space = "Lab",
na.value = "grey50",
guide = "coloursteps",
aesthetics = "fill"

)

scale_fill_stepsn(
...,
colours,
values = NULL,
space = "Lab",
na.value = "grey50",
guide = "coloursteps",
aesthetics = "fill",
colors

)

Arguments

... Arguments passed on to binned_scale

n.breaks The number of break points to create if breaks are not given directly.
nice.breaks Logical. Should breaks be attempted placed at nice values in-

stead of exactly evenly spaced between the limits. If TRUE (default) the
scale will ask the transformation object to create breaks, and this may re-
sult in a different number of breaks than requested. Ignored if breaks are
given explicitly.

right Should values on the border between bins be part of the right (upper)
bin?

show.limits should the limits of the scale appear as ticks
name The name of the scale. Used as the axis or legend title. If waiver(), the

default, the name of the scale is taken from the first mapping used for that
aesthetic. If NULL, the legend title will be omitted.

breaks One of:
• NULL for no breaks
• waiver() for the default breaks computed by the transformation object

scale_colour_steps 227

• A numeric vector of positions
• A function that takes the limits as input and returns breaks as output

(e.g., a function returned by scales::extended_breaks()). Also ac-
cepts rlang lambda function notation.

labels One of:
• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• A function that takes the breaks as input and returns labels as output.

Also accepts rlang lambda function notation.
limits One of:

• NULL to use the default scale range
• A numeric vector of length two providing limits of the scale. Use NA to

refer to the existing minimum or maximum
• A function that accepts the existing (automatic) limits and returns new

limits. Also accepts rlang lambda function notation. Note that setting
limits on positional scales will remove data outside of the limits. If
the purpose is to zoom, use the limit argument in the coordinate system
(see coord_cartesian()).

oob One of:
• Function that handles limits outside of the scale limits (out of bounds).

Also accepts rlang lambda function notation.
• The default (scales::censor()) replaces out of bounds values with
NA.

• scales::squish() for squishing out of bounds values into range.
• scales::squish_infinite() for squishing infinite values into range.

expand For position scales, a vector of range expansion constants used to add
some padding around the data to ensure that they are placed some distance
away from the axes. Use the convenience function expansion() to gen-
erate the values for the expand argument. The defaults are to expand the
scale by 5% on each side for continuous variables, and by 0.6 units on each
side for discrete variables.

trans For continuous scales, the name of a transformation object or the object
itself. Built-in transformations include "asn", "atanh", "boxcox", "date",
"exp", "hms", "identity", "log", "log10", "log1p", "log2", "logit", "modu-
lus", "probability", "probit", "pseudo_log", "reciprocal", "reverse", "sqrt"
and "time".
A transformation object bundles together a transform, its inverse, and meth-
ods for generating breaks and labels. Transformation objects are defined in
the scales package, and are called <name>_trans (e.g., scales::boxcox_trans()).
You can create your own transformation with scales::trans_new().

position For position scales, The position of the axis. left or right for y
axes, top or bottom for x axes.

super The super class to use for the constructed scale

low Colours for low and high ends of the gradient.

228 scale_colour_steps

high Colours for low and high ends of the gradient.

space colour space in which to calculate gradient. Must be "Lab" - other values are
deprecated.

na.value Colour to use for missing values

guide Type of legend. Use "colourbar" for continuous colour bar, or "legend" for
discrete colour legend.

aesthetics Character string or vector of character strings listing the name(s) of the aes-
thetic(s) that this scale works with. This can be useful, for example, to ap-
ply colour settings to the colour and fill aesthetics at the same time, via
aesthetics = c("colour", "fill").

mid colour for mid point

midpoint The midpoint (in data value) of the diverging scale. Defaults to 0.

colours Vector of colours to use for n-colour gradient.

values if colours should not be evenly positioned along the gradient this vector gives
the position (between 0 and 1) for each colour in the colours vector. See
rescale() for a convenience function to map an arbitrary range to between
0 and 1.

colors Vector of colours to use for n-colour gradient.

Details

Default colours are generated with munsell and mnsl(c("2.5PB 2/4", "2.5PB 7/10")). Gener-
ally, for continuous colour scales you want to keep hue constant, but vary chroma and luminance.
The munsell package makes this easy to do using the Munsell colour system.

See Also

scales::seq_gradient_pal() for details on underlying palette, scale_colour_gradient() for
continuous scales without binning.

Other colour scales: scale_alpha(), scale_colour_brewer(), scale_colour_continuous(),
scale_colour_gradient(), scale_colour_grey(), scale_colour_hue(), scale_colour_viridis_d()

Examples

df <- data.frame(
x = runif(100),
y = runif(100),
z1 = rnorm(100)

)

Use scale_colour_steps for a standard binned gradient
ggplot(df, aes(x, y)) +

geom_point(aes(colour = z1)) +
scale_colour_steps()

Get a divergent binned scale with the *2 variant
ggplot(df, aes(x, y)) +

scale_colour_viridis_d 229

geom_point(aes(colour = z1)) +
scale_colour_steps2()

Define your own colour ramp to extract binned colours from
ggplot(df, aes(x, y)) +

geom_point(aes(colour = z1)) +
scale_colour_stepsn(colours = terrain.colors(10))

scale_colour_viridis_d

Viridis colour scales from viridisLite

Description

The viridis scales provide colour maps that are perceptually uniform in both colour and black-
and-white. They are also designed to be perceived by viewers with common forms of colour blind-
ness. See also https://bids.github.io/colormap/.

Usage

scale_colour_viridis_d(
...,
alpha = 1,
begin = 0,
end = 1,
direction = 1,
option = "D",
aesthetics = "colour"

)

scale_fill_viridis_d(
...,
alpha = 1,
begin = 0,
end = 1,
direction = 1,
option = "D",
aesthetics = "fill"

)

scale_colour_viridis_c(
...,
alpha = 1,
begin = 0,
end = 1,
direction = 1,
option = "D",

https://bids.github.io/colormap/

230 scale_colour_viridis_d

values = NULL,
space = "Lab",
na.value = "grey50",
guide = "colourbar",
aesthetics = "colour"

)

scale_fill_viridis_c(
...,
alpha = 1,
begin = 0,
end = 1,
direction = 1,
option = "D",
values = NULL,
space = "Lab",
na.value = "grey50",
guide = "colourbar",
aesthetics = "fill"

)

scale_colour_viridis_b(
...,
alpha = 1,
begin = 0,
end = 1,
direction = 1,
option = "D",
values = NULL,
space = "Lab",
na.value = "grey50",
guide = "coloursteps",
aesthetics = "colour"

)

scale_fill_viridis_b(
...,
alpha = 1,
begin = 0,
end = 1,
direction = 1,
option = "D",
values = NULL,
space = "Lab",
na.value = "grey50",
guide = "coloursteps",
aesthetics = "fill"

)

scale_colour_viridis_d 231

Arguments

... Other arguments passed on to discrete_scale(), continuous_scale(), or
binned_scale to control name, limits, breaks, labels and so forth.

alpha The alpha transparency, a number in [0,1], see argument alpha in hsv.

begin The (corrected) hue in [0,1] at which the viridis colormap begins.

end The (corrected) hue in [0,1] at which the viridis colormap ends.

direction Sets the order of colors in the scale. If 1, the default, colors are ordered from
darkest to lightest. If -1, the order of colors is reversed.

option A character string indicating the colormap option to use. Four options are avail-
able: "magma" (or "A"), "inferno" (or "B"), "plasma" (or "C"), "viridis" (or "D",
the default option) and "cividis" (or "E").

aesthetics Character string or vector of character strings listing the name(s) of the aes-
thetic(s) that this scale works with. This can be useful, for example, to ap-
ply colour settings to the colour and fill aesthetics at the same time, via
aesthetics = c("colour", "fill").

values if colours should not be evenly positioned along the gradient this vector gives
the position (between 0 and 1) for each colour in the colours vector. See
rescale() for a convenience function to map an arbitrary range to between
0 and 1.

space colour space in which to calculate gradient. Must be "Lab" - other values are
deprecated.

na.value Missing values will be replaced with this value.

guide A function used to create a guide or its name. See guides() for more informa-
tion.

See Also

Other colour scales: scale_alpha(), scale_colour_brewer(), scale_colour_continuous(),
scale_colour_gradient(), scale_colour_grey(), scale_colour_hue(), scale_colour_steps()

Examples

viridis is the default colour/fill scale for ordered factors
dsamp <- diamonds[sample(nrow(diamonds), 1000),]
ggplot(dsamp, aes(carat, price)) +

geom_point(aes(colour = clarity))

Use viridis_d with discrete data
txsamp <- subset(txhousing, city %in%

c("Houston", "Fort Worth", "San Antonio", "Dallas", "Austin"))
(d <- ggplot(data = txsamp, aes(x = sales, y = median)) +

geom_point(aes(colour = city)))
d + scale_colour_viridis_d()

Change scale label
d + scale_colour_viridis_d("City\nCenter")

232 scale_continuous

Select palette to use, see ?scales::viridis_pal for more details
d + scale_colour_viridis_d(option = "plasma")
d + scale_colour_viridis_d(option = "inferno")

scale_fill_viridis_d works just the same as
scale_colour_viridis_d but for fill colours
p <- ggplot(txsamp, aes(x = median, fill = city)) +

geom_histogram(position = "dodge", binwidth = 15000)
p + scale_fill_viridis_d()
the order of colour can be reversed
p + scale_fill_viridis_d(direction = -1)

Use viridis_c with continous data
(v <- ggplot(faithfuld) +

geom_tile(aes(waiting, eruptions, fill = density)))
v + scale_fill_viridis_c()
v + scale_fill_viridis_c(option = "plasma")

Use viridis_b to bin continuous data before mapping
v + scale_fill_viridis_b()

scale_continuous Position scales for continuous data (x & y)

Description

scale_x_continuous() and scale_y_continuous() are the default scales for continuous x and y
aesthetics. There are three variants that set the trans argument for commonly used transformations:
scale_*_log10(), scale_*_sqrt() and scale_*_reverse().

Usage

scale_x_continuous(
name = waiver(),
breaks = waiver(),
minor_breaks = waiver(),
n.breaks = NULL,
labels = waiver(),
limits = NULL,
expand = waiver(),
oob = censor,
na.value = NA_real_,
trans = "identity",
guide = waiver(),
position = "bottom",
sec.axis = waiver()

)

scale_continuous 233

scale_y_continuous(
name = waiver(),
breaks = waiver(),
minor_breaks = waiver(),
n.breaks = NULL,
labels = waiver(),
limits = NULL,
expand = waiver(),
oob = censor,
na.value = NA_real_,
trans = "identity",
guide = waiver(),
position = "left",
sec.axis = waiver()

)

scale_x_log10(...)

scale_y_log10(...)

scale_x_reverse(...)

scale_y_reverse(...)

scale_x_sqrt(...)

scale_y_sqrt(...)

Arguments

name The name of the scale. Used as the axis or legend title. If waiver(), the default,
the name of the scale is taken from the first mapping used for that aesthetic. If
NULL, the legend title will be omitted.

breaks One of:

• NULL for no breaks
• waiver() for the default breaks computed by the transformation object
• A numeric vector of positions
• A function that takes the limits as input and returns breaks as output (e.g.,

a function returned by scales::extended_breaks()). Also accepts rlang
lambda function notation.

minor_breaks One of:

• NULL for no minor breaks
• waiver() for the default breaks (one minor break between each major

break)
• A numeric vector of positions
• A function that given the limits returns a vector of minor breaks. Also

accepts rlang lambda function notation.

234 scale_continuous

n.breaks An integer guiding the number of major breaks. The algorithm may choose a
slightly different number to ensure nice break labels. Will only have an effect if
breaks = waiver(). Use NULL to use the default number of breaks given by the
transformation.

labels One of:
• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• A function that takes the breaks as input and returns labels as output. Also

accepts rlang lambda function notation.
limits One of:

• NULL to use the default scale range
• A numeric vector of length two providing limits of the scale. Use NA to

refer to the existing minimum or maximum
• A function that accepts the existing (automatic) limits and returns new

limits. Also accepts rlang lambda function notation. Note that setting
limits on positional scales will remove data outside of the limits. If the
purpose is to zoom, use the limit argument in the coordinate system (see
coord_cartesian()).

expand For position scales, a vector of range expansion constants used to add some
padding around the data to ensure that they are placed some distance away from
the axes. Use the convenience function expansion() to generate the values for
the expand argument. The defaults are to expand the scale by 5% on each side
for continuous variables, and by 0.6 units on each side for discrete variables.

oob One of:
• Function that handles limits outside of the scale limits (out of bounds). Also

accepts rlang lambda function notation.
• The default (scales::censor()) replaces out of bounds values with NA.
• scales::squish() for squishing out of bounds values into range.
• scales::squish_infinite() for squishing infinite values into range.

na.value Missing values will be replaced with this value.
trans For continuous scales, the name of a transformation object or the object itself.

Built-in transformations include "asn", "atanh", "boxcox", "date", "exp", "hms",
"identity", "log", "log10", "log1p", "log2", "logit", "modulus", "probability",
"probit", "pseudo_log", "reciprocal", "reverse", "sqrt" and "time".
A transformation object bundles together a transform, its inverse, and methods
for generating breaks and labels. Transformation objects are defined in the scales
package, and are called <name>_trans (e.g., scales::boxcox_trans()). You
can create your own transformation with scales::trans_new().

guide A function used to create a guide or its name. See guides() for more informa-
tion.

position For position scales, The position of the axis. left or right for y axes, top or
bottom for x axes.

sec.axis sec_axis() is used to specify a secondary axis.
... Other arguments passed on to scale_(x|y)_continuous()

scale_continuous 235

Details

For simple manipulation of labels and limits, you may wish to use labs() and lims() instead.

