
Package ‘hBayesDM’
September 10, 2022

Title Hierarchical Bayesian Modeling of Decision-Making Tasks

Version 1.2.0

Date 2022-09-09

Author Woo-Young Ahn [aut, cre],
Nate Haines [aut],
Lei Zhang [aut],
Harhim Park [ctb],
Jaeyeong Yang [ctb],
Jethro Lee [ctb]

Maintainer Woo-Young Ahn <wooyoung.ahn@gmail.com>

Description Fit an array of decision-making tasks with computational models in
a hierarchical Bayesian framework. Can perform hierarchical Bayesian analysis of
various computational models with a single line of coding
(Ahn et al., 2017) <doi:10.1162/CPSY_a_00002>.

Depends R (>= 3.4.0), Rcpp (>= 0.12.0), methods

Imports rstan (>= 2.18.1), loo (>= 2.0), grid, parallel, ggplot2,
data.table

LinkingTo BH (>= 1.66.0), Rcpp (>= 0.12.0), RcppEigen (>= 0.3.3.3.0),
rstan (>= 2.18.1), StanHeaders (>= 2.18.0)

URL https://github.com/CCS-Lab/hBayesDM

BugReports https://github.com/CCS-Lab/hBayesDM/issues

License GPL-3

NeedsCompilation yes

Encoding UTF-8

RoxygenNote 7.2.1

SystemRequirements GNU make

Collate 'HDIofMCMC.R' 'preprocess_funcs.R' 'stanmodels.R' 'settings.R'
'hBayesDM_model.R' 'alt_delta.R' 'alt_gamma.R'
'bandit2arm_delta.R' 'bandit4arm2_kalman_filter.R'
'bandit4arm_2par_lapse.R' 'bandit4arm_4par.R'

1

https://doi.org/10.1162/CPSY_a_00002
https://github.com/CCS-Lab/hBayesDM
https://github.com/CCS-Lab/hBayesDM/issues

2 R topics documented:

'bandit4arm_lapse.R' 'bandit4arm_lapse_decay.R'
'bandit4arm_singleA_lapse.R' 'banditNarm_2par_lapse.R'
'banditNarm_4par.R' 'banditNarm_delta.R'
'banditNarm_kalman_filter.R' 'banditNarm_lapse.R'
'banditNarm_lapse_decay.R' 'banditNarm_singleA_lapse.R'
'bart_ewmv.R' 'bart_par4.R' 'cgt_cm.R' 'choiceRT_ddm.R'
'choiceRT_ddm_single.R' 'choiceRT_lba.R'
'choiceRT_lba_single.R' 'cra_exp.R' 'cra_linear.R'
'dbdm_prob_weight.R' 'dd_cs.R' 'dd_cs_single.R' 'dd_exp.R'
'dd_hyperbolic.R' 'dd_hyperbolic_single.R' 'estimate_mode.R'
'extract_ic.R' 'gng_m1.R' 'gng_m2.R' 'gng_m3.R' 'gng_m4.R'
'hBayesDM.R' 'igt_orl.R' 'igt_pvl_decay.R' 'igt_pvl_delta.R'
'igt_vpp.R' 'multiplot.R' 'peer_ocu.R' 'plot.hBayesDM.R'
'plotDist.R' 'plotHDI.R' 'plotInd.R' 'printFit.R' 'prl_ewa.R'
'prl_fictitious.R' 'prl_fictitious_multipleB.R'
'prl_fictitious_rp.R' 'prl_fictitious_rp_woa.R'
'prl_fictitious_woa.R' 'prl_rp.R' 'prl_rp_multipleB.R'
'pstRT_ddm.R' 'pstRT_rlddm1.R' 'pstRT_rlddm6.R' 'pst_Q.R'
'pst_gainloss_Q.R' 'ra_noLA.R' 'ra_noRA.R' 'ra_prospect.R'
'rdt_happiness.R' 'rhat.R' 'task2AFC_sdt.R' 'ts_par4.R'
'ts_par6.R' 'ts_par7.R' 'ug_bayes.R' 'ug_delta.R' 'wcs_sql.R'
'zzz.R'

Suggests testthat

Repository CRAN

Date/Publication 2022-09-10 06:52:55 UTC

R topics documented:
hBayesDM-package . 4
alt_delta . 5
alt_gamma . 9
bandit2arm_delta . 12
bandit4arm2_kalman_filter . 16
bandit4arm_2par_lapse . 19
bandit4arm_4par . 23
bandit4arm_lapse . 26
bandit4arm_lapse_decay . 29
bandit4arm_singleA_lapse . 33
banditNarm_2par_lapse . 36
banditNarm_4par . 39
banditNarm_delta . 43
banditNarm_kalman_filter . 46
banditNarm_lapse . 50
banditNarm_lapse_decay . 53
banditNarm_singleA_lapse . 57
bart_ewmv . 60
bart_par4 . 64

R topics documented: 3

cgt_cm . 67
choiceRT_ddm . 71
choiceRT_ddm_single . 74
cra_exp . 77
cra_linear . 81
dbdm_prob_weight . 84
dd_cs . 88
dd_cs_single . 91
dd_exp . 95
dd_hyperbolic . 98
dd_hyperbolic_single . 102
estimate_mode . 105
extract_ic . 105
gng_m1 . 106
gng_m2 . 109
gng_m3 . 113
gng_m4 . 116
HDIofMCMC . 119
igt_orl . 120
igt_pvl_decay . 123
igt_pvl_delta . 127
igt_vpp . 130
multiplot . 134
peer_ocu . 134
plot.hBayesDM . 138
plotDist . 138
plotHDI . 139
plotInd . 140
printFit . 141
prl_ewa . 142
prl_fictitious . 145
prl_fictitious_multipleB . 149
prl_fictitious_rp . 152
prl_fictitious_rp_woa . 156
prl_fictitious_woa . 159
prl_rp . 162
prl_rp_multipleB . 166
pstRT_ddm . 169
pstRT_rlddm1 . 173
pstRT_rlddm6 . 177
pst_gainloss_Q . 180
pst_Q . 184
ra_noLA . 187
ra_noRA . 191
ra_prospect . 194
rdt_happiness . 198
rhat . 201
task2AFC_sdt . 202

4 hBayesDM-package

ts_par4 . 205
ts_par6 . 209
ts_par7 . 212
ug_bayes . 216
ug_delta . 219
wcs_sql . 223

Index 227

hBayesDM-package Hierarchical Bayesian Modeling of Decision-Making Tasks

Description

Fit an array of decision-making tasks with computational models in a hierarchical Bayesian frame-
work. Can perform hierarchical Bayesian analysis of various computational models with a single
line of coding. Bolded tasks, followed by their respective models, are itemized below.

Bandit 2-Armed Bandit (Rescorla-Wagner (delta)) — bandit2arm_delta
4-Armed Bandit with fictive updating + reward/punishment sensitvity (Rescorla-Wagner (delta))
— bandit4arm_4par
4-Armed Bandit with fictive updating + reward/punishment sensitvity + lapse (Rescorla-Wagner
(delta)) — bandit4arm_lapse

Bandit2 Kalman filter — bandit4arm2_kalman_filter

Cambridge Gambling Task Cumulative Model — cgt_cm

Choice RT Drift Diffusion Model — choiceRT_ddm
Drift Diffusion Model for a single subject — choiceRT_ddm_single
Linear Ballistic Accumulator (LBA) model — choiceRT_lba
Linear Ballistic Accumulator (LBA) model for a single subject — choiceRT_lba_single

Choice under Risk and Ambiguity Exponential model — cra_exp
Linear model — cra_linear

Description-Based Decision Making probability weight function — dbdm_prob_weight

Delay Discounting Constant Sensitivity — dd_cs
Constant Sensitivity for a single subject — dd_cs_single
Exponential — dd_exp
Hyperbolic — dd_hyperbolic
Hyperbolic for a single subject — dd_hyperbolic_single

Orthogonalized Go/Nogo RW + Noise — gng_m1
RW + Noise + Bias — gng_m2
RW + Noise + Bias + Pavlovian Bias — gng_m3
RW(modified) + Noise + Bias + Pavlovian Bias — gng_m4

Iowa Gambling Outcome-Representation Learning — igt_orl
Prospect Valence Learning-DecayRI — igt_pvl_decay
Prospect Valence Learning-Delta — igt_pvl_delta
Value-Plus_Perseverance — igt_vpp

alt_delta 5

Peer influence task OCU model — peer_ocu
Probabilistic Reversal Learning Experience-Weighted Attraction — prl_ewa

Fictitious Update — prl_fictitious
Fictitious Update w/o alpha (indecision point) — prl_fictitious_woa
Fictitious Update and multiple blocks per subject — prl_fictitious_multipleB
Reward-Punishment — prl_rp
Reward-Punishment and multiple blocks per subject — prl_rp_multipleB
Fictitious Update with separate learning for Reward-Punishment — prl_fictitious_rp
Fictitious Update with separate learning for Reward-Punishment w/o alpha (indecision point)
— prl_fictitious_rp_woa

Probabilistic Selection Task Q-learning with two learning rates — pst_gainloss_Q
Risk Aversion Prospect Theory (PT) — ra_prospect

PT without a loss aversion parameter — ra_noLA
PT without a risk aversion parameter — ra_noRA

Risky Decision Task Happiness model — rdt_happiness
Two-Step task Full model (7 parameters) — ts_par7

6 parameter model (without eligibility trace, lambda) — ts_par6
4 parameter model — ts_par4

Ultimatum Game Ideal Bayesian Observer — ug_bayes
Rescorla-Wagner (delta) — ug_delta

Author(s)

Woo-Young Ahn <wahn55@snu.ac.kr>

Nathaniel Haines <haines.175@osu.edu>
Lei Zhang <bnuzhanglei2008@gmail.com>

References

Please cite as: Ahn, W.-Y., Haines, N., & Zhang, L. (2017). Revealing neuro-computational mecha-
nisms of reinforcement learning and decision-making with the hBayesDM package. Computational
Psychiatry. 1, 24-57. https://doi.org/10.1162/CPSY_a_00002

See Also

For tutorials and further readings, visit : http://rpubs.com/CCSL/hBayesDM.

alt_delta Rescorla-Wagner (Delta) Model

Description

Hierarchical Bayesian Modeling of the Aversive Learning Task using Rescorla-Wagner (Delta)
Model. It has the following parameters: A (learning rate), beta (inverse temperature), gamma (risk
preference).

• Task: Aversive Learning Task (Browning et al., 2015)
• Model: Rescorla-Wagner (Delta) Model

http://rpubs.com/CCSL/hBayesDM

6 alt_delta

Usage

alt_delta(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "sub-
jID", "choice", "outcome", "bluePunish", "orangePunish". See Details below
for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for
this model.

