A Stochastic-Expectation-Maximization (SEM) algorithm (Celeux et al. (1995) <https://hal.inria.fr/inria-00074164>) associated with a Gibbs sampler which purpose is to learn a constrained representation for logistic regression that is called quantization (Ehrhardt et al. (2019) <arXiv:1903.08920>). Continuous features are discretized and categorical features' values are grouped to produce a better logistic regression model. Pairwise interactions between quantized features are dynamically added to the model through a Metropolis-Hastings algorithm (Hastings, W. K. (1970) <doi:10.1093/biomet/57.1.97>).
Version: | 0.6 |
Imports: | caret (≥ 6.0-82), dplyr, magrittr, gam, nnet, RcppNumerical, methods, MASS, graphics, Rcpp (≥ 0.12.13) |
LinkingTo: | Rcpp, RcppEigen, RcppNumerical |
Suggests: | knitr, rmarkdown, testthat (≥ 2.1.0), covr |
Published: | 2020-09-30 |
Author: | Adrien Ehrhardt [aut, cre], Vincent Vandewalle [aut], Christophe Biernacki [ctb], Philippe Heinrich [ctb] |
Maintainer: | Adrien Ehrhardt <adrien.ehrhardt at centraliens-lille.org> |
BugReports: | https://github.com/adimajo/glmdisc/issues |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
URL: | https://adimajo.github.io |
NeedsCompilation: | yes |
Citation: | glmdisc citation info |
CRAN checks: | glmdisc results |
Reference manual: | glmdisc.pdf |
Vignettes: |
'glmdisc' package |
Package source: | glmdisc_0.6.tar.gz |
Windows binaries: | r-devel: glmdisc_0.6.zip, r-release: glmdisc_0.6.zip, r-oldrel: glmdisc_0.6.zip |
macOS binaries: | r-release (arm64): glmdisc_0.6.tgz, r-oldrel (arm64): glmdisc_0.6.tgz, r-release (x86_64): glmdisc_0.6.tgz, r-oldrel (x86_64): glmdisc_0.6.tgz |
Old sources: | glmdisc archive |
Please use the canonical form https://CRAN.R-project.org/package=glmdisc to link to this page.