See Also

Other position scales: scale_x_binned(), scale_x_date(), scale_x_discrete()

Examples

p1 <- ggplot(mpg, aes(displ, hwy)) +
geom_point()

p1

Manipulating the default position scales lets you:
* change the axis labels
p1 +

scale_x_continuous("Engine displacement (L)") +
scale_y_continuous("Highway MPG")

You can also use the short-cut labs().
Use NULL to suppress axis labels
p1 + labs(x = NULL, y = NULL)

* modify the axis limits
p1 + scale_x_continuous(limits = c(2, 6))
p1 + scale_x_continuous(limits = c(0, 10))

you can also use the short hand functions `xlim()` and `ylim()`
p1 + xlim(2, 6)

* choose where the ticks appear
p1 + scale_x_continuous(breaks = c(2, 4, 6))

* choose your own labels
p1 + scale_x_continuous(

breaks = c(2, 4, 6),
label = c("two", "four", "six")

)

Typically you'll pass a function to the `labels` argument.
Some common formats are built into the scales package:
df <- data.frame(

x = rnorm(10) * 100000,
y = seq(0, 1, length.out = 10)

)
p2 <- ggplot(df, aes(x, y)) + geom_point()
p2 + scale_y_continuous(labels = scales::percent)
p2 + scale_y_continuous(labels = scales::dollar)
p2 + scale_x_continuous(labels = scales::comma)

You can also override the default linear mapping by using a
transformation. There are three shortcuts:

236 scale_date

p1 + scale_y_log10()
p1 + scale_y_sqrt()
p1 + scale_y_reverse()

Or you can supply a transformation in the `trans` argument:
p1 + scale_y_continuous(trans = scales::reciprocal_trans())

You can also create your own. See ?scales::trans_new

scale_date Position scales for date/time data

Description

These are the default scales for the three date/time class. These will usually be added automatically.
To override manually, use scale_*_date for dates (class Date), scale_*_datetime for datetimes
(class POSIXct), and scale_*_time for times (class hms).

Usage

scale_x_date(
name = waiver(),
breaks = waiver(),
date_breaks = waiver(),
labels = waiver(),
date_labels = waiver(),
minor_breaks = waiver(),
date_minor_breaks = waiver(),
limits = NULL,
expand = waiver(),
oob = censor,
guide = waiver(),
position = "bottom",
sec.axis = waiver()

)

scale_y_date(
name = waiver(),
breaks = waiver(),
date_breaks = waiver(),
labels = waiver(),
date_labels = waiver(),
minor_breaks = waiver(),
date_minor_breaks = waiver(),
limits = NULL,
expand = waiver(),
oob = censor,

scale_date 237

guide = waiver(),
position = "left",
sec.axis = waiver()

)

scale_x_datetime(
name = waiver(),
breaks = waiver(),
date_breaks = waiver(),
labels = waiver(),
date_labels = waiver(),
minor_breaks = waiver(),
date_minor_breaks = waiver(),
timezone = NULL,
limits = NULL,
expand = waiver(),
oob = censor,
guide = waiver(),
position = "bottom",
sec.axis = waiver()

)

scale_y_datetime(
name = waiver(),
breaks = waiver(),
date_breaks = waiver(),
labels = waiver(),
date_labels = waiver(),
minor_breaks = waiver(),
date_minor_breaks = waiver(),
timezone = NULL,
limits = NULL,
expand = waiver(),
oob = censor,
guide = waiver(),
position = "left",
sec.axis = waiver()

)

scale_x_time(
name = waiver(),
breaks = waiver(),
minor_breaks = waiver(),
labels = waiver(),
limits = NULL,
expand = waiver(),
oob = censor,
na.value = NA_real_,

238 scale_date

guide = waiver(),
position = "bottom",
sec.axis = waiver()

)

scale_y_time(
name = waiver(),
breaks = waiver(),
minor_breaks = waiver(),
labels = waiver(),
limits = NULL,
expand = waiver(),
oob = censor,
na.value = NA_real_,
guide = waiver(),
position = "left",
sec.axis = waiver()

)

Arguments

name The name of the scale. Used as the axis or legend title. If waiver(), the default,
the name of the scale is taken from the first mapping used for that aesthetic. If
NULL, the legend title will be omitted.

breaks One of:

• NULL for no breaks
• waiver() for the breaks specified by date_breaks

• A Date/POSIXct vector giving positions of breaks
• A function that takes the limits as input and returns breaks as output

date_breaks A string giving the distance between breaks like "2 weeks", or "10 years". If
both breaks and date_breaks are specified, date_breaks wins.

labels One of:

• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• A function that takes the breaks as input and returns labels as output. Also

accepts rlang lambda function notation.

date_labels A string giving the formatting specification for the labels. Codes are defined
in strftime(). If both labels and date_labels are specified, date_labels
wins.

minor_breaks One of:

• NULL for no breaks
• waiver() for the breaks specified by date_minor_breaks

• A Date/POSIXct vector giving positions of minor breaks
• A function that takes the limits as input and returns minor breaks as output

scale_date 239

date_minor_breaks

A string giving the distance between minor breaks like "2 weeks", or "10 years".
If both minor_breaks and date_minor_breaks are specified, date_minor_breaks
wins.

limits One of:

• NULL to use the default scale range
• A numeric vector of length two providing limits of the scale. Use NA to

refer to the existing minimum or maximum
• A function that accepts the existing (automatic) limits and returns new

limits. Also accepts rlang lambda function notation. Note that setting
limits on positional scales will remove data outside of the limits. If the
purpose is to zoom, use the limit argument in the coordinate system (see
coord_cartesian()).

expand For position scales, a vector of range expansion constants used to add some
padding around the data to ensure that they are placed some distance away from
the axes. Use the convenience function expansion() to generate the values for
the expand argument. The defaults are to expand the scale by 5% on each side
for continuous variables, and by 0.6 units on each side for discrete variables.

oob One of:

• Function that handles limits outside of the scale limits (out of bounds). Also
accepts rlang lambda function notation.

• The default (scales::censor()) replaces out of bounds values with NA.
• scales::squish() for squishing out of bounds values into range.
• scales::squish_infinite() for squishing infinite values into range.

guide A function used to create a guide or its name. See guides() for more informa-
tion.

position For position scales, The position of the axis. left or right for y axes, top or
bottom for x axes.

sec.axis sec_axis() is used to specify a secondary axis.

timezone The timezone to use for display on the axes. The default (NULL) uses the time-
zone encoded in the data.

na.value Missing values will be replaced with this value.

See Also

sec_axis() for how to specify secondary axes

Other position scales: scale_x_binned(), scale_x_continuous(), scale_x_discrete()

Examples

last_month <- Sys.Date() - 0:29
df <- data.frame(

date = last_month,
price = runif(30)

)

240 scale_identity

base <- ggplot(df, aes(date, price)) +
geom_line()

The date scale will attempt to pick sensible defaults for
major and minor tick marks. Override with date_breaks, date_labels
date_minor_breaks arguments.
base + scale_x_date(date_labels = "%b %d")
base + scale_x_date(date_breaks = "1 week", date_labels = "%W")
base + scale_x_date(date_minor_breaks = "1 day")

Set limits
base + scale_x_date(limits = c(Sys.Date() - 7, NA))

scale_identity Use values without scaling

Description

Use this set of scales when your data has already been scaled, i.e. it already represents aesthetic
values that ggplot2 can handle directly. These scales will not produce a legend unless you also
supply the breaks, labels, and type of guide you want.

Usage

scale_colour_identity(..., guide = "none", aesthetics = "colour")

scale_fill_identity(..., guide = "none", aesthetics = "fill")

scale_shape_identity(..., guide = "none")

scale_linetype_identity(..., guide = "none")

scale_alpha_identity(..., guide = "none")

scale_size_identity(..., guide = "none")

scale_discrete_identity(aesthetics, ..., guide = "none")

scale_continuous_identity(aesthetics, ..., guide = "none")

Arguments

... Other arguments passed on to discrete_scale() or continuous_scale()
guide Guide to use for this scale. Defaults to "none".
aesthetics Character string or vector of character strings listing the name(s) of the aes-

thetic(s) that this scale works with. This can be useful, for example, to ap-
ply colour settings to the colour and fill aesthetics at the same time, via
aesthetics = c("colour", "fill").

scale_linetype 241

Details

The functions scale_colour_identity(), scale_fill_identity(), scale_size_identity(),
etc. work on the aesthetics specified in the scale name: colour, fill, size, etc. However,
the functions scale_colour_identity() and scale_fill_identity() also have an optional
aesthetics argument that can be used to define both colour and fill aesthetic mappings via a sin-
gle function call. The functions scale_discrete_identity() and scale_continuous_identity()
are generic scales that can work with any aesthetic or set of aesthetics provided via the aesthetics
argument.

Examples

ggplot(luv_colours, aes(u, v)) +
geom_point(aes(colour = col), size = 3) +
scale_color_identity() +
coord_equal()

df <- data.frame(
x = 1:4,
y = 1:4,
colour = c("red", "green", "blue", "yellow")

)
ggplot(df, aes(x, y)) + geom_tile(aes(fill = colour))
ggplot(df, aes(x, y)) +

geom_tile(aes(fill = colour)) +
scale_fill_identity()

To get a legend guide, specify guide = "legend"
ggplot(df, aes(x, y)) +

geom_tile(aes(fill = colour)) +
scale_fill_identity(guide = "legend")

But you'll typically also need to supply breaks and labels:
ggplot(df, aes(x, y)) +

geom_tile(aes(fill = colour)) +
scale_fill_identity("trt", labels = letters[1:4], breaks = df$colour,
guide = "legend")

cyl scaled to appropriate size
ggplot(mtcars, aes(mpg, wt)) +

geom_point(aes(size = cyl))

cyl used as point size
ggplot(mtcars, aes(mpg, wt)) +

geom_point(aes(size = cyl)) +
scale_size_identity()

scale_linetype Scale for line patterns

242 scale_linetype

Description

Default line types based on a set supplied by Richard Pearson, University of Manchester. Contin-
uous values can not be mapped to line types unless scale_linetype_binned() is used. Still, as
linetypes has no inherent order, this use is not advised.

Usage

scale_linetype(..., na.value = "blank")

scale_linetype_binned(..., na.value = "blank")

scale_linetype_continuous(...)

scale_linetype_discrete(..., na.value = "blank")

Arguments

... Arguments passed on to discrete_scale

palette A palette function that when called with a single integer argument (the
number of levels in the scale) returns the values that they should take (e.g.,
scales::hue_pal()).

breaks One of:
• NULL for no breaks
• waiver() for the default breaks (the scale limits)
• A character vector of breaks
• A function that takes the limits as input and returns breaks as output.

Also accepts rlang lambda function notation.
limits One of:

• NULL to use the default scale values
• A character vector that defines possible values of the scale and their

order
• A function that accepts the existing (automatic) values and returns new

ones. Also accepts rlang lambda function notation.
drop Should unused factor levels be omitted from the scale? The default, TRUE,

uses the levels that appear in the data; FALSE uses all the levels in the factor.
na.translate Unlike continuous scales, discrete scales can easily show miss-

ing values, and do so by default. If you want to remove missing values from
a discrete scale, specify na.translate = FALSE.

aesthetics The names of the aesthetics that this scale works with.
scale_name The name of the scale that should be used for error messages as-

sociated with this scale.
name The name of the scale. Used as the axis or legend title. If waiver(), the

default, the name of the scale is taken from the first mapping used for that
aesthetic. If NULL, the legend title will be omitted.

labels One of:
• NULL for no labels

scale_manual 243

• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• A function that takes the breaks as input and returns labels as output.

Also accepts rlang lambda function notation.
guide A function used to create a guide or its name. See guides() for more

information.
super The super class to use for the constructed scale

na.value The linetype to use for NA values.

Examples

base <- ggplot(economics_long, aes(date, value01))
base + geom_line(aes(group = variable))
base + geom_line(aes(linetype = variable))

See scale_manual for more flexibility

Common line types ----------------------------
df_lines <- data.frame(

linetype = factor(
1:4,
labels = c("solid", "longdash", "dashed", "dotted")

)
)
ggplot(df_lines) +

geom_hline(aes(linetype = linetype, yintercept = 0), size = 2) +
scale_linetype_identity() +
facet_grid(linetype ~ .) +
theme_void(20)

scale_manual Create your own discrete scale

Description

These functions allow you to specify your own set of mappings from levels in the data to aesthetic
values.