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

alt_delta 7

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the Aversive Learning Task, there should be 5 columns of data with the labels "subjID",
"choice", "outcome", "bluePunish", "orangePunish". It is not necessary for the columns to be in
this particular order, however it is necessary that they be labeled correctly and contain the informa-
tion below:

subjID A unique identifier for each subject in the data-set.

choice Integer value representing the option chosen on the given trial (blue == 1, orange == 2).

outcome Integer value representing the outcome of the given trial (punishment == 1, and non-
punishment == 0).

bluePunish Floating point value representing the magnitude of punishment for blue on that trial
(e.g., 10, 97)

orangePunish Floating point value representing the magnitude of punishment for orange on that
trial (e.g., 23, 45)

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

8 alt_delta

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Contributors: Lili Zhang <<lili.zhang27@mail.dcu.ie>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"alt_delta").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Browning, M., Behrens, T. E., Jocham, G., O’reilly, J. X., & Bishop, S. J. (2015). Anxious indi-
viduals have difficulty learning the causal statistics of aversive environments. Nature neuroscience,
18(4), 590.

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- alt_delta(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- alt_delta(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://github.com/lilihub
https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

alt_gamma 9

rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

alt_gamma Rescorla-Wagner (Gamma) Model

Description

Hierarchical Bayesian Modeling of the Aversive Learning Task using Rescorla-Wagner (Gamma)
Model. It has the following parameters: A (learning rate), beta (inverse temperature), gamma (risk
preference).

• Task: Aversive Learning Task (Browning et al., 2015)
• Model: Rescorla-Wagner (Gamma) Model

Usage

alt_gamma(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "sub-
jID", "choice", "outcome", "bluePunish", "orangePunish". See Details below
for more information.

10 alt_gamma

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for
this model.

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the Aversive Learning Task, there should be 5 columns of data with the labels "subjID",
"choice", "outcome", "bluePunish", "orangePunish". It is not necessary for the columns to be in
this particular order, however it is necessary that they be labeled correctly and contain the informa-
tion below:

subjID A unique identifier for each subject in the data-set.

choice Integer value representing the option chosen on the given trial (blue == 1, orange == 2).

outcome Integer value representing the outcome of the given trial (punishment == 1, and non-
punishment == 0).

bluePunish Floating point value representing the magnitude of punishment for blue on that trial
(e.g., 10, 97)

alt_gamma 11

orangePunish Floating point value representing the magnitude of punishment for orange on that
trial (e.g., 23, 45)

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Contributors: Lili Zhang <<lili.zhang27@mail.dcu.ie>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"alt_gamma").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://github.com/lilihub

12 bandit2arm_delta

References

Browning, M., Behrens, T. E., Jocham, G., O’reilly, J. X., & Bishop, S. J. (2015). Anxious indi-
viduals have difficulty learning the causal statistics of aversive environments. Nature neuroscience,
18(4), 590.

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- alt_gamma(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- alt_gamma(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

bandit2arm_delta Rescorla-Wagner (Delta) Model

Description

Hierarchical Bayesian Modeling of the 2-Armed Bandit Task using Rescorla-Wagner (Delta) Model.
It has the following parameters: A (learning rate), tau (inverse temperature).

• Task: 2-Armed Bandit Task (Erev et al., 2010; Hertwig et al., 2004)

• Model: Rescorla-Wagner (Delta) Model

https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

bandit2arm_delta 13

Usage

bandit2arm_delta(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"choice", "outcome". See Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for
this model.

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

14 bandit2arm_delta

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the 2-Armed Bandit Task, there should be 3 columns of data with the labels "subjID", "choice",
"outcome". It is not necessary for the columns to be in this particular order, however it is necessary
that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Integer value representing the option chosen on the given trial: 1 or 2.

outcome Integer value representing the outcome of the given trial (where reward == 1, and loss ==
-1).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan

https://mc-stan.org/users/documentation/

bandit2arm_delta 15

User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"bandit2arm_delta").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Erev, I., Ert, E., Roth, A. E., Haruvy, E., Herzog, S. M., Hau, R., et al. (2010). A choice predic-
tion competition: Choices from experience and from description. Journal of Behavioral Decision
Making, 23(1), 15-47. https://doi.org/10.1002/bdm.683

Hertwig, R., Barron, G., Weber, E. U., & Erev, I. (2004). Decisions From Experience and the Effect
of Rare Events in Risky Choice. Psychological Science, 15(8), 534-539. https://doi.org/10.1111/j.0956-
7976.2004.00715.x

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- bandit2arm_delta(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- bandit2arm_delta(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

16 bandit4arm2_kalman_filter

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

bandit4arm2_kalman_filter

Kalman Filter

Description

Hierarchical Bayesian Modeling of the 4-Armed Bandit Task (modified) using Kalman Filter. It
has the following parameters: lambda (decay factor), theta (decay center), beta (inverse softmax
temperature), mu0 (anticipated initial mean of all 4 options), s0 (anticipated initial sd (uncertainty
factor) of all 4 options), sD (sd of diffusion noise).

• Task: 4-Armed Bandit Task (modified)

• Model: Kalman Filter (Daw et al., 2006)

Usage

bandit4arm2_kalman_filter(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"choice", "outcome". See Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

bandit4arm2_kalman_filter 17

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for
this model.

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the 4-Armed Bandit Task (modified), there should be 3 columns of data with the labels "subjID",
"choice", "outcome". It is not necessary for the columns to be in this particular order, however it is
necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Integer value representing the option chosen on the given trial: 1, 2, 3, or 4.

outcome Integer value representing the outcome of the given trial (where reward == 1, and loss ==
-1).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in

18 bandit4arm2_kalman_filter

samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Contributors: Yoonseo Zoh <<zohyos7@gmail.com>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"bandit4arm2_kalman_filter").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Daw, N. D., O’Doherty, J. P., Dayan, P., Seymour, B., & Dolan, R. J. (2006). Cortical substrates for
exploratory decisions in humans. Nature, 441(7095), 876-879.

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://ccs-lab.github.io/team/yoonseo-zoh/
https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

bandit4arm_2par_lapse 19

Examples

Not run:
Run the model with a given data.frame as df
output <- bandit4arm2_kalman_filter(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- bandit4arm2_kalman_filter(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

bandit4arm_2par_lapse 3 Parameter Model, without C (choice perseveration), R (reward sen-
sitivity), and P (punishment sensitivity). But with xi (noise)

Description

Hierarchical Bayesian Modeling of the 4-Armed Bandit Task using 3 Parameter Model, without C
(choice perseveration), R (reward sensitivity), and P (punishment sensitivity). But with xi (noise).
It has the following parameters: Arew (reward learning rate), Apun (punishment learning rate), xi
(noise).

• Task: 4-Armed Bandit Task

• Model: 3 Parameter Model, without C (choice perseveration), R (reward sensitivity), and P
(punishment sensitivity). But with xi (noise) (Aylward et al., 2018)

Usage

bandit4arm_2par_lapse(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,

20 bandit4arm_2par_lapse

inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"choice", "gain", "loss". See Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for
this model.

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, there is no model-specific argument.

bandit4arm_2par_lapse 21

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the 4-Armed Bandit Task, there should be 4 columns of data with the labels "subjID", "choice",
"gain", "loss". It is not necessary for the columns to be in this particular order, however it is
necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Integer value representing the option chosen on the given trial: 1, 2, 3, or 4.

gain Floating point value representing the amount of currency won on the given trial (e.g. 50, 100).

loss Floating point value representing the amount of currency lost on the given trial (e.g. 0, -50).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Value

A class "hBayesDM" object modelData with the following components:

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/

22 bandit4arm_2par_lapse

model Character value that is the name of the model (\code"bandit4arm_2par_lapse").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Aylward, Valton, Ahn, Bond, Dayan, Roiser, & Robinson (2018) Altered decision-making under
uncertainty in unmedicated mood and anxiety disorders. PsyArxiv. 10.31234/osf.io/k5b8m

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- bandit4arm_2par_lapse(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- bandit4arm_2par_lapse(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

bandit4arm_4par 23

bandit4arm_4par 4 Parameter Model, without C (choice perseveration)

Description

Hierarchical Bayesian Modeling of the 4-Armed Bandit Task using 4 Parameter Model, without C
(choice perseveration). It has the following parameters: Arew (reward learning rate), Apun (punish-
ment learning rate), R (reward sensitivity), P (punishment sensitivity).

• Task: 4-Armed Bandit Task

• Model: 4 Parameter Model, without C (choice perseveration) (Seymour et al., 2012)

Usage

bandit4arm_4par(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"choice", "gain", "loss". See Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

24 bandit4arm_4par

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for
this model.

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the 4-Armed Bandit Task, there should be 4 columns of data with the labels "subjID", "choice",
"gain", "loss". It is not necessary for the columns to be in this particular order, however it is
necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Integer value representing the option chosen on the given trial: 1, 2, 3, or 4.

gain Floating point value representing the amount of currency won on the given trial (e.g. 50, 100).

loss Floating point value representing the amount of currency lost on the given trial (e.g. 0, -50).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated

bandit4arm_4par 25

from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"bandit4arm_4par").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Seymour, Daw, Roiser, Dayan, & Dolan (2012). Serotonin Selectively Modulates Reward Value in
Human Decision-Making. J Neuro, 32(17), 5833-5842.

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- bandit4arm_4par(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- bandit4arm_4par(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

26 bandit4arm_lapse

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

bandit4arm_lapse 5 Parameter Model, without C (choice perseveration) but with xi
(noise)

Description

Hierarchical Bayesian Modeling of the 4-Armed Bandit Task using 5 Parameter Model, without C
(choice perseveration) but with xi (noise). It has the following parameters: Arew (reward learning
rate), Apun (punishment learning rate), R (reward sensitivity), P (punishment sensitivity), xi (noise).

• Task: 4-Armed Bandit Task

• Model: 5 Parameter Model, without C (choice perseveration) but with xi (noise) (Seymour et
al., 2012)

Usage

bandit4arm_lapse(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

bandit4arm_lapse 27

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"choice", "gain", "loss". See Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for
this model.

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the 4-Armed Bandit Task, there should be 4 columns of data with the labels "subjID", "choice",
"gain", "loss". It is not necessary for the columns to be in this particular order, however it is
necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Integer value representing the option chosen on the given trial: 1, 2, 3, or 4.

28 bandit4arm_lapse

gain Floating point value representing the amount of currency won on the given trial (e.g. 50, 100).

loss Floating point value representing the amount of currency lost on the given trial (e.g. 0, -50).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"bandit4arm_lapse").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Seymour, Daw, Roiser, Dayan, & Dolan (2012). Serotonin Selectively Modulates Reward Value in
Human Decision-Making. J Neuro, 32(17), 5833-5842.

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/

bandit4arm_lapse_decay 29

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- bandit4arm_lapse(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- bandit4arm_lapse(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

bandit4arm_lapse_decay

5 Parameter Model, without C (choice perseveration) but with xi
(noise). Added decay rate (Niv et al., 2015, J. Neuro).

Description

Hierarchical Bayesian Modeling of the 4-Armed Bandit Task using 5 Parameter Model, without C
(choice perseveration) but with xi (noise). Added decay rate (Niv et al., 2015, J. Neuro).. It has
the following parameters: Arew (reward learning rate), Apun (punishment learning rate), R (reward
sensitivity), P (punishment sensitivity), xi (noise), d (decay rate).

• Task: 4-Armed Bandit Task

• Model: 5 Parameter Model, without C (choice perseveration) but with xi (noise). Added
decay rate (Niv et al., 2015, J. Neuro). (Aylward et al., 2018)

https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

30 bandit4arm_lapse_decay

Usage

bandit4arm_lapse_decay(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"choice", "gain", "loss". See Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for
this model.