Usage

scale_colour_manual(
...,
values,
aesthetics = "colour",
breaks = waiver(),
na.value = "grey50"

)

244 scale_manual

scale_fill_manual(
...,
values,
aesthetics = "fill",
breaks = waiver(),
na.value = "grey50"

)

scale_size_manual(..., values, breaks = waiver(), na.value = NA)

scale_shape_manual(..., values, breaks = waiver(), na.value = NA)

scale_linetype_manual(..., values, breaks = waiver(), na.value = "blank")

scale_alpha_manual(..., values, breaks = waiver(), na.value = NA)

scale_discrete_manual(aesthetics, ..., values, breaks = waiver())

Arguments

... Arguments passed on to discrete_scale

palette A palette function that when called with a single integer argument (the
number of levels in the scale) returns the values that they should take (e.g.,
scales::hue_pal()).

limits One of:
• NULL to use the default scale values
• A character vector that defines possible values of the scale and their

order
• A function that accepts the existing (automatic) values and returns new

ones. Also accepts rlang lambda function notation.
drop Should unused factor levels be omitted from the scale? The default, TRUE,

uses the levels that appear in the data; FALSE uses all the levels in the factor.
na.translate Unlike continuous scales, discrete scales can easily show miss-

ing values, and do so by default. If you want to remove missing values from
a discrete scale, specify na.translate = FALSE.

scale_name The name of the scale that should be used for error messages as-
sociated with this scale.

name The name of the scale. Used as the axis or legend title. If waiver(), the
default, the name of the scale is taken from the first mapping used for that
aesthetic. If NULL, the legend title will be omitted.

labels One of:
• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• A function that takes the breaks as input and returns labels as output.

Also accepts rlang lambda function notation.

scale_manual 245

guide A function used to create a guide or its name. See guides() for more
information.

super The super class to use for the constructed scale

values a set of aesthetic values to map data values to. The values will be matched
in order (usually alphabetical) with the limits of the scale, or with breaks if
provided. If this is a named vector, then the values will be matched based on the
names instead. Data values that don’t match will be given na.value.

aesthetics Character string or vector of character strings listing the name(s) of the aes-
thetic(s) that this scale works with. This can be useful, for example, to ap-
ply colour settings to the colour and fill aesthetics at the same time, via
aesthetics = c("colour", "fill").

breaks One of:

• NULL for no breaks
• waiver() for the default breaks (the scale limits)
• A character vector of breaks
• A function that takes the limits as input and returns breaks as output

na.value The aesthetic value to use for missing (NA) values

Details

The functions scale_colour_manual(), scale_fill_manual(), scale_size_manual(), etc. work
on the aesthetics specified in the scale name: colour, fill, size, etc. However, the functions
scale_colour_manual() and scale_fill_manual() also have an optional aesthetics argument
that can be used to define both colour and fill aesthetic mappings via a single function call (see
examples). The function scale_discrete_manual() is a generic scale that can work with any
aesthetic or set of aesthetics provided via the aesthetics argument.

Color Blindness

Many color palettes derived from RGB combinations (like the "rainbow" color palette) are not
suitable to support all viewers, especially those with color vision deficiencies. Using viridis type,
which is perceptually uniform in both colour and black-and-white display is an easy option to ensure
good perceptive properties of your visulizations. The colorspace package offers functionalities

• to generate color palettes with good perceptive properties,

• to analyse a given color palette, like emulating color blindness,

• and to modify a given color palette for better perceptivity.

For more information on color vision deficiencies and suitable color choices see the paper on the
colorspace package and references therein.

Examples

p <- ggplot(mtcars, aes(mpg, wt)) +
geom_point(aes(colour = factor(cyl)))

p + scale_colour_manual(values = c("red", "blue", "green"))

https://arxiv.org/abs/1903.06490
https://arxiv.org/abs/1903.06490

246 scale_shape

It's recommended to use a named vector
cols <- c("8" = "red", "4" = "blue", "6" = "darkgreen", "10" = "orange")
p + scale_colour_manual(values = cols)

You can set color and fill aesthetics at the same time
ggplot(

mtcars,
aes(mpg, wt, colour = factor(cyl), fill = factor(cyl))

) +
geom_point(shape = 21, alpha = 0.5, size = 2) +
scale_colour_manual(
values = cols,
aesthetics = c("colour", "fill")

)

As with other scales you can use breaks to control the appearance
of the legend.
p + scale_colour_manual(values = cols)
p + scale_colour_manual(

values = cols,
breaks = c("4", "6", "8"),
labels = c("four", "six", "eight")

)

And limits to control the possible values of the scale
p + scale_colour_manual(values = cols, limits = c("4", "8"))
p + scale_colour_manual(values = cols, limits = c("4", "6", "8", "10"))

scale_shape Scales for shapes, aka glyphs

Description

scale_shape() maps discrete variables to six easily discernible shapes. If you have more than six
levels, you will get a warning message, and the seventh and subsequent levels will not appear on
the plot. Use scale_shape_manual() to supply your own values. You can not map a continuous
variable to shape unless scale_shape_binned() is used. Still, as shape has no inherent order, this
use is not advised.

Usage

scale_shape(..., solid = TRUE)

scale_shape_binned(..., solid = TRUE)

Arguments

... Arguments passed on to discrete_scale

scale_shape 247

palette A palette function that when called with a single integer argument (the
number of levels in the scale) returns the values that they should take (e.g.,
scales::hue_pal()).

breaks One of:
• NULL for no breaks
• waiver() for the default breaks (the scale limits)
• A character vector of breaks
• A function that takes the limits as input and returns breaks as output.

Also accepts rlang lambda function notation.
limits One of:

• NULL to use the default scale values
• A character vector that defines possible values of the scale and their

order
• A function that accepts the existing (automatic) values and returns new

ones. Also accepts rlang lambda function notation.
drop Should unused factor levels be omitted from the scale? The default, TRUE,

uses the levels that appear in the data; FALSE uses all the levels in the factor.
na.translate Unlike continuous scales, discrete scales can easily show miss-

ing values, and do so by default. If you want to remove missing values from
a discrete scale, specify na.translate = FALSE.

na.value If na.translate = TRUE, what aesthetic value should the missing
values be displayed as? Does not apply to position scales where NA is al-
ways placed at the far right.

aesthetics The names of the aesthetics that this scale works with.
scale_name The name of the scale that should be used for error messages as-

sociated with this scale.
name The name of the scale. Used as the axis or legend title. If waiver(), the

default, the name of the scale is taken from the first mapping used for that
aesthetic. If NULL, the legend title will be omitted.

labels One of:
• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• A function that takes the breaks as input and returns labels as output.

Also accepts rlang lambda function notation.
guide A function used to create a guide or its name. See guides() for more

information.
super The super class to use for the constructed scale

solid Should the shapes be solid, TRUE, or hollow, FALSE?

Examples

dsmall <- diamonds[sample(nrow(diamonds), 100),]

(d <- ggplot(dsmall, aes(carat, price)) + geom_point(aes(shape = cut)))

248 scale_size

d + scale_shape(solid = TRUE) # the default
d + scale_shape(solid = FALSE)
d + scale_shape(name = "Cut of diamond")

To change order of levels, change order of
underlying factor
levels(dsmall$cut) <- c("Fair", "Good", "Very Good", "Premium", "Ideal")

Need to recreate plot to pick up new data
ggplot(dsmall, aes(price, carat)) + geom_point(aes(shape = cut))

Show a list of available shapes
df_shapes <- data.frame(shape = 0:24)
ggplot(df_shapes, aes(0, 0, shape = shape)) +

geom_point(aes(shape = shape), size = 5, fill = 'red') +
scale_shape_identity() +
facet_wrap(~shape) +
theme_void()

scale_size Scales for area or radius

Description

scale_size() scales area, scale_radius() scales radius. The size aesthetic is most commonly
used for points and text, and humans perceive the area of points (not their radius), so this pro-
vides for optimal perception. scale_size_area() ensures that a value of 0 is mapped to a size of
0. scale_size_binned() is a binned version of scale_size() that scales by area (but does not en-
sure 0 equals an area of zero). For a binned equivalent of scale_size_area() use scale_size_binned_area().

Usage

scale_size(
name = waiver(),
breaks = waiver(),
labels = waiver(),
limits = NULL,
range = c(1, 6),
trans = "identity",
guide = "legend"

)

scale_radius(
name = waiver(),
breaks = waiver(),
labels = waiver(),
limits = NULL,
range = c(1, 6),

scale_size 249

trans = "identity",
guide = "legend"

)

scale_size_binned(
name = waiver(),
breaks = waiver(),
labels = waiver(),
limits = NULL,
range = c(1, 6),
n.breaks = NULL,
nice.breaks = TRUE,
trans = "identity",
guide = "bins"

)

scale_size_area(..., max_size = 6)

scale_size_binned_area(..., max_size = 6)

Arguments

name The name of the scale. Used as the axis or legend title. If waiver(), the default,
the name of the scale is taken from the first mapping used for that aesthetic. If
NULL, the legend title will be omitted.

breaks One of:
• NULL for no breaks
• waiver() for the default breaks computed by the transformation object
• A numeric vector of positions
• A function that takes the limits as input and returns breaks as output (e.g.,

a function returned by scales::extended_breaks()). Also accepts rlang
lambda function notation.

labels One of:
• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• A function that takes the breaks as input and returns labels as output. Also

accepts rlang lambda function notation.
limits One of:

• NULL to use the default scale range
• A numeric vector of length two providing limits of the scale. Use NA to

refer to the existing minimum or maximum
• A function that accepts the existing (automatic) limits and returns new

limits. Also accepts rlang lambda function notation. Note that setting
limits on positional scales will remove data outside of the limits. If the
purpose is to zoom, use the limit argument in the coordinate system (see
coord_cartesian()).

250 scale_size

range a numeric vector of length 2 that specifies the minimum and maximum size of
the plotting symbol after transformation.

trans For continuous scales, the name of a transformation object or the object itself.
Built-in transformations include "asn", "atanh", "boxcox", "date", "exp", "hms",
"identity", "log", "log10", "log1p", "log2", "logit", "modulus", "probability",
"probit", "pseudo_log", "reciprocal", "reverse", "sqrt" and "time".
A transformation object bundles together a transform, its inverse, and methods
for generating breaks and labels. Transformation objects are defined in the scales
package, and are called <name>_trans (e.g., scales::boxcox_trans()). You
can create your own transformation with scales::trans_new().

guide A function used to create a guide or its name. See guides() for more informa-
tion.

n.breaks An integer guiding the number of major breaks. The algorithm may choose a
slightly different number to ensure nice break labels. Will only have an effect if
breaks = waiver(). Use NULL to use the default number of breaks given by the
transformation.

nice.breaks Logical. Should breaks be attempted placed at nice values instead of exactly
evenly spaced between the limits. If TRUE (default) the scale will ask the trans-
formation object to create breaks, and this may result in a different number of
breaks than requested. Ignored if breaks are given explicitly.

... Arguments passed on to continuous_scale

minor_breaks One of:
• NULL for no minor breaks
• waiver() for the default breaks (one minor break between each major

break)
• A numeric vector of positions
• A function that given the limits returns a vector of minor breaks. Also

accepts rlang lambda function notation.
oob One of:

• Function that handles limits outside of the scale limits (out of bounds).
Also accepts rlang lambda function notation.

• The default (scales::censor()) replaces out of bounds values with
NA.

• scales::squish() for squishing out of bounds values into range.
• scales::squish_infinite() for squishing infinite values into range.

na.value Missing values will be replaced with this value.
expand For position scales, a vector of range expansion constants used to add

some padding around the data to ensure that they are placed some distance
away from the axes. Use the convenience function expansion() to gen-
erate the values for the expand argument. The defaults are to expand the
scale by 5% on each side for continuous variables, and by 0.6 units on each
side for discrete variables.

position For position scales, The position of the axis. left or right for y
axes, top or bottom for x axes.

super The super class to use for the constructed scale
max_size Size of largest points.

scale_x_discrete 251

See Also

scale_size_area() if you want 0 values to be mapped to points with size 0.

Examples

p <- ggplot(mpg, aes(displ, hwy, size = hwy)) +
geom_point()

p
p + scale_size("Highway mpg")
p + scale_size(range = c(0, 10))

If you want zero value to have zero size, use scale_size_area:
p + scale_size_area()

Binning can sometimes make it easier to match the scaled data to the legend
p + scale_size_binned()

This is most useful when size is a count
ggplot(mpg, aes(class, cyl)) +

geom_count() +
scale_size_area()

If you want to map size to radius (usually bad idea), use scale_radius
p + scale_radius()

scale_x_discrete Position scales for discrete data

Description

scale_x_discrete() and scale_y_discrete() are used to set the values for discrete x and y
scale aesthetics. For simple manipulation of scale labels and limits, you may wish to use labs()
and lims() instead.

Usage

scale_x_discrete(..., expand = waiver(), guide = waiver(), position = "bottom")

scale_y_discrete(..., expand = waiver(), guide = waiver(), position = "left")

Arguments

... Arguments passed on to discrete_scale

palette A palette function that when called with a single integer argument (the
number of levels in the scale) returns the values that they should take (e.g.,
scales::hue_pal()).

breaks One of:
• NULL for no breaks

252 scale_x_discrete

• waiver() for the default breaks (the scale limits)
• A character vector of breaks
• A function that takes the limits as input and returns breaks as output.

Also accepts rlang lambda function notation.
limits One of:

• NULL to use the default scale values
• A character vector that defines possible values of the scale and their

order
• A function that accepts the existing (automatic) values and returns new

ones. Also accepts rlang lambda function notation.
drop Should unused factor levels be omitted from the scale? The default, TRUE,

uses the levels that appear in the data; FALSE uses all the levels in the factor.
na.translate Unlike continuous scales, discrete scales can easily show miss-

ing values, and do so by default. If you want to remove missing values from
a discrete scale, specify na.translate = FALSE.

na.value If na.translate = TRUE, what aesthetic value should the missing
values be displayed as? Does not apply to position scales where NA is al-
ways placed at the far right.

aesthetics The names of the aesthetics that this scale works with.
scale_name The name of the scale that should be used for error messages as-

sociated with this scale.
name The name of the scale. Used as the axis or legend title. If waiver(), the

default, the name of the scale is taken from the first mapping used for that
aesthetic. If NULL, the legend title will be omitted.

labels One of:
• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• A function that takes the breaks as input and returns labels as output.

Also accepts rlang lambda function notation.
super The super class to use for the constructed scale

expand For position scales, a vector of range expansion constants used to add some
padding around the data to ensure that they are placed some distance away from
the axes. Use the convenience function expansion() to generate the values for
the expand argument. The defaults are to expand the scale by 5% on each side
for continuous variables, and by 0.6 units on each side for discrete variables.

guide A function used to create a guide or its name. See guides() for more informa-
tion.

position For position scales, The position of the axis. left or right for y axes, top or
bottom for x axes.

Details

You can use continuous positions even with a discrete position scale - this allows you (e.g.) to place
labels between bars in a bar chart. Continuous positions are numeric values starting at one for the
first level, and increasing by one for each level (i.e. the labels are placed at integer positions). This
is what allows jittering to work.

scale_x_discrete 253

See Also

Other position scales: scale_x_binned(), scale_x_continuous(), scale_x_date()

Examples

ggplot(diamonds, aes(cut)) + geom_bar()

The discrete position scale is added automatically whenever you
have a discrete position.

(d <- ggplot(subset(diamonds, carat > 1), aes(cut, clarity)) +
geom_jitter())

d + scale_x_discrete("Cut")
d +

scale_x_discrete(
"Cut",
labels = c(

"Fair" = "F",
"Good" = "G",
"Very Good" = "VG",
"Perfect" = "P",
"Ideal" = "I"

)
)

Use limits to adjust the which levels (and in what order)
are displayed
d + scale_x_discrete(limits = c("Fair","Ideal"))

you can also use the short hand functions xlim and ylim
d + xlim("Fair","Ideal", "Good")
d + ylim("I1", "IF")

See ?reorder to reorder based on the values of another variable
ggplot(mpg, aes(manufacturer, cty)) +

geom_point()
ggplot(mpg, aes(reorder(manufacturer, cty), cty)) +

geom_point()
ggplot(mpg, aes(reorder(manufacturer, displ), cty)) +

geom_point()

Use abbreviate as a formatter to reduce long names
ggplot(mpg, aes(reorder(manufacturer, displ), cty)) +

geom_point() +
scale_x_discrete(labels = abbreviate)

254 sec_axis

seals Vector field of seal movements

Description

This vector field was produced from the data described in Brillinger, D.R., Preisler, H.K., Ager,
A.A. and Kie, J.G. "An exploratory data analysis (EDA) of the paths of moving animals". J. Statis-
tical Planning and Inference 122 (2004), 43-63, using the methods of Brillinger, D.R., "Learning a
potential function from a trajectory", Signal Processing Letters. December (2007).

Usage

seals

Format

A data frame with 1155 rows and 4 variables

References

https://www.stat.berkeley.edu/~brill/Papers/jspifinal.pdf

sec_axis Specify a secondary axis

Description

This function is used in conjunction with a position scale to create a secondary axis, positioned
opposite of the primary axis. All secondary axes must be based on a one-to-one transformation of
the primary axes.

Usage

sec_axis(
trans = NULL,
name = waiver(),
breaks = waiver(),
labels = waiver(),
guide = waiver()

)

dup_axis(
trans = ~.,
name = derive(),
breaks = derive(),
labels = derive(),

https://www.stat.berkeley.edu/~brill/Papers/jspifinal.pdf

sec_axis 255

guide = derive()
)

derive()

Arguments

trans A formula or function of transformation

name The name of the secondary axis

breaks One of:

• NULL for no breaks
• waiver() for the default breaks computed by the transformation object
• A numeric vector of positions
• A function that takes the limits as input and returns breaks as output

labels One of:

• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• A function that takes the breaks as input and returns labels as output

guide A position guide that will be used to render the axis on the plot. Usually this is
guide_axis().

Details

sec_axis() is used to create the specifications for a secondary axis. Except for the trans argument
any of the arguments can be set to derive() which would result in the secondary axis inheriting
the settings from the primary axis.

dup_axis() is provide as a shorthand for creating a secondary axis that is a duplication of the
primary axis, effectively mirroring the primary axis.

As of v3.1, date and datetime scales have limited secondary axis capabilities. Unlike other contin-
uous scales, secondary axis transformations for date and datetime scales must respect their primary
POSIX data structure. This means they may only be transformed via addition or subtraction, e.g.
~ . + hms::hms(days = 8), or ~ . - 8*60*60. Nonlinear transformations will return an error. To
produce a time-since-event secondary axis in this context, users may consider adapting secondary
axis labels.

Examples

p <- ggplot(mtcars, aes(cyl, mpg)) +
geom_point()

Create a simple secondary axis
p + scale_y_continuous(sec.axis = sec_axis(~ . + 10))

Inherit the name from the primary axis
p + scale_y_continuous("Miles/gallon", sec.axis = sec_axis(~ . + 10, name = derive()))

256 stat_ecdf

Duplicate the primary axis
p + scale_y_continuous(sec.axis = dup_axis())

You can pass in a formula as a shorthand
p + scale_y_continuous(sec.axis = ~ .^2)

Secondary axes work for date and datetime scales too:
df <- data.frame(

dx = seq(
as.POSIXct("2012-02-29 12:00:00", tz = "UTC"),
length.out = 10,
by = "4 hour"

),
price = seq(20, 200000, length.out = 10)
)

This may useful for labelling different time scales in the same plot
ggplot(df, aes(x = dx, y = price)) +

geom_line() +
scale_x_datetime(

"Date",
date_labels = "%b %d",
date_breaks = "6 hour",
sec.axis = dup_axis(

name = "Time of Day",
labels = scales::time_format("%I %p")

)
)

or to transform axes for different timezones
ggplot(df, aes(x = dx, y = price)) +

geom_line() +
scale_x_datetime("

GMT",
date_labels = "%b %d %I %p",
sec.axis = sec_axis(

~ . + 8 * 3600,
name = "GMT+8",
labels = scales::time_format("%b %d %I %p")

)
)

stat_ecdf Compute empirical cumulative distribution

Description

The empirical cumulative distribution function (ECDF) provides an alternative visualisation of dis-
tribution. Compared to other visualisations that rely on density (like geom_histogram()), the

stat_ecdf 257

ECDF doesn’t require any tuning parameters and handles both continuous and categorical vari-
ables. The downside is that it requires more training to accurately interpret, and the underlying
visual tasks are somewhat more challenging.

Usage

stat_ecdf(
mapping = NULL,
data = NULL,
geom = "step",
position = "identity",
...,
n = NULL,
pad = TRUE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom The geometric object to use display the data
position Position adjustment, either as a string, or the result of a call to a position adjust-

ment function.
... Other arguments passed on to layer(). These are often aesthetics, used to set

an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

n if NULL, do not interpolate. If not NULL, this is the number of points to inter-
polate with.

pad If TRUE, pad the ecdf with additional points (-Inf, 0) and (Inf, 1)
na.rm If FALSE (the default), removes missing values with a warning. If TRUE silently

removes missing values.
show.legend logical. Should this layer be included in the legends? NA, the default, includes if

any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

258 stat_ellipse

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Details

The statistic relies on the aesthetics assignment to guess which variable to use as the input and
which to use as the output. Either x or y must be provided and one of them must be unused. The
ECDF will be calculated on the given aesthetic and will be output on the unused one.

Computed variables

y cumulative density corresponding x

Examples

df <- data.frame(
x = c(rnorm(100, 0, 3), rnorm(100, 0, 10)),
g = gl(2, 100)

)
ggplot(df, aes(x)) +

stat_ecdf(geom = "step")

Don't go to positive/negative infinity
ggplot(df, aes(x)) +

stat_ecdf(geom = "step", pad = FALSE)

Multiple ECDFs
ggplot(df, aes(x, colour = g)) +

stat_ecdf()

stat_ellipse Compute normal data ellipses

Description

The method for calculating the ellipses has been modified from car::dataEllipse (Fox and Weis-
berg, 2011)

Usage

stat_ellipse(
mapping = NULL,
data = NULL,
geom = "path",
position = "identity",
...,
type = "t",
level = 0.95,

stat_ellipse 259

segments = 51,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom The geometric object to use display the data

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

type The type of ellipse. The default "t" assumes a multivariate t-distribution, and
"norm" assumes a multivariate normal distribution. "euclid" draws a circle
with the radius equal to level, representing the euclidean distance from the
center. This ellipse probably won’t appear circular unless coord_fixed() is
applied.

level The level at which to draw an ellipse, or, if type="euclid", the radius of the
circle to be drawn.

segments The number of segments to be used in drawing the ellipse.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

260 stat_identity

References

John Fox and Sanford Weisberg (2011). An R Companion to Applied Regression, Second Edi-
tion. Thousand Oaks CA: Sage. URL: https://socialsciences.mcmaster.ca/jfox/Books/
Companion/

Examples

ggplot(faithful, aes(waiting, eruptions)) +
geom_point() +
stat_ellipse()

ggplot(faithful, aes(waiting, eruptions, color = eruptions > 3)) +
geom_point() +
stat_ellipse()

ggplot(faithful, aes(waiting, eruptions, color = eruptions > 3)) +
geom_point() +
stat_ellipse(type = "norm", linetype = 2) +
stat_ellipse(type = "t")

ggplot(faithful, aes(waiting, eruptions, color = eruptions > 3)) +
geom_point() +
stat_ellipse(type = "norm", linetype = 2) +
stat_ellipse(type = "euclid", level = 3) +
coord_fixed()

ggplot(faithful, aes(waiting, eruptions, fill = eruptions > 3)) +
stat_ellipse(geom = "polygon")

stat_identity Leave data as is

Description

The identity statistic leaves the data unchanged.

Usage

stat_identity(
mapping = NULL,
data = NULL,
geom = "point",
position = "identity",
...,
show.legend = NA,
inherit.aes = TRUE

)

https://socialsciences.mcmaster.ca/jfox/Books/Companion/
https://socialsciences.mcmaster.ca/jfox/Books/Companion/

stat_sf_coordinates 261

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom The geometric object to use display the data

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Examples

p <- ggplot(mtcars, aes(wt, mpg))
p + stat_identity()

stat_sf_coordinates Extract coordinates from ’sf’ objects

Description

stat_sf_coordinates() extracts the coordinates from ’sf’ objects and summarises them to one
pair of coordinates (x and y) per geometry. This is convenient when you draw an sf object as geoms
like text and labels (so geom_sf_text() and geom_sf_label() relies on this).

262 stat_sf_coordinates

Usage

stat_sf_coordinates(
mapping = aes(),
data = NULL,
geom = "point",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
fun.geometry = NULL,
...

)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom The geometric object to use display the data

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

fun.geometry A function that takes a sfc object and returns a sfc_POINT with the same length
as the input. If NULL, function(x) sf::st_point_on_surface(sf::st_zm(x))
will be used. Note that the function may warn about the incorrectness of the re-
sult if the data is not projected, but you can ignore this except when you really
care about the exact locations.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

stat_summary_2d 263

Details

coordinates of an sf object can be retrieved by sf::st_coordinates(). But, we cannot simply
use sf::st_coordinates() because, whereas text and labels require exactly one coordinate per
geometry, it returns multiple ones for a polygon or a line. Thus, these two steps are needed:

1. Choose one point per geometry by some function like sf::st_centroid() or sf::st_point_on_surface().

2. Retrieve coordinates from the points by sf::st_coordinates().

For the first step, you can use an arbitrary function via fun.geometry. By default, function(x)
sf::st_point_on_surface(sf::st_zm(x)) is used; sf::st_point_on_surface() seems more
appropriate than sf::st_centroid() since lables and text usually are intended to be put within
the polygon or the line. sf::st_zm() is needed to drop Z and M dimension beforehand, otherwise
sf::st_point_on_surface() may fail when the geometries have M dimension.

Computed variables

x X dimension of the simple feature

y Y dimension of the simple feature

Examples

if (requireNamespace("sf", quietly = TRUE)) {
nc <- sf::st_read(system.file("shape/nc.shp", package="sf"))

ggplot(nc) +
stat_sf_coordinates()

ggplot(nc) +
geom_errorbarh(
aes(geometry = geometry,

xmin = after_stat(x) - 0.1,
xmax = after_stat(x) + 0.1,
y = after_stat(y),
height = 0.04),

stat = "sf_coordinates"
)

}

stat_summary_2d Bin and summarise in 2d (rectangle & hexagons)

Description

stat_summary_2d() is a 2d variation of stat_summary(). stat_summary_hex() is a hexagonal
variation of stat_summary_2d(). The data are divided into bins defined by x and y, and then the
values of z in each cell is are summarised with fun.

264 stat_summary_2d

Usage

stat_summary_2d(
mapping = NULL,
data = NULL,
geom = "tile",
position = "identity",
...,
bins = 30,
binwidth = NULL,
drop = TRUE,
fun = "mean",
fun.args = list(),
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

stat_summary_hex(
mapping = NULL,
data = NULL,
geom = "hex",
position = "identity",
...,
bins = 30,
binwidth = NULL,
drop = TRUE,
fun = "mean",
fun.args = list(),
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat_summary_2d 265

geom The geometric object to use display the data

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

bins numeric vector giving number of bins in both vertical and horizontal directions.
Set to 30 by default.

binwidth Numeric vector giving bin width in both vertical and horizontal directions. Over-
rides bins if both set.

drop drop if the output of fun is NA.

fun function for summary.

fun.args A list of extra arguments to pass to fun

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Aesthetics

• x: horizontal position

• y: vertical position

• z: value passed to the summary function

Computed variables

x,y Location

value Value of summary statistic.