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

bandit4arm_lapse_decay 31

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the 4-Armed Bandit Task, there should be 4 columns of data with the labels "subjID", "choice",
"gain", "loss". It is not necessary for the columns to be in this particular order, however it is
necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Integer value representing the option chosen on the given trial: 1, 2, 3, or 4.

gain Floating point value representing the amount of currency won on the given trial (e.g. 50, 100).

loss Floating point value representing the amount of currency lost on the given trial (e.g. 0, -50).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler

32 bandit4arm_lapse_decay

control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"bandit4arm_lapse_decay").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Aylward, Valton, Ahn, Bond, Dayan, Roiser, & Robinson (2018) Altered decision-making under
uncertainty in unmedicated mood and anxiety disorders. PsyArxiv. 10.31234/osf.io/k5b8m

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- bandit4arm_lapse_decay(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- bandit4arm_lapse_decay(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

bandit4arm_singleA_lapse 33

bandit4arm_singleA_lapse

4 Parameter Model, without C (choice perseveration) but with xi
(noise). Single learning rate both for R and P.

Description

Hierarchical Bayesian Modeling of the 4-Armed Bandit Task using 4 Parameter Model, without C
(choice perseveration) but with xi (noise). Single learning rate both for R and P.. It has the following
parameters: A (learning rate), R (reward sensitivity), P (punishment sensitivity), xi (noise).

• Task: 4-Armed Bandit Task

• Model: 4 Parameter Model, without C (choice perseveration) but with xi (noise). Single
learning rate both for R and P. (Aylward et al., 2018)

Usage

bandit4arm_singleA_lapse(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"choice", "gain", "loss". See Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

34 bandit4arm_singleA_lapse

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for
this model.

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the 4-Armed Bandit Task, there should be 4 columns of data with the labels "subjID", "choice",
"gain", "loss". It is not necessary for the columns to be in this particular order, however it is
necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Integer value representing the option chosen on the given trial: 1, 2, 3, or 4.

gain Floating point value representing the amount of currency won on the given trial (e.g. 50, 100).

loss Floating point value representing the amount of currency lost on the given trial (e.g. 0, -50).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument

bandit4arm_singleA_lapse 35

can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"bandit4arm_singleA_lapse").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Aylward, Valton, Ahn, Bond, Dayan, Roiser, & Robinson (2018) Altered decision-making under
uncertainty in unmedicated mood and anxiety disorders. PsyArxiv. 10.31234/osf.io/k5b8m

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- bandit4arm_singleA_lapse(

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

36 banditNarm_2par_lapse

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- bandit4arm_singleA_lapse(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

banditNarm_2par_lapse 3 Parameter Model, without C (choice perseveration), R (reward sen-
sitivity), and P (punishment sensitivity). But with xi (noise)

Description

Hierarchical Bayesian Modeling of the N-Armed Bandit Task using 3 Parameter Model, without C
(choice perseveration), R (reward sensitivity), and P (punishment sensitivity). But with xi (noise).
It has the following parameters: Arew (reward learning rate), Apun (punishment learning rate), xi
(noise).

• Task: N-Armed Bandit Task

• Model: 3 Parameter Model, without C (choice perseveration), R (reward sensitivity), and P
(punishment sensitivity). But with xi (noise) (Aylward et al., 2018)

Usage

banditNarm_2par_lapse(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,

banditNarm_2par_lapse 37

inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"choice", "gain", "loss". See Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for
this model.

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, it’s possible to set model-specific argument(s) as follows:

Narm Number of arms used in Multi-armed Bandit Task If not given, the num-
ber of unique choice will be used.

Details

This section describes some of the function arguments in greater detail.

38 banditNarm_2par_lapse

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the N-Armed Bandit Task, there should be 4 columns of data with the labels "subjID", "choice",
"gain", "loss". It is not necessary for the columns to be in this particular order, however it is
necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Integer value representing the option chosen on the given trial: 1, 2, 3, ... N.

gain Floating point value representing the amount of currency won on the given trial (e.g. 50, 100).

loss Floating point value representing the amount of currency lost on the given trial (e.g. 0, -50).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Contributors: Cheol Jun Cho <<cjfwndnsl@gmail.com>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"banditNarm_2par_lapse").

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://github.com/cheoljun95

banditNarm_4par 39

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Aylward, Valton, Ahn, Bond, Dayan, Roiser, & Robinson (2018) Altered decision-making under
uncertainty in unmedicated mood and anxiety disorders. PsyArxiv. 10.31234/osf.io/k5b8m

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- banditNarm_2par_lapse(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- banditNarm_2par_lapse(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

banditNarm_4par 4 Parameter Model, without C (choice perseveration)

https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

40 banditNarm_4par

Description

Hierarchical Bayesian Modeling of the N-Armed Bandit Task using 4 Parameter Model, without C
(choice perseveration). It has the following parameters: Arew (reward learning rate), Apun (punish-
ment learning rate), R (reward sensitivity), P (punishment sensitivity).

• Task: N-Armed Bandit Task

• Model: 4 Parameter Model, without C (choice perseveration) (Seymour et al., 2012)

Usage

banditNarm_4par(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"choice", "gain", "loss". See Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

banditNarm_4par 41

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for
this model.

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, it’s possible to set model-specific argument(s) as follows:

Narm Number of arms used in Multi-armed Bandit Task If not given, the num-
ber of unique choice will be used.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the N-Armed Bandit Task, there should be 4 columns of data with the labels "subjID", "choice",
"gain", "loss". It is not necessary for the columns to be in this particular order, however it is
necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Integer value representing the option chosen on the given trial: 1, 2, 3, ... N.

gain Floating point value representing the amount of currency won on the given trial (e.g. 50, 100).

loss Floating point value representing the amount of currency lost on the given trial (e.g. 0, -50).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple

42 banditNarm_4par

chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Contributors: Cheol Jun Cho <<cjfwndnsl@gmail.com>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"banditNarm_4par").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Seymour, Daw, Roiser, Dayan, & Dolan (2012). Serotonin Selectively Modulates Reward Value in
Human Decision-Making. J Neuro, 32(17), 5833-5842.

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- banditNarm_4par(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- banditNarm_4par(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://github.com/cheoljun95
https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

banditNarm_delta 43

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

banditNarm_delta Rescorla-Wagner (Delta) Model

Description

Hierarchical Bayesian Modeling of the N-Armed Bandit Task using Rescorla-Wagner (Delta) Model.
It has the following parameters: A (learning rate), tau (inverse temperature).

• Task: N-Armed Bandit Task (Erev et al., 2010; Hertwig et al., 2004)

• Model: Rescorla-Wagner (Delta) Model

Usage

banditNarm_delta(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

44 banditNarm_delta

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"choice", "gain", "loss". See Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for
this model.

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, it’s possible to set model-specific argument(s) as follows:

Narm Number of arms used in Multi-armed Bandit Task If not given, the num-
ber of unique choice will be used.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the N-Armed Bandit Task, there should be 4 columns of data with the labels "subjID", "choice",
"gain", "loss". It is not necessary for the columns to be in this particular order, however it is
necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

banditNarm_delta 45

choice Integer value representing the option chosen on the given trial: 1, 2, 3, ... N.

gain Floating point value representing the amount of currency won on the given trial (e.g. 50, 100).

loss Floating point value representing the amount of currency lost on the given trial (e.g. 0, -50).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Contributors: Cheol Jun Cho <<cjfwndnsl@gmail.com>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"banditNarm_delta").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://github.com/cheoljun95

46 banditNarm_kalman_filter

References

Erev, I., Ert, E., Roth, A. E., Haruvy, E., Herzog, S. M., Hau, R., et al. (2010). A choice predic-
tion competition: Choices from experience and from description. Journal of Behavioral Decision
Making, 23(1), 15-47. https://doi.org/10.1002/bdm.683

Hertwig, R., Barron, G., Weber, E. U., & Erev, I. (2004). Decisions From Experience and the Effect
of Rare Events in Risky Choice. Psychological Science, 15(8), 534-539. https://doi.org/10.1111/j.0956-
7976.2004.00715.x

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- banditNarm_delta(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- banditNarm_delta(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

banditNarm_kalman_filter

Kalman Filter

Description

Hierarchical Bayesian Modeling of the N-Armed Bandit Task (modified) using Kalman Filter. It
has the following parameters: lambda (decay factor), theta (decay center), beta (inverse softmax
temperature), mu0 (anticipated initial mean of all 4 options), s0 (anticipated initial sd (uncertainty
factor) of all 4 options), sD (sd of diffusion noise).

https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

banditNarm_kalman_filter 47

• Task: N-Armed Bandit Task (modified)

• Model: Kalman Filter (Daw et al., 2006)

Usage

banditNarm_kalman_filter(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"choice", "gain", "loss". See Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for
this model.

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

48 banditNarm_kalman_filter

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, it’s possible to set model-specific argument(s) as follows:

Narm Number of arms used in Multi-armed Bandit Task If not given, the num-
ber of unique choice will be used.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the N-Armed Bandit Task (modified), there should be 4 columns of data with the labels "sub-
jID", "choice", "gain", "loss". It is not necessary for the columns to be in this particular order,
however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Integer value representing the option chosen on the given trial: 1, 2, 3, ... N.

gain Floating point value representing the amount of currency won on the given trial (e.g. 50, 100).

loss Floating point value representing the amount of currency lost on the given trial (e.g. 0, -50).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

banditNarm_kalman_filter 49

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Contributors: Yoonseo Zoh <<zohyos7@gmail.com>>, Cheol Jun Cho <<cjfwndnsl@gmail.com>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"banditNarm_kalman_filter").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Daw, N. D., O’Doherty, J. P., Dayan, P., Seymour, B., & Dolan, R. J. (2006). Cortical substrates for
exploratory decisions in humans. Nature, 441(7095), 876-879.

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- banditNarm_kalman_filter(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- banditNarm_kalman_filter(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://ccs-lab.github.io/team/yoonseo-zoh/
https://github.com/cheoljun95
https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

50 banditNarm_lapse

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

banditNarm_lapse 5 Parameter Model, without C (choice perseveration) but with xi
(noise)

Description

Hierarchical Bayesian Modeling of the N-Armed Bandit Task using 5 Parameter Model, without C
(choice perseveration) but with xi (noise). It has the following parameters: Arew (reward learning
rate), Apun (punishment learning rate), R (reward sensitivity), P (punishment sensitivity), xi (noise).

• Task: N-Armed Bandit Task

• Model: 5 Parameter Model, without C (choice perseveration) but with xi (noise) (Seymour et
al., 2012)

Usage

banditNarm_lapse(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"choice", "gain", "loss". See Details below for more information.

banditNarm_lapse 51

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for
this model.

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, it’s possible to set model-specific argument(s) as follows:

Narm Number of arms used in Multi-armed Bandit Task If not given, the num-
ber of unique choice will be used.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the N-Armed Bandit Task, there should be 4 columns of data with the labels "subjID", "choice",
"gain", "loss". It is not necessary for the columns to be in this particular order, however it is
necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Integer value representing the option chosen on the given trial: 1, 2, 3, ... N.

gain Floating point value representing the amount of currency won on the given trial (e.g. 50, 100).

loss Floating point value representing the amount of currency lost on the given trial (e.g. 0, -50).

52 banditNarm_lapse

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Contributors: Cheol Jun Cho <<cjfwndnsl@gmail.com>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"banditNarm_lapse").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Seymour, Daw, Roiser, Dayan, & Dolan (2012). Serotonin Selectively Modulates Reward Value in
Human Decision-Making. J Neuro, 32(17), 5833-5842.

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://github.com/cheoljun95

banditNarm_lapse_decay 53

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- banditNarm_lapse(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- banditNarm_lapse(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

banditNarm_lapse_decay

5 Parameter Model, without C (choice perseveration) but with xi
(noise). Added decay rate (Niv et al., 2015, J. Neuro).

Description

Hierarchical Bayesian Modeling of the N-Armed Bandit Task using 5 Parameter Model, without C
(choice perseveration) but with xi (noise). Added decay rate (Niv et al., 2015, J. Neuro).. It has
the following parameters: Arew (reward learning rate), Apun (punishment learning rate), R (reward
sensitivity), P (punishment sensitivity), xi (noise), d (decay rate).

• Task: N-Armed Bandit Task

• Model: 5 Parameter Model, without C (choice perseveration) but with xi (noise). Added
decay rate (Niv et al., 2015, J. Neuro). (Aylward et al., 2018)

https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

54 banditNarm_lapse_decay

Usage

banditNarm_lapse_decay(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"choice", "gain", "loss". See Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for
this model.

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

banditNarm_lapse_decay 55

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, it’s possible to set model-specific argument(s) as follows:

Narm Number of arms used in Multi-armed Bandit Task If not given, the num-
ber of unique choice will be used.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the N-Armed Bandit Task, there should be 4 columns of data with the labels "subjID", "choice",
"gain", "loss". It is not necessary for the columns to be in this particular order, however it is
necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Integer value representing the option chosen on the given trial: 1, 2, 3, ... N.

gain Floating point value representing the amount of currency won on the given trial (e.g. 50, 100).

loss Floating point value representing the amount of currency lost on the given trial (e.g. 0, -50).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to

56 banditNarm_lapse_decay

’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Contributors: Cheol Jun Cho <<cjfwndnsl@gmail.com>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"banditNarm_lapse_decay").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Aylward, Valton, Ahn, Bond, Dayan, Roiser, & Robinson (2018) Altered decision-making under
uncertainty in unmedicated mood and anxiety disorders. PsyArxiv. 10.31234/osf.io/k5b8m

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- banditNarm_lapse_decay(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- banditNarm_lapse_decay(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://github.com/cheoljun95
https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

banditNarm_singleA_lapse 57

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

banditNarm_singleA_lapse

4 Parameter Model, without C (choice perseveration) but with xi
(noise). Single learning rate both for R and P.

Description

Hierarchical Bayesian Modeling of the N-Armed Bandit Task using 4 Parameter Model, without C
(choice perseveration) but with xi (noise). Single learning rate both for R and P.. It has the following
parameters: A (learning rate), R (reward sensitivity), P (punishment sensitivity), xi (noise).

• Task: N-Armed Bandit Task

• Model: 4 Parameter Model, without C (choice perseveration) but with xi (noise). Single
learning rate both for R and P. (Aylward et al., 2018)

Usage

banditNarm_singleA_lapse(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"choice", "gain", "loss". See Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

58 banditNarm_singleA_lapse

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for
this model.

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, it’s possible to set model-specific argument(s) as follows:

Narm Number of arms used in Multi-armed Bandit Task If not given, the num-
ber of unique choice will be used.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the N-Armed Bandit Task, there should be 4 columns of data with the labels "subjID", "choice",
"gain", "loss". It is not necessary for the columns to be in this particular order, however it is
necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Integer value representing the option chosen on the given trial: 1, 2, 3, ... N.

gain Floating point value representing the amount of currency won on the given trial (e.g. 50, 100).

loss Floating point value representing the amount of currency lost on the given trial (e.g. 0, -50).

banditNarm_singleA_lapse 59

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Contributors: Cheol Jun Cho <<cjfwndnsl@gmail.com>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"banditNarm_singleA_lapse").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Aylward, Valton, Ahn, Bond, Dayan, Roiser, & Robinson (2018) Altered decision-making under
uncertainty in unmedicated mood and anxiety disorders. PsyArxiv. 10.31234/osf.io/k5b8m

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://github.com/cheoljun95

60 bart_ewmv

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- banditNarm_singleA_lapse(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- banditNarm_singleA_lapse(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

bart_ewmv Exponential-Weight Mean-Variance Model

Description

Hierarchical Bayesian Modeling of the Balloon Analogue Risk Task using Exponential-Weight
Mean-Variance Model. It has the following parameters: phi (prior belief of burst), eta (updat-
ing exponent), rho (risk preference), tau (inverse temperature), lambda (loss aversion).

• Task: Balloon Analogue Risk Task

• Model: Exponential-Weight Mean-Variance Model (Park et al., 2020)

Usage

bart_ewmv(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,

https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

bart_ewmv 61

ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"pumps", "explosion". See Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for
this model.

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, there is no model-specific argument.

62 bart_ewmv

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the Balloon Analogue Risk Task, there should be 3 columns of data with the labels "subjID",
"pumps", "explosion". It is not necessary for the columns to be in this particular order, however it
is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

pumps The number of pumps.

explosion 0: intact, 1: burst

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Contributors: Harhim Park <<hrpark12@gmail.com>>, Jaeyeong Yang <<jaeyeong.yang1125@gmail.com>>

Value

A class "hBayesDM" object modelData with the following components:

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://ccs-lab.github.io/team/harhim-park/
https://ccs-lab.github.io/team/jaeyeong-yang/

bart_ewmv 63

model Character value that is the name of the model (\code"bart_ewmv").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Park, H., Yang, J., Vassileva, J., & Ahn, W. (2020). The Exponential-Weight Mean-Variance Model:
A novel computational model for the Balloon Analogue Risk Task. https://doi.org/10.31234/osf.io/sdzj4

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- bart_ewmv(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- bart_ewmv(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

64 bart_par4

bart_par4 Re-parameterized version of BART model with 4 parameters

Description

Hierarchical Bayesian Modeling of the Balloon Analogue Risk Task using Re-parameterized ver-
sion of BART model with 4 parameters. It has the following parameters: phi (prior belief of balloon
not bursting), eta (updating rate), gam (risk-taking parameter), tau (inverse temperature).

• Task: Balloon Analogue Risk Task

• Model: Re-parameterized version of BART model with 4 parameters (van Ravenzwaaij et al.,
2011)

Usage

bart_par4(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"pumps", "explosion". See Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

bart_par4 65

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for
this model.

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the Balloon Analogue Risk Task, there should be 3 columns of data with the labels "subjID",
"pumps", "explosion". It is not necessary for the columns to be in this particular order, however it
is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

pumps The number of pumps.

explosion 0: intact, 1: burst

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated

66 bart_par4

from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Contributors: Harhim Park <<hrpark12@gmail.com>>, Jaeyeong Yang <<jaeyeong.yang1125@gmail.com>>,
Ayoung Lee <<aylee2008@naver.com>>, Jeongbin Oh <<ows0104@gmail.com>>, Jiyoon Lee
<<nicole.lee2001@gmail.com>>, Junha Jang <<andy627robo@naver.com>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"bart_par4").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

van Ravenzwaaij, D., Dutilh, G., & Wagenmakers, E. J. (2011). Cognitive model decomposition of
the BART: Assessment and application. Journal of Mathematical Psychology, 55(1), 94-105.

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- bart_par4(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://ccs-lab.github.io/team/harhim-park/
https://ccs-lab.github.io/team/jaeyeong-yang/
https://ccs-lab.github.io/team/ayoung-lee/
https://ccs-lab.github.io/team/jeongbin-oh/
https://ccs-lab.github.io/team/jiyoon-lee/
https://ccs-lab.github.io/team/junha-jang/
https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

cgt_cm 67

Run the model with example data
output <- bart_par4(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

cgt_cm Cumulative Model

Description

Hierarchical Bayesian Modeling of the Cambridge Gambling Task using Cumulative Model. It has
the following parameters: alpha (probability distortion), c (color bias), rho (relative loss sensitiv-
ity), beta (discounting rate), gamma (choice sensitivity).

• Task: Cambridge Gambling Task (Rogers et al., 1999)
• Model: Cumulative Model

Usage

cgt_cm(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

68 cgt_cm

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"gamble_type", "percentage_staked", "trial_initial_points", "assessment_stage",
"red_chosen", "n_red_boxes". See Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). For this model they
are: "y_hat_col", "y_hat_bet", "bet_utils".

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. Not available for this model.

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the Cambridge Gambling Task, there should be 7 columns of data with the labels "subjID",
"gamble_type", "percentage_staked", "trial_initial_points", "assessment_stage", "red_chosen", "n_red_boxes".
It is not necessary for the columns to be in this particular order, however it is necessary that they be
labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

cgt_cm 69

gamble_type Integer value representng whether the bets on the current trial were presented in
descending (0) or ascending (1) order.

percentage_staked Integer value representing the bet percentage (not proportion) selected on the
current trial: 5, 25, 50, 75, or 95.

trial_initial_points Floating point value representing the number of points that the subject has at
the start of the current trial (e.g., 100, 150, etc.).

assessment_stage Integer value representing whether the current trial is a practice trial (0) or a test
trial (1). Only test trials are used for model fitting.

red_chosen Integer value representing whether the red color was chosen (1) versus the blue color
(0).

n_red_boxes Integer value representing the number of red boxes shown on the current trial: 1, 2,
3,..., or 9.

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Contributors: Nathaniel Haines <<haines.175@osu.edu>>

Value

A class "hBayesDM" object modelData with the following components:

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://ccs-lab.github.io/team/nate-haines/

70 cgt_cm

model Character value that is the name of the model (\code"cgt_cm").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Rogers, R. D., Everitt, B. J., Baldacchino, A., Blackshaw, A. J., Swainson, R., Wynne, K., Baker, N.
B., Hunter, J., Carthy, T., London, M., Deakin, J. F. W., Sahakian, B. J., Robbins, T. W. (1999). Dis-
sociable deficits in the decision-making cognition of chronic amphetamine abusers, opiate abusers,
patients with focal damage to prefrontal cortex, and tryptophan-depleted normal volunteers: evi-
dence for monoaminergic mechanisms. Neuropsychopharmacology, 20, 322–339.

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- cgt_cm(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- cgt_cm(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

choiceRT_ddm 71

choiceRT_ddm Drift Diffusion Model

Description

Hierarchical Bayesian Modeling of the Choice Reaction Time Task using Drift Diffusion Model.
It has the following parameters: alpha (boundary separation), beta (bias), delta (drift rate), tau
(non-decision time).

• Task: Choice Reaction Time Task

• Model: Drift Diffusion Model (Ratcliff, 1978)

Usage

choiceRT_ddm(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"choice", "RT". See Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

72 choiceRT_ddm

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for
this model.