See Also

stat_summary_hex() for hexagonal summarization. stat_bin2d() for the binning options.

Examples

d <- ggplot(diamonds, aes(carat, depth, z = price))
d + stat_summary_2d()

Specifying function
d + stat_summary_2d(fun = function(x) sum(x^2))
d + stat_summary_2d(fun = ~ sum(.x^2))
d + stat_summary_2d(fun = var)

266 stat_summary_bin

d + stat_summary_2d(fun = "quantile", fun.args = list(probs = 0.1))

if (requireNamespace("hexbin")) {
d + stat_summary_hex()
d + stat_summary_hex(fun = ~ sum(.x^2))
}

stat_summary_bin Summarise y values at unique/binned x

Description

stat_summary() operates on unique x or y; stat_summary_bin() operates on binned x or y. They
are more flexible versions of stat_bin(): instead of just counting, they can compute any aggregate.

Usage

stat_summary_bin(
mapping = NULL,
data = NULL,
geom = "pointrange",
position = "identity",
...,
fun.data = NULL,
fun = NULL,
fun.max = NULL,
fun.min = NULL,
fun.args = list(),
bins = 30,
binwidth = NULL,
breaks = NULL,
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE,
fun.y,
fun.ymin,
fun.ymax

)

stat_summary(
mapping = NULL,
data = NULL,
geom = "pointrange",
position = "identity",
...,
fun.data = NULL,

stat_summary_bin 267

fun = NULL,
fun.max = NULL,
fun.min = NULL,
fun.args = list(),
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE,
fun.y,
fun.ymin,
fun.ymax

)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom Use to override the default connection between geom_histogram()/geom_freqpoly()
and stat_bin().

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

... Other arguments passed on to layer(). These are often aesthetics, used to set
an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

fun.data A function that is given the complete data and should return a data frame with
variables ymin, y, and ymax.

fun.min, fun, fun.max

Alternatively, supply three individual functions that are each passed a vector of
values and should return a single number.

fun.args Optional additional arguments passed on to the functions.

bins Number of bins. Overridden by binwidth. Defaults to 30.

binwidth The width of the bins. Can be specified as a numeric value or as a function that
calculates width from unscaled x. Here, "unscaled x" refers to the original x val-
ues in the data, before application of any scale transformation. When specifying
a function along with a grouping structure, the function will be called once per
group. The default is to use the number of bins in bins, covering the range of

268 stat_summary_bin

the data. You should always override this value, exploring multiple widths to
find the best to illustrate the stories in your data.
The bin width of a date variable is the number of days in each time; the bin
width of a time variable is the number of seconds.

breaks Alternatively, you can supply a numeric vector giving the bin boundaries. Over-
rides binwidth, bins, center, and boundary.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

orientation The orientation of the layer. The default (NA) automatically determines the ori-
entation from the aesthetic mapping. In the rare event that this fails it can be
given explicitly by setting orientation to either "x" or "y". See the Orienta-
tion section for more detail.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

fun.ymin, fun.y, fun.ymax

Deprecated, use the versions specified above instead.

Orientation

This geom treats each axis differently and, thus, can thus have two orientations. Often the orienta-
tion is easy to deduce from a combination of the given mappings and the types of positional scales
in use. Thus, ggplot2 will by default try to guess which orientation the layer should have. Under
rare circumstances, the orientation is ambiguous and guessing may fail. In that case the orientation
can be specified directly using the orientation parameter, which can be either "x" or "y". The
value gives the axis that the geom should run along, "x" being the default orientation you would
expect for the geom.

Aesthetics

stat_summary() understands the following aesthetics (required aesthetics are in bold):

• x

• y

• group

Learn more about setting these aesthetics in vignette("ggplot2-specs").

Summary functions

You can either supply summary functions individually (fun, fun.max, fun.min), or as a single
function (fun.data):

fun.data Complete summary function. Should take numeric vector as input and return data frame
as output

stat_summary_bin 269

fun.min min summary function (should take numeric vector and return single number)

fun main summary function (should take numeric vector and return single number)

fun.max max summary function (should take numeric vector and return single number)

A simple vector function is easiest to work with as you can return a single number, but is somewhat
less flexible. If your summary function computes multiple values at once (e.g. min and max), use
fun.data.

fun.data will receive data as if it was oriented along the x-axis and should return a data.frame
that corresponds to that orientation. The layer will take care of flipping the input and output if it is
oriented along the y-axis.

If no aggregation functions are supplied, will default to mean_se().

See Also

geom_errorbar(), geom_pointrange(), geom_linerange(), geom_crossbar() for geoms to
display summarised data

Examples

d <- ggplot(mtcars, aes(cyl, mpg)) + geom_point()
d + stat_summary(fun.data = "mean_cl_boot", colour = "red", size = 2)

Orientation follows the discrete axis
ggplot(mtcars, aes(mpg, factor(cyl))) +

geom_point() +
stat_summary(fun.data = "mean_cl_boot", colour = "red", size = 2)

You can supply individual functions to summarise the value at
each x:
d + stat_summary(fun = "median", colour = "red", size = 2, geom = "point")
d + stat_summary(fun = "mean", colour = "red", size = 2, geom = "point")
d + aes(colour = factor(vs)) + stat_summary(fun = mean, geom="line")

d + stat_summary(fun = mean, fun.min = min, fun.max = max, colour = "red")

d <- ggplot(diamonds, aes(cut))
d + geom_bar()
d + stat_summary(aes(y = price), fun = "mean", geom = "bar")

Orientation of stat_summary_bin is ambiguous and must be specified directly
ggplot(diamonds, aes(carat, price)) +

stat_summary_bin(fun = "mean", geom = "bar", orientation = 'y')

Don't use ylim to zoom into a summary plot - this throws the
data away
p <- ggplot(mtcars, aes(cyl, mpg)) +

stat_summary(fun = "mean", geom = "point")
p
p + ylim(15, 30)
Instead use coord_cartesian

270 stat_unique

p + coord_cartesian(ylim = c(15, 30))

A set of useful summary functions is provided from the Hmisc package:
stat_sum_df <- function(fun, geom="crossbar", ...) {

stat_summary(fun.data = fun, colour = "red", geom = geom, width = 0.2, ...)
}
d <- ggplot(mtcars, aes(cyl, mpg)) + geom_point()
The crossbar geom needs grouping to be specified when used with
a continuous x axis.
d + stat_sum_df("mean_cl_boot", mapping = aes(group = cyl))
d + stat_sum_df("mean_sdl", mapping = aes(group = cyl))
d + stat_sum_df("mean_sdl", fun.args = list(mult = 1), mapping = aes(group = cyl))
d + stat_sum_df("median_hilow", mapping = aes(group = cyl))

An example with highly skewed distributions:
if (require("ggplot2movies")) {
set.seed(596)
mov <- movies[sample(nrow(movies), 1000),]
m2 <-
ggplot(mov, aes(x = factor(round(rating)), y = votes)) +
geom_point()

m2 <-
m2 +
stat_summary(

fun.data = "mean_cl_boot",
geom = "crossbar",
colour = "red", width = 0.3

) +
xlab("rating")

m2
Notice how the overplotting skews off visual perception of the mean
supplementing the raw data with summary statistics is _very_ important

Next, we'll look at votes on a log scale.

Transforming the scale means the data are transformed
first, after which statistics are computed:
m2 + scale_y_log10()
Transforming the coordinate system occurs after the
statistic has been computed. This means we're calculating the summary on the raw data
and stretching the geoms onto the log scale. Compare the widths of the
standard errors.
m2 + coord_trans(y="log10")
}

stat_unique Remove duplicates

Description

Remove duplicates

stat_unique 271

Usage

stat_unique(
mapping = NULL,
data = NULL,
geom = "point",
position = "identity",
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes() or aes_(). If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom The geometric object to use display the data
position Position adjustment, either as a string, or the result of a call to a position adjust-

ment function.
... Other arguments passed on to layer(). These are often aesthetics, used to set

an aesthetic to a fixed value, like colour = "red" or size = 3. They may also
be parameters to the paired geom/stat.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Aesthetics

stat_unique() understands the following aesthetics (required aesthetics are in bold):

• group

Learn more about setting these aesthetics in vignette("ggplot2-specs").

272 theme

Examples

ggplot(mtcars, aes(vs, am)) +
geom_point(alpha = 0.1)

ggplot(mtcars, aes(vs, am)) +
geom_point(alpha = 0.1, stat = "unique")

theme Modify components of a theme

Description

Themes are a powerful way to customize the non-data components of your plots: i.e. titles, labels,
fonts, background, gridlines, and legends. Themes can be used to give plots a consistent customized
look. Modify a single plot’s theme using theme(); see theme_update() if you want modify the
active theme, to affect all subsequent plots. Use the themes available in complete themes if you
would like to use a complete theme such as theme_bw(), theme_minimal(), and more. Theme
elements are documented together according to inheritance, read more about theme inheritance
below.

Usage

theme(
line,
rect,
text,
title,
aspect.ratio,
axis.title,
axis.title.x,
axis.title.x.top,
axis.title.x.bottom,
axis.title.y,
axis.title.y.left,
axis.title.y.right,
axis.text,
axis.text.x,
axis.text.x.top,
axis.text.x.bottom,
axis.text.y,
axis.text.y.left,
axis.text.y.right,
axis.ticks,
axis.ticks.x,
axis.ticks.x.top,
axis.ticks.x.bottom,
axis.ticks.y,
axis.ticks.y.left,

theme 273

axis.ticks.y.right,
axis.ticks.length,
axis.ticks.length.x,
axis.ticks.length.x.top,
axis.ticks.length.x.bottom,
axis.ticks.length.y,
axis.ticks.length.y.left,
axis.ticks.length.y.right,
axis.line,
axis.line.x,
axis.line.x.top,
axis.line.x.bottom,
axis.line.y,
axis.line.y.left,
axis.line.y.right,
legend.background,
legend.margin,
legend.spacing,
legend.spacing.x,
legend.spacing.y,
legend.key,
legend.key.size,
legend.key.height,
legend.key.width,
legend.text,
legend.text.align,
legend.title,
legend.title.align,
legend.position,
legend.direction,
legend.justification,
legend.box,
legend.box.just,
legend.box.margin,
legend.box.background,
legend.box.spacing,
panel.background,
panel.border,
panel.spacing,
panel.spacing.x,
panel.spacing.y,
panel.grid,
panel.grid.major,
panel.grid.minor,
panel.grid.major.x,
panel.grid.major.y,
panel.grid.minor.x,
panel.grid.minor.y,

274 theme

panel.ontop,
plot.background,
plot.title,
plot.title.position,
plot.subtitle,
plot.caption,
plot.caption.position,
plot.tag,
plot.tag.position,
plot.margin,
strip.background,
strip.background.x,
strip.background.y,
strip.placement,
strip.text,
strip.text.x,
strip.text.y,
strip.switch.pad.grid,
strip.switch.pad.wrap,
...,
complete = FALSE,
validate = TRUE

)

Arguments

line all line elements (element_line())

rect all rectangular elements (element_rect())

text all text elements (element_text())

title all title elements: plot, axes, legends (element_text(); inherits from text)

aspect.ratio aspect ratio of the panel
axis.title, axis.title.x, axis.title.y, axis.title.x.top, axis.title.x.bottom, axis.title.y.left, axis.title.y.right

labels of axes (element_text()). Specify all axes’ labels (axis.title), la-
bels by plane (using axis.title.x or axis.title.y), or individually for each
axis (using axis.title.x.bottom, axis.title.x.top, axis.title.y.left,
axis.title.y.right). axis.title.*.* inherits from axis.title.* which
inherits from axis.title, which in turn inherits from text

axis.text, axis.text.x, axis.text.y, axis.text.x.top, axis.text.x.bottom, axis.text.y.left, axis.text.y.right

tick labels along axes (element_text()). Specify all axis tick labels (axis.text),
tick labels by plane (using axis.text.x or axis.text.y), or individually for
each axis (using axis.text.x.bottom, axis.text.x.top, axis.text.y.left,
axis.text.y.right). axis.text.*.* inherits from axis.text.* which in-
herits from axis.text, which in turn inherits from text

axis.ticks, axis.ticks.x, axis.ticks.x.top, axis.ticks.x.bottom, axis.ticks.y, axis.ticks.y.left, axis.ticks.y.right

tick marks along axes (element_line()). Specify all tick marks (axis.ticks),
ticks by plane (using axis.ticks.x or axis.ticks.y), or individually for each
axis (using axis.ticks.x.bottom, axis.ticks.x.top, axis.ticks.y.left,

theme 275

axis.ticks.y.right). axis.ticks.*.* inherits from axis.ticks.* which
inherits from axis.ticks, which in turn inherits from line

axis.ticks.length, axis.ticks.length.x, axis.ticks.length.x.top, axis.ticks.length.x.bottom, axis.ticks.length.y, axis.ticks.length.y.left, axis.ticks.length.y.right

length of tick marks (unit)
axis.line, axis.line.x, axis.line.x.top, axis.line.x.bottom, axis.line.y, axis.line.y.left, axis.line.y.right

lines along axes (element_line()). Specify lines along all axes (axis.line),
lines for each plane (using axis.line.x or axis.line.y), or individually for
each axis (using axis.line.x.bottom, axis.line.x.top, axis.line.y.left,
axis.line.y.right). axis.line.*.* inherits from axis.line.* which in-
herits from axis.line, which in turn inherits from line

legend.background

background of legend (element_rect(); inherits from rect)

legend.margin the margin around each legend (margin())
legend.spacing, legend.spacing.x, legend.spacing.y

the spacing between legends (unit). legend.spacing.x & legend.spacing.y
inherit from legend.spacing or can be specified separately

legend.key background underneath legend keys (element_rect(); inherits from rect)
legend.key.size, legend.key.height, legend.key.width

size of legend keys (unit); key background height & width inherit from legend.key.size
or can be specified separately

legend.text legend item labels (element_text(); inherits from text)
legend.text.align

alignment of legend labels (number from 0 (left) to 1 (right))

legend.title title of legend (element_text(); inherits from title)
legend.title.align

alignment of legend title (number from 0 (left) to 1 (right))
legend.position

the position of legends ("none", "left", "right", "bottom", "top", or two-element
numeric vector)

legend.direction

layout of items in legends ("horizontal" or "vertical")
legend.justification

anchor point for positioning legend inside plot ("center" or two-element numeric
vector) or the justification according to the plot area when positioned outside the
plot

legend.box arrangement of multiple legends ("horizontal" or "vertical")
legend.box.just

justification of each legend within the overall bounding box, when there are
multiple legends ("top", "bottom", "left", or "right")

legend.box.margin

margins around the full legend area, as specified using margin()

legend.box.background

background of legend area (element_rect(); inherits from rect)
legend.box.spacing