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. Not available for this model.

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, it’s possible to set model-specific argument(s) as follows:

RTbound Floating point value representing the lower bound (i.e., minimum
allowed) reaction time. Defaults to 0.1 (100 milliseconds).

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the Choice Reaction Time Task, there should be 3 columns of data with the labels "subjID",
"choice", "RT". It is not necessary for the columns to be in this particular order, however it is
necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Choice made for the current trial, coded as 1/2 to indicate lower/upper boundary or left/right
choices (e.g., 1 1 1 2 1 2).

RT Choice reaction time for the current trial, in **seconds** (e.g., 0.435 0.383 0.314 0.309, etc.).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

choiceRT_ddm 73

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"choiceRT_ddm").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59-108. https://doi.org/10.1037/0033-
295X.85.2.59

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- choiceRT_ddm(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

74 choiceRT_ddm_single

output <- choiceRT_ddm(
data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

choiceRT_ddm_single Drift Diffusion Model

Description

Individual Bayesian Modeling of the Choice Reaction Time Task using Drift Diffusion Model. It
has the following parameters: alpha (boundary separation), beta (bias), delta (drift rate), tau
(non-decision time).

• Task: Choice Reaction Time Task

• Model: Drift Diffusion Model (Ratcliff, 1978)

Usage

choiceRT_ddm_single(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

choiceRT_ddm_single 75

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"choice", "RT". See Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for
this model.

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. Not available for this model.

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, it’s possible to set model-specific argument(s) as follows:

RTbound Floating point value representing the lower bound (i.e., minimum
allowed) reaction time. Defaults to 0.1 (100 milliseconds).

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the Choice Reaction Time Task, there should be 3 columns of data with the labels "subjID",
"choice", "RT". It is not necessary for the columns to be in this particular order, however it is
necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

76 choiceRT_ddm_single

choice Choice made for the current trial, coded as 1/2 to indicate lower/upper boundary or left/right
choices (e.g., 1 1 1 2 1 2).

RT Choice reaction time for the current trial, in **seconds** (e.g., 0.435 0.383 0.314 0.309, etc.).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"choiceRT_ddm_single").
allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for

each subject.
parVals List object containing the posterior samples over different parameters.
fit A class stanfit object that contains the fitted Stan model.
rawdata Data.frame containing the raw data used to fit the model, as specified by the user.
modelRegressor List object containing the extracted model-based regressors.

References

Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59-108. https://doi.org/10.1037/0033-
295X.85.2.59

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/

cra_exp 77

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- choiceRT_ddm_single(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- choiceRT_ddm_single(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

cra_exp Exponential Subjective Value Model

Description

Hierarchical Bayesian Modeling of the Choice Under Risk and Ambiguity Task using Exponential
Subjective Value Model. It has the following parameters: alpha (risk attitude), beta (ambiguity
attitude), gamma (inverse temperature).

• Task: Choice Under Risk and Ambiguity Task

• Model: Exponential Subjective Value Model (Hsu et al., 2005)

Usage

cra_exp(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,

https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

78 cra_exp

ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"prob", "ambig", "reward_var", "reward_fix", "choice". See Details below for
more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). For this model they
are: "sv", "sv_fix", "sv_var", "p_var".

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, there is no model-specific argument.

cra_exp 79

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the Choice Under Risk and Ambiguity Task, there should be 6 columns of data with the labels
"subjID", "prob", "ambig", "reward_var", "reward_fix", "choice". It is not necessary for the columns
to be in this particular order, however it is necessary that they be labeled correctly and contain the
information below:

subjID A unique identifier for each subject in the data-set.

prob Objective probability of the variable lottery.

ambig Ambiguity level of the variable lottery (0 for risky lottery; greater than 0 for ambiguous
lottery).

reward_var Amount of reward in variable lottery. Assumed to be greater than zero.

reward_fix Amount of reward in fixed lottery. Assumed to be greater than zero.

choice If the variable lottery was selected, choice == 1; otherwise choice == 0.

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/

80 cra_exp

Contributors: Jaeyeong Yang <<jaeyeong.yang1125@gmail.com>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"cra_exp").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Hsu, M., Bhatt, M., Adolphs, R., Tranel, D., & Camerer, C. F. (2005). Neural systems responding to
degrees of uncertainty in human decision-making. Science, 310(5754), 1680-1683. https://doi.org/10.1126/science.1115327

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- cra_exp(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- cra_exp(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

https://ccs-lab.github.io/team/jaeyeong-yang/
https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

cra_linear 81

cra_linear Linear Subjective Value Model

Description

Hierarchical Bayesian Modeling of the Choice Under Risk and Ambiguity Task using Linear Sub-
jective Value Model. It has the following parameters: alpha (risk attitude), beta (ambiguity atti-
tude), gamma (inverse temperature).

• Task: Choice Under Risk and Ambiguity Task

• Model: Linear Subjective Value Model (Levy et al., 2010)

Usage

cra_linear(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"prob", "ambig", "reward_var", "reward_fix", "choice". See Details below for
more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

82 cra_linear

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). For this model they
are: "sv", "sv_fix", "sv_var", "p_var".

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the Choice Under Risk and Ambiguity Task, there should be 6 columns of data with the labels
"subjID", "prob", "ambig", "reward_var", "reward_fix", "choice". It is not necessary for the columns
to be in this particular order, however it is necessary that they be labeled correctly and contain the
information below:

subjID A unique identifier for each subject in the data-set.

prob Objective probability of the variable lottery.

ambig Ambiguity level of the variable lottery (0 for risky lottery; greater than 0 for ambiguous
lottery).

reward_var Amount of reward in variable lottery. Assumed to be greater than zero.

reward_fix Amount of reward in fixed lottery. Assumed to be greater than zero.

choice If the variable lottery was selected, choice == 1; otherwise choice == 0.

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains

cra_linear 83

begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Contributors: Jaeyeong Yang <<jaeyeong.yang1125@gmail.com>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"cra_linear").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Levy, I., Snell, J., Nelson, A. J., Rustichini, A., & Glimcher, P. W. (2010). Neural representation of
subjective value under risk and ambiguity. Journal of Neurophysiology, 103(2), 1036-1047.

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://ccs-lab.github.io/team/jaeyeong-yang/
https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

84 dbdm_prob_weight

Examples

Not run:
Run the model with a given data.frame as df
output <- cra_linear(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- cra_linear(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

dbdm_prob_weight Probability Weight Function

Description

Hierarchical Bayesian Modeling of the Description Based Decison Making Task using Probability
Weight Function. It has the following parameters: tau (probability weight function), rho (subject
utility function), lambda (loss aversion parameter), beta (inverse softmax temperature).

• Task: Description Based Decison Making Task

• Model: Probability Weight Function (Erev et al., 2010; Hertwig et al., 2004; Jessup et al.,
2008)

Usage

dbdm_prob_weight(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",

dbdm_prob_weight 85

modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "sub-
jID", "opt1hprob", "opt2hprob", "opt1hval", "opt1lval", "opt2hval", "opt2lval",
"choice". See Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for
this model.

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

86 dbdm_prob_weight

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the Description Based Decison Making Task, there should be 8 columns of data with the labels
"subjID", "opt1hprob", "opt2hprob", "opt1hval", "opt1lval", "opt2hval", "opt2lval", "choice". It is
not necessary for the columns to be in this particular order, however it is necessary that they be
labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.
opt1hprob Possiblity of getting higher value of outcome(opt1hval) when choosing option 1.
opt2hprob Possiblity of getting higher value of outcome(opt2hval) when choosing option 2.
opt1hval Possible (with opt1hprob probability) outcome of option 1.
opt1lval Possible (with (1 - opt1hprob) probability) outcome of option 1.
opt2hval Possible (with opt2hprob probability) outcome of option 2.
opt2lval Possible (with (1 - opt2hprob) probability) outcome of option 2.
choice If option 1 was selected, choice == 1; else if option 2 was selected, choice == 2.

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Contributors: Yoonseo Zoh <<zohyos7@gmail.com>>

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://ccs-lab.github.io/team/yoonseo-zoh/

dbdm_prob_weight 87

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"dbdm_prob_weight").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Erev, I., Ert, E., Roth, A. E., Haruvy, E., Herzog, S. M., Hau, R., ... & Lebiere, C. (2010). A choice
prediction competition: Choices from experience and from description. Journal of Behavioral De-
cision Making, 23(1), 15-47.

Hertwig, R., Barron, G., Weber, E. U., & Erev, I. (2004). Decisions from experience and the effect
of rare events in risky choice. Psychological science, 15(8), 534-539.

Jessup, R. K., Bishara, A. J., & Busemeyer, J. R. (2008). Feedback produces divergence from
prospect theory in descriptive choice. Psychological Science, 19(10), 1015-1022.

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- dbdm_prob_weight(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- dbdm_prob_weight(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

88 dd_cs

End(Not run)

dd_cs Constant-Sensitivity (CS) Model

Description

Hierarchical Bayesian Modeling of the Delay Discounting Task using Constant-Sensitivity (CS)
Model. It has the following parameters: r (exponential discounting rate), s (impatience), beta
(inverse temperature).

• Task: Delay Discounting Task

• Model: Constant-Sensitivity (CS) Model (Ebert et al., 2007)

Usage

dd_cs(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"delay_later", "amount_later", "delay_sooner", "amount_sooner", "choice". See
Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

dd_cs 89

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for
this model.

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the Delay Discounting Task, there should be 6 columns of data with the labels "subjID", "de-
lay_later", "amount_later", "delay_sooner", "amount_sooner", "choice". It is not necessary for the
columns to be in this particular order, however it is necessary that they be labeled correctly and
contain the information below:

subjID A unique identifier for each subject in the data-set.

delay_later An integer representing the delayed days for the later option (e.g. 1, 6, 28).

amount_later A floating point number representing the amount for the later option (e.g. 10.5,
13.4, 30.9).

delay_sooner An integer representing the delayed days for the sooner option (e.g. 0).

amount_sooner A floating point number representing the amount for the sooner option (e.g. 10).

choice If amount_later was selected, choice == 1; else if amount_sooner was selected, choice ==
0.

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the

90 dd_cs

necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"dd_cs").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Ebert, J. E. J., & Prelec, D. (2007). The Fragility of Time: Time-Insensitivity and Valuation of the
Near and Far Future. Management Science. https://doi.org/10.1287/mnsc.1060.0671

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

dd_cs_single 91

Examples

Not run:
Run the model with a given data.frame as df
output <- dd_cs(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- dd_cs(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

dd_cs_single Constant-Sensitivity (CS) Model

Description

Individual Bayesian Modeling of the Delay Discounting Task using Constant-Sensitivity (CS) Model.
It has the following parameters: r (exponential discounting rate), s (impatience), beta (inverse tem-
perature).

• Task: Delay Discounting Task

• Model: Constant-Sensitivity (CS) Model (Ebert et al., 2007)

Usage

dd_cs_single(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,

92 dd_cs_single

vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"delay_later", "amount_later", "delay_sooner", "amount_sooner", "choice". See
Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for
this model.

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for

dd_cs_single 93

the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the Delay Discounting Task, there should be 6 columns of data with the labels "subjID", "de-
lay_later", "amount_later", "delay_sooner", "amount_sooner", "choice". It is not necessary for the
columns to be in this particular order, however it is necessary that they be labeled correctly and
contain the information below:

subjID A unique identifier for each subject in the data-set.

delay_later An integer representing the delayed days for the later option (e.g. 1, 6, 28).

amount_later A floating point number representing the amount for the later option (e.g. 10.5,
13.4, 30.9).

delay_sooner An integer representing the delayed days for the sooner option (e.g. 0).

amount_sooner A floating point number representing the amount for the sooner option (e.g. 10).

choice If amount_later was selected, choice == 1; else if amount_sooner was selected, choice ==
0.

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Value

A class "hBayesDM" object modelData with the following components:

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/

94 dd_cs_single

model Character value that is the name of the model (\code"dd_cs_single").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Ebert, J. E. J., & Prelec, D. (2007). The Fragility of Time: Time-Insensitivity and Valuation of the
Near and Far Future. Management Science. https://doi.org/10.1287/mnsc.1060.0671

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- dd_cs_single(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- dd_cs_single(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

dd_exp 95

dd_exp Exponential Model

Description

Hierarchical Bayesian Modeling of the Delay Discounting Task using Exponential Model. It has
the following parameters: r (exponential discounting rate), beta (inverse temperature).

• Task: Delay Discounting Task

• Model: Exponential Model (Samuelson, 1937)

Usage

dd_exp(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"delay_later", "amount_later", "delay_sooner", "amount_sooner", "choice". See
Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

96 dd_exp

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for
this model.

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the Delay Discounting Task, there should be 6 columns of data with the labels "subjID", "de-
lay_later", "amount_later", "delay_sooner", "amount_sooner", "choice". It is not necessary for the
columns to be in this particular order, however it is necessary that they be labeled correctly and
contain the information below:

subjID A unique identifier for each subject in the data-set.

delay_later An integer representing the delayed days for the later option (e.g. 1, 6, 28).

amount_later A floating point number representing the amount for the later option (e.g. 10.5,
13.4, 30.9).

delay_sooner An integer representing the delayed days for the sooner option (e.g. 0).

amount_sooner A floating point number representing the amount for the sooner option (e.g. 10).

choice If amount_later was selected, choice == 1; else if amount_sooner was selected, choice ==
0.

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in

dd_exp 97

samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"dd_exp").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Samuelson, P. A. (1937). A Note on Measurement of Utility. The Review of Economic Studies,
4(2), 155. https://doi.org/10.2307/2967612

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

98 dd_hyperbolic

Examples

Not run:
Run the model with a given data.frame as df
output <- dd_exp(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- dd_exp(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

dd_hyperbolic Hyperbolic Model

Description

Hierarchical Bayesian Modeling of the Delay Discounting Task using Hyperbolic Model. It has the
following parameters: k (discounting rate), beta (inverse temperature).

• Task: Delay Discounting Task

• Model: Hyperbolic Model (Mazur, 1987)

Usage

dd_hyperbolic(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,

dd_hyperbolic 99

inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"delay_later", "amount_later", "delay_sooner", "amount_sooner", "choice". See
Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for
this model.

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for

100 dd_hyperbolic

the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the Delay Discounting Task, there should be 6 columns of data with the labels "subjID", "de-
lay_later", "amount_later", "delay_sooner", "amount_sooner", "choice". It is not necessary for the
columns to be in this particular order, however it is necessary that they be labeled correctly and
contain the information below:

subjID A unique identifier for each subject in the data-set.

delay_later An integer representing the delayed days for the later option (e.g. 1, 6, 28).

amount_later A floating point number representing the amount for the later option (e.g. 10.5,
13.4, 30.9).

delay_sooner An integer representing the delayed days for the sooner option (e.g. 0).

amount_sooner A floating point number representing the amount for the sooner option (e.g. 10).

choice If amount_later was selected, choice == 1; else if amount_sooner was selected, choice ==
0.

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Value

A class "hBayesDM" object modelData with the following components:

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/

dd_hyperbolic 101

model Character value that is the name of the model (\code"dd_hyperbolic").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Mazur, J. E. (1987). An adjustment procedure for studying delayed reinforcement.

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- dd_hyperbolic(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- dd_hyperbolic(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

102 dd_hyperbolic_single

dd_hyperbolic_single Hyperbolic Model

Description

Individual Bayesian Modeling of the Delay Discounting Task using Hyperbolic Model. It has the
following parameters: k (discounting rate), beta (inverse temperature).

• Task: Delay Discounting Task

• Model: Hyperbolic Model (Mazur, 1987)

Usage

dd_hyperbolic_single(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"delay_later", "amount_later", "delay_sooner", "amount_sooner", "choice". See
Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

dd_hyperbolic_single 103

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for
this model.

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the Delay Discounting Task, there should be 6 columns of data with the labels "subjID", "de-
lay_later", "amount_later", "delay_sooner", "amount_sooner", "choice". It is not necessary for the
columns to be in this particular order, however it is necessary that they be labeled correctly and
contain the information below:

subjID A unique identifier for each subject in the data-set.

delay_later An integer representing the delayed days for the later option (e.g. 1, 6, 28).

amount_later A floating point number representing the amount for the later option (e.g. 10.5,
13.4, 30.9).

delay_sooner An integer representing the delayed days for the sooner option (e.g. 0).

amount_sooner A floating point number representing the amount for the sooner option (e.g. 10).

choice If amount_later was selected, choice == 1; else if amount_sooner was selected, choice ==
0.

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in

104 dd_hyperbolic_single

samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"dd_hyperbolic_single").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Mazur, J. E. (1987). An adjustment procedure for studying delayed reinforcement.

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

estimate_mode 105

output <- dd_hyperbolic_single(
data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- dd_hyperbolic_single(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

estimate_mode Function to estimate mode of MCMC samples

Description

Based on codes from ’http://stackoverflow.com/questions/2547402/is-there-a-built-in-function-for-
finding-the-mode’ see the comment by Rasmus Baath

Usage

estimate_mode(x)

Arguments

x MCMC samples or some numeric or array values.

extract_ic Extract Model Comparison Estimates

Description

Extract Model Comparison Estimates

Usage

extract_ic(model_data = NULL, ic = "looic", ncore = 2)

106 gng_m1

Arguments

model_data Object returned by 'hBayesDM' model function

ic Information Criterion. ’looic’, ’waic’, or ’both’

ncore Number of cores to use when computing LOOIC

Value

IC Leave-One-Out and/or Watanabe-Akaike information criterion estimates.

Examples

Not run:
library(hBayesDM)
output = bandit2arm_delta("example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 1)
To show the LOOIC model fit estimates (a detailed report; c)
extract_ic(output)
To show the WAIC model fit estimates
extract_ic(output, ic = "waic")

End(Not run)

gng_m1 RW + noise

Description

Hierarchical Bayesian Modeling of the Orthogonalized Go/Nogo Task using RW + noise. It has the
following parameters: xi (noise), ep (learning rate), rho (effective size).

• Task: Orthogonalized Go/Nogo Task

• Model: RW + noise (Guitart-Masip et al., 2012)

Usage

gng_m1(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,

gng_m1 107

adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"cue", "keyPressed", "outcome". See Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). For this model they
are: "Qgo", "Qnogo", "Wgo", "Wnogo".

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.

108 gng_m1

For the Orthogonalized Go/Nogo Task, there should be 4 columns of data with the labels "subjID",
"cue", "keyPressed", "outcome". It is not necessary for the columns to be in this particular order,
however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

cue Nominal integer representing the cue shown for that trial: 1, 2, 3, or 4.

keyPressed Binary value representing the subject’s response for that trial (where Press == 1; No
press == 0).

outcome Ternary value representing the outcome of that trial (where Positive feedback == 1; Neu-
tral feedback == 0; Negative feedback == -1).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"gng_m1").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/

gng_m2 109

fit A class stanfit object that contains the fitted Stan model.
rawdata Data.frame containing the raw data used to fit the model, as specified by the user.
modelRegressor List object containing the extracted model-based regressors.

References

Guitart-Masip, M., Huys, Q. J. M., Fuentemilla, L., Dayan, P., Duzel, E., & Dolan, R. J. (2012). Go
and no-go learning in reward and punishment: Interactions between affect and effect. Neuroimage,
62(1), 154-166. https://doi.org/10.1016/j.neuroimage.2012.04.024

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- gng_m1(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- gng_m1(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

gng_m2 RW + noise + bias

Description

Hierarchical Bayesian Modeling of the Orthogonalized Go/Nogo Task using RW + noise + bias. It
has the following parameters: xi (noise), ep (learning rate), b (action bias), rho (effective size).

• Task: Orthogonalized Go/Nogo Task
• Model: RW + noise + bias (Guitart-Masip et al., 2012)

https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

110 gng_m2

Usage

gng_m2(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"cue", "keyPressed", "outcome". See Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). For this model they
are: "Qgo", "Qnogo", "Wgo", "Wnogo".

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

gng_m2 111

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the Orthogonalized Go/Nogo Task, there should be 4 columns of data with the labels "subjID",
"cue", "keyPressed", "outcome". It is not necessary for the columns to be in this particular order,
however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

cue Nominal integer representing the cue shown for that trial: 1, 2, 3, or 4.

keyPressed Binary value representing the subject’s response for that trial (where Press == 1; No
press == 0).

outcome Ternary value representing the outcome of that trial (where Positive feedback == 1; Neu-
tral feedback == 0; Negative feedback == -1).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to

112 gng_m2

’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"gng_m2").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Guitart-Masip, M., Huys, Q. J. M., Fuentemilla, L., Dayan, P., Duzel, E., & Dolan, R. J. (2012). Go
and no-go learning in reward and punishment: Interactions between affect and effect. Neuroimage,
62(1), 154-166. https://doi.org/10.1016/j.neuroimage.2012.04.024

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- gng_m2(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- gng_m2(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

gng_m3 113

printFit(output)

End(Not run)

gng_m3 RW + noise + bias + pi

Description

Hierarchical Bayesian Modeling of the Orthogonalized Go/Nogo Task using RW + noise + bias +
pi. It has the following parameters: xi (noise), ep (learning rate), b (action bias), pi (Pavlovian
bias), rho (effective size).

• Task: Orthogonalized Go/Nogo Task

• Model: RW + noise + bias + pi (Guitart-Masip et al., 2012)

Usage

gng_m3(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"cue", "keyPressed", "outcome". See Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

114 gng_m3

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). For this model they
are: "Qgo", "Qnogo", "Wgo", "Wnogo", "SV".