The spacing between the plotting area and the legend box (unit)

276 theme

panel.background

background of plotting area, drawn underneath plot (element_rect(); inherits
from rect)

panel.border border around plotting area, drawn on top of plot so that it covers tick marks and
grid lines. This should be used with fill = NA (element_rect(); inherits from
rect)

panel.spacing, panel.spacing.x, panel.spacing.y

spacing between facet panels (unit). panel.spacing.x & panel.spacing.y
inherit from panel.spacing or can be specified separately.

panel.grid, panel.grid.major, panel.grid.minor, panel.grid.major.x, panel.grid.major.y, panel.grid.minor.x, panel.grid.minor.y

grid lines (element_line()). Specify major grid lines, or minor grid lines sep-
arately (using panel.grid.major or panel.grid.minor) or individually for
each axis (using panel.grid.major.x, panel.grid.minor.x, panel.grid.major.y,
panel.grid.minor.y). Y axis grid lines are horizontal and x axis grid lines
are vertical. panel.grid.*.* inherits from panel.grid.* which inherits from
panel.grid, which in turn inherits from line

panel.ontop option to place the panel (background, gridlines) over the data layers (logical).
Usually used with a transparent or blank panel.background.

plot.background

background of the entire plot (element_rect(); inherits from rect)

plot.title plot title (text appearance) (element_text(); inherits from title) left-aligned
by default

plot.title.position, plot.caption.position

Alignment of the plot title/subtitle and caption. The setting for plot.title.position
applies to both the title and the subtitle. A value of "panel" (the default) means
that titles and/or caption are aligned to the plot panels. A value of "plot" means
that titles and/or caption are aligned to the entire plot (minus any space for mar-
gins and plot tag).

plot.subtitle plot subtitle (text appearance) (element_text(); inherits from title) left-
aligned by default

plot.caption caption below the plot (text appearance) (element_text(); inherits from title)
right-aligned by default

plot.tag upper-left label to identify a plot (text appearance) (element_text(); inherits
from title) left-aligned by default

plot.tag.position

The position of the tag as a string ("topleft", "top", "topright", "left", "right",
"bottomleft", "bottom", "bottomright) or a coordinate. If a string, extra space
will be added to accommodate the tag.

plot.margin margin around entire plot (unit with the sizes of the top, right, bottom, and left
margins)

strip.background, strip.background.x, strip.background.y

background of facet labels (element_rect(); inherits from rect). Horizontal
facet background (strip.background.x) & vertical facet background (strip.background.y)
inherit from strip.background or can be specified separately

theme 277

strip.placement

placement of strip with respect to axes, either "inside" or "outside". Only im-
portant when axes and strips are on the same side of the plot.

strip.text, strip.text.x, strip.text.y

facet labels (element_text(); inherits from text). Horizontal facet labels
(strip.text.x) & vertical facet labels (strip.text.y) inherit from strip.text
or can be specified separately

strip.switch.pad.grid

space between strips and axes when strips are switched (unit)
strip.switch.pad.wrap

space between strips and axes when strips are switched (unit)

... additional element specifications not part of base ggplot2. In general, these
should also be defined in the element tree argument.

complete set this to TRUE if this is a complete theme, such as the one returned by theme_grey().
Complete themes behave differently when added to a ggplot object. Also, when
setting complete = TRUE all elements will be set to inherit from blank elements.

validate TRUE to run validate_element(), FALSE to bypass checks.

Theme inheritance

Theme elements inherit properties from other theme elements hierarchically. For example, axis.title.x.bottom
inherits from axis.title.x which inherits from axis.title, which in turn inherits from text.
All text elements inherit directly or indirectly from text; all lines inherit from line, and all rect-
angular objects inherit from rect. This means that you can modify the appearance of multiple
elements by setting a single high-level component.

Learn more about setting these aesthetics in vignette("ggplot2-specs").

See Also

+.gg() and %+replace%, element_blank(), element_line(), element_rect(), and element_text()
for details of the specific theme elements.

Examples

p1 <- ggplot(mtcars, aes(wt, mpg)) +
geom_point() +
labs(title = "Fuel economy declines as weight increases")

p1

Plot ---
p1 + theme(plot.title = element_text(size = rel(2)))
p1 + theme(plot.background = element_rect(fill = "green"))

Panels --

p1 + theme(panel.background = element_rect(fill = "white", colour = "grey50"))
p1 + theme(panel.border = element_rect(linetype = "dashed", fill = NA))
p1 + theme(panel.grid.major = element_line(colour = "black"))
p1 + theme(

278 theme

panel.grid.major.y = element_blank(),
panel.grid.minor.y = element_blank()

)

Put gridlines on top of data
p1 + theme(

panel.background = element_rect(fill = NA),
panel.grid.major = element_line(colour = "grey50"),
panel.ontop = TRUE

)

Axes --
Change styles of axes texts and lines
p1 + theme(axis.line = element_line(size = 3, colour = "grey80"))
p1 + theme(axis.text = element_text(colour = "blue"))
p1 + theme(axis.ticks = element_line(size = 2))

Change the appearance of the y-axis title
p1 + theme(axis.title.y = element_text(size = rel(1.5), angle = 90))

Make ticks point outwards on y-axis and inwards on x-axis
p1 + theme(

axis.ticks.length.y = unit(.25, "cm"),
axis.ticks.length.x = unit(-.25, "cm"),
axis.text.x = element_text(margin = margin(t = .3, unit = "cm"))

)

Legend --
p2 <- ggplot(mtcars, aes(wt, mpg)) +

geom_point(aes(colour = factor(cyl), shape = factor(vs))) +
labs(

x = "Weight (1000 lbs)",
y = "Fuel economy (mpg)",
colour = "Cylinders",
shape = "Transmission"
)

p2

Position
p2 + theme(legend.position = "none")
p2 + theme(legend.justification = "top")
p2 + theme(legend.position = "bottom")

Or place legends inside the plot using relative coordinates between 0 and 1
legend.justification sets the corner that the position refers to
p2 + theme(

legend.position = c(.95, .95),
legend.justification = c("right", "top"),
legend.box.just = "right",
legend.margin = margin(6, 6, 6, 6)

)

theme_get 279

The legend.box properties work similarly for the space around
all the legends
p2 + theme(

legend.box.background = element_rect(),
legend.box.margin = margin(6, 6, 6, 6)

)

You can also control the display of the keys
and the justification related to the plot area can be set
p2 + theme(legend.key = element_rect(fill = "white", colour = "black"))
p2 + theme(legend.text = element_text(size = 8, colour = "red"))
p2 + theme(legend.title = element_text(face = "bold"))

Strips --

p3 <- ggplot(mtcars, aes(wt, mpg)) +
geom_point() +
facet_wrap(~ cyl)

p3

p3 + theme(strip.background = element_rect(colour = "black", fill = "white"))
p3 + theme(strip.text.x = element_text(colour = "white", face = "bold"))
p3 + theme(panel.spacing = unit(1, "lines"))

theme_get Get, set, and modify the active theme

Description

The current/active theme (see theme()) is automatically applied to every plot you draw. Use
theme_get() to get the current theme, and theme_set() to completely override it. theme_update()
and theme_replace() are shorthands for changing individual elements.

Usage

theme_get()

theme_set(new)

theme_update(...)

theme_replace(...)

e1 %+replace% e2

Arguments

new new theme (a list of theme elements)

280 theme_get

... named list of theme settings

e1, e2 Theme and element to combine

Value

theme_set(), theme_update(), and theme_replace() invisibly return the previous theme so you
can easily save it, then later restore it.

Adding on to a theme

+ and %+replace% can be used to modify elements in themes.

+ updates the elements of e1 that differ from elements specified (not NULL) in e2. Thus this
operator can be used to incrementally add or modify attributes of a ggplot theme.

In contrast, %+replace% replaces the entire element; any element of a theme not specified in e2 will
not be present in the resulting theme (i.e. NULL). Thus this operator can be used to overwrite an
entire theme.

theme_update() uses the + operator, so that any unspecified values in the theme element will
default to the values they are set in the theme. theme_replace() uses %+replace% to completely
replace the element, so any unspecified values will overwrite the current value in the theme with
NULL.

In summary, the main differences between theme_set(), theme_update(), and theme_replace()
are:

• theme_set() completely overrides the current theme.

• theme_update() modifies a particular element of the current theme using the + operator.

• theme_replace() modifies a particular element of the current theme using the %+replace%
operator.

See Also

+.gg()

Examples

p <- ggplot(mtcars, aes(mpg, wt)) +
geom_point()

p

Use theme_set() to completely override the current theme.
theme_update() and theme_replace() are similar except they
apply directly to the current/active theme.
theme_update() modifies a particular element of the current theme.
Here we have the old theme so we can later restore it.
Note that the theme is applied when the plot is drawn, not
when it is created.
old <- theme_set(theme_bw())
p

theme_set(old)

txhousing 281

theme_update(panel.grid.minor = element_line(colour = "red"))
p

theme_set(old)
theme_replace(panel.grid.minor = element_line(colour = "red"))
p

theme_set(old)
p

Modifying theme objects ---
You can use + and %+replace% to modify a theme object.
They differ in how they deal with missing arguments in
the theme elements.

add_el <- theme_grey() +
theme(text = element_text(family = "Times"))

add_el$text

rep_el <- theme_grey() %+replace%
theme(text = element_text(family = "Times"))

rep_el$text

txhousing Housing sales in TX

Description

Information about the housing market in Texas provided by the TAMU real estate center, https:
//www.recenter.tamu.edu/.

Usage

txhousing

Format

A data frame with 8602 observations and 9 variables:

city Name of multiple listing service (MLS) area
year,month,date Date
sales Number of sales
volume Total value of sales
median Median sale price
listings Total active listings
inventory "Months inventory": amount of time it would take to sell all current listings at current

pace of sales.

https://www.recenter.tamu.edu/
https://www.recenter.tamu.edu/

282 vars

vars Quote faceting variables

Description

Just like aes(), vars() is a quoting function that takes inputs to be evaluated in the context of a
dataset. These inputs can be:

• variable names

• complex expressions

In both cases, the results (the vectors that the variable represents or the results of the expressions)
are used to form faceting groups.

Usage

vars(...)

Arguments

... Variables or expressions automatically quoted. These are evaluated in the con-
text of the data to form faceting groups. Can be named (the names are passed to
a labeller).