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the Orthogonalized Go/Nogo Task, there should be 4 columns of data with the labels "subjID",
"cue", "keyPressed", "outcome". It is not necessary for the columns to be in this particular order,
however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

cue Nominal integer representing the cue shown for that trial: 1, 2, 3, or 4.

keyPressed Binary value representing the subject’s response for that trial (where Press == 1; No
press == 0).

outcome Ternary value representing the outcome of that trial (where Positive feedback == 1; Neu-
tral feedback == 0; Negative feedback == -1).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in

gng_m3 115

samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"gng_m3").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Guitart-Masip, M., Huys, Q. J. M., Fuentemilla, L., Dayan, P., Duzel, E., & Dolan, R. J. (2012). Go
and no-go learning in reward and punishment: Interactions between affect and effect. Neuroimage,
62(1), 154-166. https://doi.org/10.1016/j.neuroimage.2012.04.024

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

116 gng_m4

Examples

Not run:
Run the model with a given data.frame as df
output <- gng_m3(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- gng_m3(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

gng_m4 RW (rew/pun) + noise + bias + pi

Description

Hierarchical Bayesian Modeling of the Orthogonalized Go/Nogo Task using RW (rew/pun) + noise
+ bias + pi. It has the following parameters: xi (noise), ep (learning rate), b (action bias), pi
(Pavlovian bias), rhoRew (reward sensitivity), rhoPun (punishment sensitivity).

• Task: Orthogonalized Go/Nogo Task

• Model: RW (rew/pun) + noise + bias + pi (Cavanagh et al., 2013)

Usage

gng_m4(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,

gng_m4 117

vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"cue", "keyPressed", "outcome". See Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). For this model they
are: "Qgo", "Qnogo", "Wgo", "Wnogo", "SV".

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for

118 gng_m4

the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the Orthogonalized Go/Nogo Task, there should be 4 columns of data with the labels "subjID",
"cue", "keyPressed", "outcome". It is not necessary for the columns to be in this particular order,
however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

cue Nominal integer representing the cue shown for that trial: 1, 2, 3, or 4.

keyPressed Binary value representing the subject’s response for that trial (where Press == 1; No
press == 0).

outcome Ternary value representing the outcome of that trial (where Positive feedback == 1; Neu-
tral feedback == 0; Negative feedback == -1).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"gng_m4").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/

HDIofMCMC 119

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Cavanagh, J. F., Eisenberg, I., Guitart-Masip, M., Huys, Q., & Frank, M. J. (2013). Frontal Theta
Overrides Pavlovian Learning Biases. Journal of Neuroscience, 33(19), 8541-8548. https://doi.org/10.1523/JNEUROSCI.5754-
12.2013

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- gng_m4(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- gng_m4(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

HDIofMCMC Compute Highest-Density Interval

Description

Computes the highest density interval from a sample of representative values, estimated as shortest
credible interval. Based on John Kruschke’s codes.

https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

120 igt_orl

Usage

HDIofMCMC(sampleVec, credMass = 0.95)

Arguments

sampleVec A vector of representative values from a probability distribution (e.g., MCMC
samples).

credMass A scalar between 0 and 1, indicating the mass within the credible interval that is
to be estimated.

Value

A vector containing the limits of the HDI

igt_orl Outcome-Representation Learning Model

Description

Hierarchical Bayesian Modeling of the Iowa Gambling Task using Outcome-Representation Learn-
ing Model. It has the following parameters: Arew (reward learning rate), Apun (punishment learning
rate), K (perseverance decay), betaF (outcome frequency weight), betaP (perseverance weight).

• Task: Iowa Gambling Task (Ahn et al., 2008)

• Model: Outcome-Representation Learning Model (Haines et al., 2018)

Usage

igt_orl(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

igt_orl 121

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"choice", "gain", "loss". See Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for
this model.

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, it’s possible to set model-specific argument(s) as follows:

payscale Raw payoffs within data are divided by this number. Used for scaling
data. Defaults to 100.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the Iowa Gambling Task, there should be 4 columns of data with the labels "subjID", "choice",
"gain", "loss". It is not necessary for the columns to be in this particular order, however it is
necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

122 igt_orl

choice Integer indicating which deck was chosen on that trial (where A==1, B==2, C==3, and
D==4).

gain Floating point value representing the amount of currency won on that trial (e.g. 50, 100).

loss Floating point value representing the amount of currency lost on that trial (e.g. 0, -50).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Contributors: Nate Haines <<haines.175@osu.edu>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"igt_orl").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://ccs-lab.github.io/team/nate-haines/

igt_pvl_decay 123

References

Ahn, W. Y., Busemeyer, J. R., & Wagenmakers, E. J. (2008). Comparison of decision learning mod-
els using the generalization criterion method. Cognitive Science, 32(8), 1376-1402. https://doi.org/10.1080/03640210802352992

Haines, N., Vassileva, J., & Ahn, W.-Y. (2018). The Outcome-Representation Learning Model: A
Novel Reinforcement Learning Model of the Iowa Gambling Task. Cognitive Science. https://doi.org/10.1111/cogs.12688

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- igt_orl(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- igt_orl(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

igt_pvl_decay Prospect Valence Learning (PVL) Decay-RI

Description

Hierarchical Bayesian Modeling of the Iowa Gambling Task using Prospect Valence Learning
(PVL) Decay-RI. It has the following parameters: A (decay rate), alpha (outcome sensitivity),
cons (response consistency), lambda (loss aversion).

• Task: Iowa Gambling Task (Ahn et al., 2008)

• Model: Prospect Valence Learning (PVL) Decay-RI (Ahn et al., 2014)

https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

124 igt_pvl_decay

Usage

igt_pvl_decay(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"choice", "gain", "loss". See Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for
this model.

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

igt_pvl_decay 125

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, it’s possible to set model-specific argument(s) as follows:

payscale Raw payoffs within data are divided by this number. Used for scaling
data. Defaults to 100.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the Iowa Gambling Task, there should be 4 columns of data with the labels "subjID", "choice",
"gain", "loss". It is not necessary for the columns to be in this particular order, however it is
necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Integer indicating which deck was chosen on that trial (where A==1, B==2, C==3, and
D==4).

gain Floating point value representing the amount of currency won on that trial (e.g. 50, 100).

loss Floating point value representing the amount of currency lost on that trial (e.g. 0, -50).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users

126 igt_pvl_decay

change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"igt_pvl_decay").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Ahn, W. Y., Busemeyer, J. R., & Wagenmakers, E. J. (2008). Comparison of decision learning mod-
els using the generalization criterion method. Cognitive Science, 32(8), 1376-1402. https://doi.org/10.1080/03640210802352992

Ahn, W.-Y., Vasilev, G., Lee, S.-H., Busemeyer, J. R., Kruschke, J. K., Bechara, A., & Vassileva,
J. (2014). Decision-making in stimulant and opiate addicts in protracted abstinence: evidence from
computational modeling with pure users. Frontiers in Psychology, 5, 1376. https://doi.org/10.3389/fpsyg.2014.00849

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- igt_pvl_decay(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- igt_pvl_decay(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

igt_pvl_delta 127

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

igt_pvl_delta Prospect Valence Learning (PVL) Delta

Description

Hierarchical Bayesian Modeling of the Iowa Gambling Task using Prospect Valence Learning
(PVL) Delta. It has the following parameters: A (learning rate), alpha (outcome sensitivity), cons
(response consistency), lambda (loss aversion).

• Task: Iowa Gambling Task (Ahn et al., 2008)

• Model: Prospect Valence Learning (PVL) Delta (Ahn et al., 2008)

Usage

igt_pvl_delta(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"choice", "gain", "loss". See Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

128 igt_pvl_delta

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for
this model.

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, it’s possible to set model-specific argument(s) as follows:

payscale Raw payoffs within data are divided by this number. Used for scaling
data. Defaults to 100.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the Iowa Gambling Task, there should be 4 columns of data with the labels "subjID", "choice",
"gain", "loss". It is not necessary for the columns to be in this particular order, however it is
necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Integer indicating which deck was chosen on that trial (where A==1, B==2, C==3, and
D==4).

gain Floating point value representing the amount of currency won on that trial (e.g. 50, 100).

loss Floating point value representing the amount of currency lost on that trial (e.g. 0, -50).

igt_pvl_delta 129

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"igt_pvl_delta").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Ahn, W. Y., Busemeyer, J. R., & Wagenmakers, E. J. (2008). Comparison of decision learning mod-
els using the generalization criterion method. Cognitive Science, 32(8), 1376-1402. https://doi.org/10.1080/03640210802352992

Ahn, W. Y., Busemeyer, J. R., & Wagenmakers, E. J. (2008). Comparison of decision learning mod-
els using the generalization criterion method. Cognitive Science, 32(8), 1376-1402. https://doi.org/10.1080/03640210802352992

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/

130 igt_vpp

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- igt_pvl_delta(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- igt_pvl_delta(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

igt_vpp Value-Plus-Perseverance

Description

Hierarchical Bayesian Modeling of the Iowa Gambling Task using Value-Plus-Perseverance. It has
the following parameters: A (learning rate), alpha (outcome sensitivity), cons (response consis-
tency), lambda (loss aversion), epP (gain impact), epN (loss impact), K (decay rate), w (RL weight).

• Task: Iowa Gambling Task (Ahn et al., 2008)

• Model: Value-Plus-Perseverance (Worthy et al., 2013)

Usage

igt_vpp(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,

https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

igt_vpp 131

ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"choice", "gain", "loss". See Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for
this model.

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, it’s possible to set model-specific argument(s) as follows:

payscale Raw payoffs within data are divided by this number. Used for scaling
data. Defaults to 100.

132 igt_vpp

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the Iowa Gambling Task, there should be 4 columns of data with the labels "subjID", "choice",
"gain", "loss". It is not necessary for the columns to be in this particular order, however it is
necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Integer indicating which deck was chosen on that trial (where A==1, B==2, C==3, and
D==4).

gain Floating point value representing the amount of currency won on that trial (e.g. 50, 100).

loss Floating point value representing the amount of currency lost on that trial (e.g. 0, -50).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Value

A class "hBayesDM" object modelData with the following components:

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/

igt_vpp 133

model Character value that is the name of the model (\code"igt_vpp").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Ahn, W. Y., Busemeyer, J. R., & Wagenmakers, E. J. (2008). Comparison of decision learning mod-
els using the generalization criterion method. Cognitive Science, 32(8), 1376-1402. https://doi.org/10.1080/03640210802352992

Worthy, D. A., & Todd Maddox, W. (2013). A comparison model of reinforcement-learning and
win-stay-lose-shift decision-making processes: A tribute to W.K. Estes. Journal of Mathematical
Psychology, 59, 41-49. https://doi.org/10.1016/j.jmp.2013.10.001

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- igt_vpp(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- igt_vpp(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

134 peer_ocu

multiplot Function to plot multiple figures

Description

Plots multiple figures Based on codes from ’http://www.cookbook-r.com/Graphs/Multiple_graphs_on_one_page_(ggplot2)/’

Usage

multiplot(..., plots = NULL, cols = NULL)

Arguments

... Plot objects

plots List containing plot objects

cols Number of columns within the multi-figure plot

peer_ocu Other-Conferred Utility (OCU) Model

Description

Hierarchical Bayesian Modeling of the Peer Influence Task using Other-Conferred Utility (OCU)
Model. It has the following parameters: rho (risk preference), tau (inverse temperature), ocu
(other-conferred utility).

• Task: Peer Influence Task (Chung et al., 2015)

• Model: Other-Conferred Utility (OCU) Model

Usage

peer_ocu(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,

peer_ocu 135

max_treedepth = 10,
...

)

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"condition", "p_gamble", "safe_Hpayoff", "safe_Lpayoff", "risky_Hpayoff", "risky_Lpayoff",
"choice". See Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for
this model.