See Also

aes(), facet_wrap(), facet_grid()

Examples

p <- ggplot(mtcars, aes(wt, disp)) + geom_point()
p + facet_wrap(vars(vs, am))

vars() makes it easy to pass variables from wrapper functions:
wrap_by <- function(...) {

facet_wrap(vars(...), labeller = label_both)
}
p + wrap_by(vs)
p + wrap_by(vs, am)

You can also supply expressions to vars(). In this case it's often a
good idea to supply a name as well:
p + wrap_by(drat = cut_number(drat, 3))

Let's create another function for cutting and wrapping a
variable. This time it will take a named argument instead of dots,
so we'll have to use the "enquote and unquote" pattern:
wrap_cut <- function(var, n = 3) {

Let's enquote the named argument `var` to make it auto-quoting:

vars 283

var <- enquo(var)

`as_label()` will create a nice default name:
nm <- as_label(var)

Now let's unquote everything at the right place. Note that we also
unquote `n` just in case the data frame has a column named
`n`. The latter would have precedence over our local variable
because the data is always masking the environment.
wrap_by(!!nm := cut_number(!!var, !!n))

}

Thanks to tidy eval idioms we now have another useful wrapper:
p + wrap_cut(drat)

Index

∗ colour scales
scale_alpha, 205
scale_colour_brewer, 208
scale_colour_continuous, 211
scale_colour_gradient, 215
scale_colour_grey, 220
scale_colour_hue, 222
scale_colour_steps, 225
scale_colour_viridis_d, 229

∗ datasets
CoordSf, 28
diamonds, 45
economics, 47
faithfuld, 54
luv_colours, 185
midwest, 189
mpg, 190
msleep, 191
presidential, 200
seals, 254
stat_sf_coordinates, 261
txhousing, 281

∗ facet labeller
labeller, 177

∗ facet
labellers, 179

∗ guides
guide_bins, 163
guide_colourbar, 165
guide_coloursteps, 170
guide_legend, 172
guides, 160

∗ hplot
print.ggplot, 200

∗ position adjustments
position_dodge, 192
position_identity, 194
position_jitter, 194
position_jitterdodge, 195

position_nudge, 196
position_stack, 197

∗ position scales
scale_binned, 206
scale_continuous, 232
scale_date, 236
scale_x_discrete, 251

+.gg, 6
+.gg(), 277, 280
%+% (+.gg), 6
%+replace% (theme_get), 279
%+replace%, 277

aes, 7
aes(), 6, 9, 26, 31, 56, 59, 62, 64, 66, 71, 75,

78, 81, 85, 89, 93, 95, 100, 102, 104,
107, 112, 115, 118, 121, 125, 127,
130, 133, 136, 139, 142, 146, 148,
257, 259, 261, 262, 264, 267, 271,
282

aes_, 9
aes_(), 26, 31, 56, 59, 62, 64, 66, 71, 75, 78,

81, 85, 89, 93, 95, 100, 102, 104,
107, 112, 115, 118, 121, 125, 127,
130, 133, 136, 139, 142, 146, 148,
257, 259, 261, 262, 264, 267, 271

aes_colour_fill_alpha, 10
aes_eval, 12
aes_group_order, 13
aes_group_order(), 15
aes_linetype_size_shape, 15
aes_position, 16
aes_q (aes_), 9
aes_string (aes_), 9
after_scale (aes_eval), 12
after_stat (aes_eval), 12
alt_text (get_alt_text), 151
annotate, 18
annotate(), 17, 108
annotation_custom, 19

284

INDEX 285

annotation_logticks, 20
annotation_map, 22
annotation_raster, 24
as_labeller(), 177, 178, 180
autolayer, 25
autolayer(), 26
autoplot, 25
autoplot(), 25

base::cut(), 165, 171
base::cut.default, 44
base::strwrap(), 180
binned_scale, 205, 226, 231
binned_scale(), 210
borders, 26
borders(), 27, 32, 59, 63, 65, 67, 72, 75, 79,

82, 86, 90, 93, 96, 100, 103, 105,
108, 112, 115, 119, 122, 125, 128,
131, 134, 136, 139, 143, 146, 149,
258, 259, 261, 262, 265, 268, 271

boxplot(), 67
boxplot.stats(), 67
bquote(), 180

color (aes_colour_fill_alpha), 10
color steps, 215
colors(), 185
colour (aes_colour_fill_alpha), 10
complete themes, 272
continuous_scale, 216, 250
continuous_scale(), 205, 210, 231, 240
coord_cartesian, 34
coord_cartesian(), 38, 40, 183, 207, 217,

227, 234, 239, 249
coord_equal (coord_fixed), 35
coord_fixed, 35
coord_flip, 36
coord_map, 37
coord_polar, 40
coord_quickmap (coord_map), 37
coord_sf (CoordSf), 28
coord_sf(), 22
coord_trans, 41
coord_trans(), 21
CoordSf, 28
cut_interval, 44
cut_number (cut_interval), 44
cut_width (cut_interval), 44

density(), 82, 149
derive (sec_axis), 254
diamonds, 45
discrete_scale, 220, 222, 242, 244, 246, 251
discrete_scale(), 205, 210, 231, 240
draw_key, 46
draw_key_abline (draw_key), 46
draw_key_blank (draw_key), 46
draw_key_boxplot (draw_key), 46
draw_key_crossbar (draw_key), 46
draw_key_dotplot (draw_key), 46
draw_key_label (draw_key), 46
draw_key_path (draw_key), 46
draw_key_point (draw_key), 46
draw_key_pointrange (draw_key), 46
draw_key_polygon (draw_key), 46
draw_key_rect (draw_key), 46
draw_key_smooth (draw_key), 46
draw_key_text (draw_key), 46
draw_key_timeseries (draw_key), 46
draw_key_vline (draw_key), 46
draw_key_vpath (draw_key), 46
dup_axis (sec_axis), 254

economics, 47
economics_long (economics), 47
element_blank (margin), 186
element_blank(), 277
element_line (margin), 186
element_line(), 274–277
element_rect (margin), 186
element_rect(), 274–277
element_text (margin), 186
element_text(), 162, 164, 167, 171, 173,

274–277
expand_limits, 48
expand_limits(), 64, 184
expand_scale (expansion), 48
expansion, 48
expansion(), 207, 218, 221, 223, 227, 234,

239, 250, 252

facet_grid, 49
facet_grid(), 52, 177, 203, 282
facet_wrap, 52
facet_wrap(), 49, 177, 180, 203, 282
faithful, 54
faithfuld, 54
fill (aes_colour_fill_alpha), 10

286 INDEX

format.ggproto (print.ggproto), 201
fortify, 55
fortify(), 25–27, 31, 56, 59, 62, 64, 66, 71,

75, 78, 81, 86, 89, 93, 95, 102, 105,
107, 112, 115, 118, 121, 125, 128,
130, 133, 136, 139, 142, 146, 148,
152, 257, 259, 261, 262, 264, 267,
271

fortify.lm(), 55

geom_abline, 55
geom_area (geom_ribbon), 132
geom_area(), 198
geom_bar, 58
geom_bar(), 14, 97, 134, 135, 198, 206
geom_bin2d (geom_bin_2d), 62
geom_bin2d(), 76, 87, 102, 118
geom_bin_2d, 62
geom_blank, 64
geom_blank(), 48
geom_boxplot, 65
geom_boxplot(), 106, 119, 127, 147
geom_col (geom_bar), 58
geom_contour, 69, 86
geom_contour(), 87
geom_contour_filled (geom_contour), 69
geom_contour_filled(), 87
geom_count, 74
geom_count(), 118, 119
geom_crossbar, 77
geom_crossbar(), 17, 269
geom_curve (geom_segment), 138
geom_curve(), 17
geom_density, 80
geom_density(), 84, 147
geom_density2d (geom_density_2d), 84
geom_density2d(), 119
geom_density2d_filled

(geom_density_2d), 84
geom_density_2d, 84
geom_density_2d(), 73, 119
geom_density_2d_filled

(geom_density_2d), 84
geom_dotplot, 88
geom_errorbar (geom_crossbar), 77
geom_errorbar(), 17, 92, 269
geom_errorbarh, 92
geom_errorbarh(), 79
geom_freqpoly, 94

geom_freqpoly(), 83
geom_function, 99
geom_hex, 102
geom_hex(), 119
geom_histogram (geom_freqpoly), 94
geom_histogram(), 12, 14, 61, 83, 256
geom_hline (geom_abline), 55
geom_jitter, 104
geom_jitter(), 68, 118
geom_label, 106
geom_line (geom_path), 114
geom_line(), 14, 15, 17, 57, 97, 140
geom_linerange (geom_crossbar), 77
geom_linerange(), 17, 135, 269
geom_map, 111
geom_map(), 23
geom_path, 114
geom_path(), 17, 33, 121, 122, 140
geom_point, 118
geom_point(), 15, 17, 33, 62, 74, 106
geom_pointrange (geom_crossbar), 77
geom_pointrange(), 17, 269
geom_polygon, 26, 120
geom_polygon(), 33, 116, 135
geom_qq (geom_qq_line), 123
geom_qq_line, 123
geom_quantile, 127
geom_quantile(), 68, 119
geom_raster, 129
geom_raster(), 24
geom_rect (geom_raster), 129
geom_rect(), 17
geom_ribbon, 132
geom_ribbon(), 122
geom_rug, 135
geom_segment, 138
geom_segment(), 17, 57, 116, 145
geom_sf (CoordSf), 28
geom_sf(), 22
geom_sf_label (CoordSf), 28
geom_sf_label(), 261
geom_sf_text (CoordSf), 28
geom_sf_text(), 261
geom_smooth, 141
geom_smooth(), 79, 119
geom_spoke, 145
geom_spoke(), 140
geom_step (geom_path), 114

INDEX 287

geom_text (geom_label), 106
geom_text(), 33, 196
geom_tile (geom_raster), 129
geom_tile(), 38, 70
geom_violin, 147
geom_violin(), 68, 83, 150
geom_vline (geom_abline), 55
GeomSf (CoordSf), 28
get_alt_text, 151, 182
ggplot, 152
ggplot(), 6, 7, 25–27, 31, 56, 59, 62, 64, 66,

71, 75, 78, 81, 85, 89, 93, 95, 102,
105, 107, 112, 115, 118, 121, 125,
128, 130, 133, 136, 139, 142, 146,
148, 202, 257, 259, 261, 262, 264,
267, 271

ggplot_build(), 201
ggproto, 154
ggproto_parent (ggproto), 154
ggsave, 155
ggsf (CoordSf), 28
ggtheme, 157
ggtitle (labs), 182
glm(), 144
gradient scale, 225
gray.colors(), 220
grDevices::colors(), 10
grid::arrow(), 115, 187
grid::curveGrob(), 138
grid::pathGrob(), 26, 121
grid::unit(), 21, 136, 164, 167, 168, 170,

173
group (aes_group_order), 13
guide_axis, 162
guide_axis(), 255
guide_bins, 161, 163, 168, 171, 174
guide_colorbar (guide_colourbar), 165
guide_colorsteps (guide_coloursteps),

170
guide_colourbar, 161, 165, 165, 170, 171,

174
guide_colourbar(), 160, 170
guide_coloursteps, 161, 165, 168, 170, 174
guide_coloursteps(), 163
guide_legend, 161, 165, 168, 171, 172
guide_legend(), 160, 163
guide_none, 175
guides, 160, 165, 168, 171, 174

guides(), 168, 174, 208, 221, 223, 231, 234,
239, 243, 245, 247, 250, 252

hmisc, 176
Hmisc::capitalize(), 177
Hmisc::smean.cl.boot(), 176
Hmisc::smean.cl.normal(), 176
Hmisc::smean.sdl(), 176
Hmisc::smedian.hilow(), 176
hsv, 231

interp::interp(), 70
is.ggproto (ggproto), 154

label_both (labellers), 179
label_bquote, 181
label_bquote(), 180
label_context (labellers), 179
label_parsed (labellers), 179
label_parsed(), 50, 53
label_value (labellers), 179
label_value(), 50, 53
label_wrap_gen (labellers), 179
labeller, 177, 282
labeller(), 50, 53, 180, 181
labellers, 178, 179, 181
labs, 182
labs(), 162, 164, 167, 171, 173, 175, 235, 251
lambda, 207, 216, 217, 220, 221, 223, 227,

233, 234, 238, 239, 242–244, 247,
249, 250, 252

layer(), 18, 32, 46, 56, 59, 63, 65, 66, 71, 75,
78, 82, 89, 93, 95, 100, 103, 105,
108, 112, 115, 119, 121, 125, 128,
131, 134, 136, 139, 142, 146, 148,
257, 259, 261, 262, 265, 267, 271

lims, 183
lims(), 235, 251
linetype (aes_linetype_size_shape), 15
lm(), 144
loess(), 144
luv_colours, 185

mapproj::mapproject(), 38
maps::map(), 26
margin, 186
margin(), 187, 275
MASS::bandwidth.nrd(), 86
MASS::eqscplot(), 36

288 INDEX

MASS::kde2d(), 84
mean_cl_boot (hmisc), 176
mean_cl_normal (hmisc), 176
mean_sdl (hmisc), 176
mean_se, 188
mean_se(), 269
median_hilow (hmisc), 176
mgcv::gam(), 142
midwest, 189
mpg, 190
msleep, 191

options(), 212

plot(), 202
plot.ggplot (print.ggplot), 200
png, 156
png(), 156
position_dodge, 192, 194–196, 198
position_dodge(), 60, 61
position_dodge2 (position_dodge), 192
position_dodge2(), 60, 61
position_fill (position_stack), 197
position_fill(), 60
position_identity, 192, 194, 195, 196, 198
position_jitter, 192, 194, 194, 196, 198
position_jitterdodge, 192, 194, 195, 195,

196, 198
position_nudge, 192, 194–196, 196, 198
position_stack, 192, 194–196, 197
position_stack(), 60, 134
predict(), 143
presidential, 200
pretty(), 71, 86
print.ggplot, 200
print.ggproto, 201

qplot, 202
quantreg::rq(), 128
quantreg::rqss(), 128
quasiquotation, 8
quickplot (qplot), 202
quoting function, 8, 282

RColorBrewer::brewer.pal(), 210
rel (margin), 186
rescale(), 210, 218, 228, 231
resolution, 204
rlang::as_function(), 100, 101

scale_alpha, 205, 211, 213, 218, 221, 224,
228, 231

scale_alpha(), 11
scale_alpha_binned (scale_alpha), 205
scale_alpha_continuous (scale_alpha),

205
scale_alpha_date (scale_alpha), 205
scale_alpha_datetime (scale_alpha), 205
scale_alpha_discrete (scale_alpha), 205
scale_alpha_identity (scale_identity),

240
scale_alpha_manual (scale_manual), 243
scale_alpha_ordinal (scale_alpha), 205
scale_binned, 206
scale_color_binned

(scale_colour_continuous), 211
scale_color_brewer

(scale_colour_brewer), 208
scale_color_continuous

(scale_colour_continuous), 211
scale_color_date

(scale_colour_gradient), 215
scale_color_datetime

(scale_colour_gradient), 215
scale_color_discrete

(scale_colour_discrete), 213
scale_color_distiller

(scale_colour_brewer), 208
scale_color_fermenter

(scale_colour_brewer), 208
scale_color_gradient

(scale_colour_gradient), 215
scale_color_gradient2

(scale_colour_gradient), 215
scale_color_gradientn

(scale_colour_gradient), 215
scale_color_grey (scale_colour_grey),

220
scale_color_hue (scale_colour_hue), 222
scale_color_identity (scale_identity),

240
scale_color_manual (scale_manual), 243
scale_color_ordinal

(scale_colour_viridis_d), 229
scale_color_steps (scale_colour_steps),

225
scale_color_steps2

(scale_colour_steps), 225

INDEX 289

scale_color_stepsn
(scale_colour_steps), 225

scale_color_viridis_b
(scale_colour_viridis_d), 229

scale_color_viridis_c
(scale_colour_viridis_d), 229

scale_color_viridis_d
(scale_colour_viridis_d), 229

scale_colour_binned
(scale_colour_continuous), 211

scale_colour_brewer, 205, 208, 213, 218,
221, 224, 228, 231

scale_colour_brewer(), 11
scale_colour_continuous, 205, 211, 211,

218, 221, 224, 228, 231
scale_colour_date

(scale_colour_gradient), 215
scale_colour_datetime

(scale_colour_gradient), 215
scale_colour_discrete, 213
scale_colour_distiller

(scale_colour_brewer), 208
scale_colour_fermenter

(scale_colour_brewer), 208
scale_colour_gradient, 205, 211, 213, 215,

221, 224, 228, 231
scale_colour_gradient(), 11, 212, 213,

220, 228
scale_colour_gradient2

(scale_colour_gradient), 215
scale_colour_gradient2(), 217
scale_colour_gradientn

(scale_colour_gradient), 215
scale_colour_gradientn(), 217
scale_colour_grey, 205, 211, 213, 218, 220,

224, 228, 231
scale_colour_grey(), 11
scale_colour_hue, 205, 211, 213, 218, 221,

222, 228, 231
scale_colour_hue(), 11, 214
scale_colour_identity (scale_identity),

240
scale_colour_identity(), 11
scale_colour_manual (scale_manual), 243
scale_colour_manual(), 11
scale_colour_ordinal

(scale_colour_viridis_d), 229
scale_colour_steps, 205, 211, 213, 218,

221, 224, 225, 231
scale_colour_steps(), 212, 213, 218
scale_colour_steps2

(scale_colour_steps), 225
scale_colour_stepsn

(scale_colour_steps), 225
scale_colour_viridis_b

(scale_colour_viridis_d), 229
scale_colour_viridis_b(), 213
scale_colour_viridis_c

(scale_colour_viridis_d), 229
scale_colour_viridis_c(), 213
scale_colour_viridis_d, 205, 211, 213,

218, 221, 224, 228, 229
scale_colour_viridis_d(), 11
scale_continuous, 232
scale_continuous_identity

(scale_identity), 240
scale_date, 236
scale_discrete_identity

(scale_identity), 240
scale_discrete_manual (scale_manual),

243
scale_fill_binned

(scale_colour_continuous), 211
scale_fill_brewer

(scale_colour_brewer), 208
scale_fill_brewer(), 11, 213, 214
scale_fill_continuous

(scale_colour_continuous), 211
scale_fill_date

(scale_colour_gradient), 215
scale_fill_datetime

(scale_colour_gradient), 215
scale_fill_discrete

(scale_colour_discrete), 213
scale_fill_distiller

(scale_colour_brewer), 208
scale_fill_fermenter

(scale_colour_brewer), 208
scale_fill_gradient

(scale_colour_gradient), 215
scale_fill_gradient(), 11, 212, 213
scale_fill_gradient2

(scale_colour_gradient), 215
scale_fill_gradientn

(scale_colour_gradient), 215
scale_fill_grey (scale_colour_grey), 220

290 INDEX

scale_fill_grey(), 11
scale_fill_hue (scale_colour_hue), 222
scale_fill_hue(), 11, 213, 214
scale_fill_identity (scale_identity),

240
scale_fill_identity(), 11
scale_fill_manual (scale_manual), 243
scale_fill_manual(), 11
scale_fill_ordinal

(scale_colour_viridis_d), 229
scale_fill_steps (scale_colour_steps),

225
scale_fill_steps(), 212, 213
scale_fill_steps2 (scale_colour_steps),

225
scale_fill_stepsn (scale_colour_steps),

225
scale_fill_viridis_b

(scale_colour_viridis_d), 229
scale_fill_viridis_b(), 213
scale_fill_viridis_c

(scale_colour_viridis_d), 229
scale_fill_viridis_c(), 213
scale_fill_viridis_d

(scale_colour_viridis_d), 229
scale_fill_viridis_d(), 11
scale_identity, 240
scale_linetype, 241
scale_linetype_binned (scale_linetype),

241
scale_linetype_continuous

(scale_linetype), 241
scale_linetype_discrete

(scale_linetype), 241
scale_linetype_identity

(scale_identity), 240
scale_linetype_manual (scale_manual),

243
scale_manual, 243
scale_radius (scale_size), 248
scale_shape, 246
scale_shape_binned (scale_shape), 246
scale_shape_continuous (scale_shape),

246
scale_shape_discrete (scale_shape), 246
scale_shape_identity (scale_identity),

240
scale_shape_manual (scale_manual), 243

scale_shape_manual(), 246
scale_shape_ordinal (scale_shape), 246
scale_size, 248
scale_size_area (scale_size), 248
scale_size_area(), 251
scale_size_binned (scale_size), 248
scale_size_binned_area (scale_size), 248
scale_size_continuous (scale_size), 248
scale_size_date (scale_size), 248
scale_size_datetime (scale_size), 248
scale_size_discrete (scale_size), 248
scale_size_identity (scale_identity),

240
scale_size_manual (scale_manual), 243
scale_size_ordinal (scale_size), 248
scale_x_binned, 235, 239, 253
scale_x_binned (scale_binned), 206
scale_x_continuous, 208, 239, 253
scale_x_continuous (scale_continuous),

232
scale_x_continuous(), 184
scale_x_date, 208, 235, 253
scale_x_date (scale_date), 236
scale_x_date(), 184
scale_x_datetime (scale_date), 236
scale_x_discrete, 208, 235, 239, 251
scale_x_discrete(), 184
scale_x_log10 (scale_continuous), 232
scale_x_reverse (scale_continuous), 232
scale_x_sqrt (scale_continuous), 232
scale_x_time (scale_date), 236
scale_y_binned (scale_binned), 206
scale_y_continuous (scale_continuous),

232
scale_y_continuous(), 21
scale_y_date (scale_date), 236
scale_y_datetime (scale_date), 236
scale_y_discrete (scale_x_discrete), 251
scale_y_log10 (scale_continuous), 232
scale_y_log10(), 21
scale_y_reverse (scale_continuous), 232
scale_y_sqrt (scale_continuous), 232
scale_y_time (scale_date), 236
scales::area_pal(), 216
scales::boxcox_trans(), 208, 218, 227,

234, 250
scales::censor(), 207, 217, 227, 234, 239,

250

INDEX 291

scales::extended_breaks(), 207, 216, 227,
233, 249

scales::hue_pal(), 220, 222, 242, 244, 247,
251

scales::rescale(), 217
scales::seq_gradient_pal(), 218, 228
scales::squish(), 207, 217, 227, 234, 239,

250
scales::squish_infinite(), 207, 217, 227,

234, 239, 250
scales::trans_new(), 42, 208, 218, 227,

234, 250
seals, 254
sec_axis, 254
sec_axis(), 234, 239
shape (aes_linetype_size_shape), 15
size (aes_linetype_size_shape), 15
stage (aes_eval), 12
stat (aes_eval), 12
stat_bin (geom_freqpoly), 94
stat_bin(), 12, 61, 83, 266
stat_bin2d (geom_bin_2d), 62
stat_bin2d(), 104, 265
stat_bin_2d (geom_bin_2d), 62
stat_bin_hex (geom_hex), 102
stat_binhex (geom_hex), 102
stat_binhex(), 63
stat_boxplot (geom_boxplot), 65
stat_contour (geom_contour), 69
stat_contour(), 87
stat_contour_filled (geom_contour), 69
stat_contour_filled(), 87, 165, 171
stat_count (geom_bar), 58
stat_count(), 96, 97
stat_density (geom_density), 80
stat_density(), 150
stat_density2d (geom_density_2d), 84
stat_density2d_filled

(geom_density_2d), 84
stat_density_2d (geom_density_2d), 84
stat_density_2d_filled

(geom_density_2d), 84
stat_ecdf, 256
stat_ellipse, 258
stat_function (geom_function), 99
stat_identity, 260
stat_qq (geom_qq_line), 123
stat_qq_line (geom_qq_line), 123

stat_quantile (geom_quantile), 127
stat_sf (CoordSf), 28
stat_sf_coordinates, 261
stat_sf_coordinates(), 33
stat_smooth (geom_smooth), 141
stat_spoke (geom_spoke), 145
stat_sum (geom_count), 74
stat_summary (stat_summary_bin), 266
stat_summary(), 79, 176, 188, 263
stat_summary2d (stat_summary_2d), 263
stat_summary_2d, 263
stat_summary_2d(), 263
stat_summary_bin, 266
stat_summary_hex (stat_summary_2d), 263
stat_summary_hex(), 265
stat_unique, 270
stat_ydensity (geom_violin), 147
stats::bw.nrd(), 82, 149
stats::loess(), 142
StatSf (CoordSf), 28
StatSfCoordinates

(stat_sf_coordinates), 261
strftime(), 238
substitute(), 9

theme, 186, 272
theme(), 6, 157, 162, 164, 167, 170, 171, 173,

279
theme_bw (ggtheme), 157
theme_classic (ggtheme), 157
theme_dark (ggtheme), 157
theme_get, 279
theme_gray (ggtheme), 157
theme_grey (ggtheme), 157
theme_grey(), 277
theme_light (ggtheme), 157
theme_linedraw (ggtheme), 157
theme_minimal (ggtheme), 157
theme_replace (theme_get), 279
theme_set (theme_get), 279
theme_test (ggtheme), 157
theme_update (theme_get), 279
theme_update(), 272
theme_void (ggtheme), 157
transformation object, 207, 216, 226, 233,

249
txhousing, 281

vars, 282

292 INDEX

vars(), 8, 50, 52

waiver(), 162, 164, 167, 171, 173, 175

x (aes_position), 16
xend (aes_position), 16
xlab (labs), 182
xlim (lims), 183
xmax (aes_position), 16
xmin (aes_position), 16

y (aes_position), 16
yend (aes_position), 16
ylab (labs), 182
ylim (lims), 183
ymax (aes_position), 16
ymin (aes_position), 16

	+.gg
	aes
	aes_
	aes_colour_fill_alpha
	aes_eval
	aes_group_order
	aes_linetype_size_shape
	aes_position
	annotate
	annotation_custom
	annotation_logticks
	annotation_map
	annotation_raster
	autolayer
	autoplot
	borders
	CoordSf
	coord_cartesian
	coord_fixed
	coord_flip
	coord_map
	coord_polar
	coord_trans
	cut_interval
	diamonds
	draw_key
	economics
	expand_limits
	expansion
	facet_grid
	facet_wrap
	faithfuld
	fortify
	geom_abline
	geom_bar
	geom_bin_2d
	geom_blank
	geom_boxplot
	geom_contour
	geom_count
	geom_crossbar
	geom_density
	geom_density_2d
	geom_dotplot
	geom_errorbarh
	geom_freqpoly
	geom_function
	geom_hex
	geom_jitter
	geom_label
	geom_map
	geom_path
	geom_point
	geom_polygon
	geom_qq_line
	geom_quantile
	geom_raster
	geom_ribbon
	geom_rug
	geom_segment
	geom_smooth
	geom_spoke
	geom_violin
	get_alt_text
	ggplot
	ggproto
	ggsave
	ggtheme
	guides
	guide_axis
	guide_bins
	guide_colourbar
	guide_coloursteps
	guide_legend
	guide_none
	hmisc
	labeller
	labellers
	label_bquote
	labs
	lims
	luv_colours
	margin
	mean_se
	midwest
	mpg
	msleep
	position_dodge
	position_identity
	position_jitter
	position_jitterdodge
	position_nudge
	position_stack
	presidential
	print.ggplot
	print.ggproto
	qplot
	resolution
	scale_alpha
	scale_binned
	scale_colour_brewer
	scale_colour_continuous
	scale_colour_discrete
	scale_colour_gradient
	scale_colour_grey
	scale_colour_hue
	scale_colour_steps
	scale_colour_viridis_d
	scale_continuous
	scale_date
	scale_identity
	scale_linetype
	scale_manual
	scale_shape
	scale_size
	scale_x_discrete
	seals
	sec_axis
	stat_ecdf
	stat_ellipse
	stat_identity
	stat_sf_coordinates
	stat_summary_2d
	stat_summary_bin
	stat_unique
	theme
	theme_get
	txhousing
	vars
	Index