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the Peer Influence Task, there should be 8 columns of data with the labels "subjID", "condition",

136 peer_ocu

"p_gamble", "safe_Hpayoff", "safe_Lpayoff", "risky_Hpayoff", "risky_Lpayoff", "choice". It is not
necessary for the columns to be in this particular order, however it is necessary that they be labeled
correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

condition 0: solo, 1: info (safe/safe), 2: info (mix), 3: info (risky/risky).

p_gamble Probability of receiving a high payoff (same for both options).

safe_Hpayoff High payoff of the safe option.

safe_Lpayoff Low payoff of the safe option.

risky_Hpayoff High payoff of the risky option.

risky_Lpayoff Low payoff of the risky option.

choice Which option was chosen? 0: safe, 1: risky.

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Contributors: Harhim Park <<hrpark12@gmail.com>>

Value

A class "hBayesDM" object modelData with the following components:

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://ccs-lab.github.io/team/harhim-park/

peer_ocu 137

model Character value that is the name of the model (\code"peer_ocu").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Chung, D., Christopoulos, G. I., King-Casas, B., Ball, S. B., & Chiu, P. H. (2015). Social sig-
nals of safety and risk confer utility and have asymmetric effects on observers’ choices. Nature
Neuroscience, 18(6), 912-916.

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- peer_ocu(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- peer_ocu(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

138 plotDist

plot.hBayesDM General Purpose Plotting for hBayesDM. This function plots hyper
parameters.

Description

General Purpose Plotting for hBayesDM. This function plots hyper parameters.

Usage

S3 method for class 'hBayesDM'
plot(
x = NULL,
type = "dist",
ncols = NULL,
fontSize = NULL,
binSize = NULL,
...

)

Arguments

x Model output of class hBayesDM

type Character value that specifies the plot type. Options are: "dist", "trace", or "sim-
ple". Defaults to "dist".

ncols Integer value specifying how many plots there should be per row. Defaults to
the number of parameters.

fontSize Integer value specifying the size of the font used for plotting. Defaults to 10.

binSize Integer value specifying how wide the bars on the histogram should be. Defaults
to 30.

... Additional arguments to be passed on

plotDist Plots the histogram of MCMC samples.

Description

Plots the histogram of MCMC samples.

plotHDI 139

Usage

plotDist(
sample = NULL,
Title = NULL,
xLab = "Value",
yLab = "Density",
xLim = NULL,
fontSize = NULL,
binSize = NULL,
...

)

Arguments

sample MCMC samples

Title Character value containing the main title for the plot

xLab Character value containing the x label

yLab Character value containing the y label

xLim Vector containing the lower and upper x-bounds of the plot

fontSize Size of the font to use for plotting. Defaults to 10

binSize Size of the bins for creating the histogram. Defaults to 30

... Arguments that can be additionally supplied to geom_histogram

Value

h1 Plot object

plotHDI Plots highest density interval (HDI) from (MCMC) samples and prints
HDI in the R console. HDI is indicated by a red line. Based on John
Kruschke’s codes.

Description

Plots highest density interval (HDI) from (MCMC) samples and prints HDI in the R console. HDI
is indicated by a red line. Based on John Kruschke’s codes.

Usage

plotHDI(
sample = NULL,
credMass = 0.95,
Title = NULL,
xLab = "Value",
yLab = "Density",

140 plotInd

fontSize = NULL,
binSize = 30,
...

)

Arguments

sample MCMC samples

credMass A scalar between 0 and 1, indicating the mass within the credible interval that is
to be estimated.

Title Character value containing the main title for the plot

xLab Character value containing the x label

yLab Character value containing the y label

fontSize Integer value specifying the font size to be used for the plot labels

binSize Integer value specifyin ghow wide the bars on the histogram should be. Defaults
to 30.

... Arguments that can be additionally supplied to geom_histogram

Value

A vector containing the limits of the HDI

plotInd Plots individual posterior distributions, using the stan_plot function
of the rstan package

Description

Plots individual posterior distributions, using the stan_plot function of the rstan package

Usage

plotInd(obj = NULL, pars, show_density = T, ...)

Arguments

obj An output of the hBayesDM. Its class should be ’hBayesDM’.

pars (from stan_plot’s help file) Character vector of parameter names. If unspecified,
show all user-defined parameters or the first 10 (if there are more than 10)

show_density T(rue) or F(alse). Show the density (T) or not (F)?

... (from stan_plot’s help file) Optional additional named arguments passed to stan_plot,
which will be passed to geoms. See stan_plot’s help file.

printFit 141

Examples

Not run:
Run a model
output <- dd_hyperbolic("example", 2000, 1000, 3, 3)

Plot the hyper parameters ('k' and 'beta')
plot(output)

Plot individual 'k' (discounting rate) parameters
plotInd(output, "k")

Plot individual 'beta' (inverse temperature) parameters
plotInd(output, "beta")

Plot individual 'beta' parameters but don't show density
plotInd(output, "beta", show_density = F)

End(Not run)

printFit Print model-fits (mean LOOIC or WAIC values in addition to Akaike
weights) of hBayesDM Models

Description

Print model-fits (mean LOOIC or WAIC values in addition to Akaike weights) of hBayesDM Mod-
els

Usage

printFit(..., ic = "looic", ncore = 2, roundTo = 3)

Arguments

... Model objects output by hBayesDM functions (e.g. output1, output2, etc.)

ic Which model comparison information criterion to use? ’looic’, ’waic’, or ’both

ncore Number of corse to use when computing LOOIC

roundTo Number of digits to the right of the decimal point in the output

Value

modelTable A table with relevant model comparison data. LOOIC and WAIC weights are computed
as Akaike weights.

142 prl_ewa

Examples

Not run:
Run two models and store results in "output1" and "output2"
output1 <- dd_hyperbolic("example", 2000, 1000, 3, 3)

output2 <- dd_exp("example", 2000, 1000, 3, 3)

Show the LOOIC model fit estimates
printFit(output1, output2)

To show the WAIC model fit estimates
printFit(output1, output2, ic = "waic")

To show both LOOIC and WAIC
printFit(output1, output2, ic = "both")

End(Not run)

prl_ewa Experience-Weighted Attraction Model

Description

Hierarchical Bayesian Modeling of the Probabilistic Reversal Learning Task using Experience-
Weighted Attraction Model. It has the following parameters: phi (1 - learning rate), rho (experience
decay factor), beta (inverse temperature).

• Task: Probabilistic Reversal Learning Task
• Model: Experience-Weighted Attraction Model (Ouden et al., 2013)

Usage

prl_ewa(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

prl_ewa 143

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"choice", "outcome". See Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). For this model they
are: "ev_c", "ev_nc", "ew_c", "ew_nc".

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the Probabilistic Reversal Learning Task, there should be 3 columns of data with the labels
"subjID", "choice", "outcome". It is not necessary for the columns to be in this particular order,
however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Integer value representing the option chosen on that trial: 1 or 2.

144 prl_ewa

outcome Integer value representing the outcome of that trial (where reward == 1, and loss == -1).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Contributors: Jaeyeong Yang (for model-based regressors) <<jaeyeong.yang1125@gmail.com>>,
Harhim Park (for model-based regressors) <<hrpark12@gmail.com>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"prl_ewa").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://ccs-lab.github.io/team/jaeyeong-yang/
https://ccs-lab.github.io/team/harhim-park/

prl_fictitious 145

References

Ouden, den, H. E. M., Daw, N. D., Fernandez, G., Elshout, J. A., Rijpkema, M., Hoogman, M., et
al. (2013). Dissociable Effects of Dopamine and Serotonin on Reversal Learning. Neuron, 80(4),
1090-1100. https://doi.org/10.1016/j.neuron.2013.08.030

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- prl_ewa(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- prl_ewa(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

prl_fictitious Fictitious Update Model

Description

Hierarchical Bayesian Modeling of the Probabilistic Reversal Learning Task using Fictitious Update
Model. It has the following parameters: eta (learning rate), alpha (indecision point), beta (inverse
temperature).

• Task: Probabilistic Reversal Learning Task

• Model: Fictitious Update Model (Glascher et al., 2009)

https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

146 prl_fictitious

Usage

prl_fictitious(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"choice", "outcome". See Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). For this model they
are: "ev_c", "ev_nc", "pe_c", "pe_nc", "dv".

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

prl_fictitious 147

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the Probabilistic Reversal Learning Task, there should be 3 columns of data with the labels
"subjID", "choice", "outcome". It is not necessary for the columns to be in this particular order,
however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Integer value representing the option chosen on that trial: 1 or 2.

outcome Integer value representing the outcome of that trial (where reward == 1, and loss == -1).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan

https://mc-stan.org/users/documentation/

148 prl_fictitious

User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Contributors: Jaeyeong Yang (for model-based regressors) <<jaeyeong.yang1125@gmail.com>>,
Harhim Park (for model-based regressors) <<hrpark12@gmail.com>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"prl_fictitious").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Glascher, J., Hampton, A. N., & O’Doherty, J. P. (2009). Determining a Role for Ventromedial Pre-
frontal Cortex in Encoding Action-Based Value Signals During Reward-Related Decision Making.
Cerebral Cortex, 19(2), 483-495. https://doi.org/10.1093/cercor/bhn098

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- prl_fictitious(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- prl_fictitious(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://ccs-lab.github.io/team/jaeyeong-yang/
https://ccs-lab.github.io/team/harhim-park/
https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

prl_fictitious_multipleB 149

printFit(output)

End(Not run)

prl_fictitious_multipleB

Fictitious Update Model

Description

Multiple-Block Hierarchical Bayesian Modeling of the Probabilistic Reversal Learning Task using
Fictitious Update Model. It has the following parameters: eta (learning rate), alpha (indecision
point), beta (inverse temperature).

• Task: Probabilistic Reversal Learning Task

• Model: Fictitious Update Model (Glascher et al., 2009)

Usage

prl_fictitious_multipleB(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"block", "choice", "outcome". See Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

150 prl_fictitious_multipleB

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). For this model they
are: "ev_c", "ev_nc", "pe_c", "pe_nc", "dv".

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the Probabilistic Reversal Learning Task, there should be 4 columns of data with the labels
"subjID", "block", "choice", "outcome". It is not necessary for the columns to be in this particular
order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

block A unique identifier for each of the multiple blocks within each subject.

choice Integer value representing the option chosen on that trial: 1 or 2.

outcome Integer value representing the outcome of that trial (where reward == 1, and loss == -1).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains

prl_fictitious_multipleB 151

begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Contributors: Jaeyeong Yang (for model-based regressors) <<jaeyeong.yang1125@gmail.com>>,
Harhim Park (for model-based regressors) <<hrpark12@gmail.com>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"prl_fictitious_multipleB").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Glascher, J., Hampton, A. N., & O’Doherty, J. P. (2009). Determining a Role for Ventromedial Pre-
frontal Cortex in Encoding Action-Based Value Signals During Reward-Related Decision Making.
Cerebral Cortex, 19(2), 483-495. https://doi.org/10.1093/cercor/bhn098

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://ccs-lab.github.io/team/jaeyeong-yang/
https://ccs-lab.github.io/team/harhim-park/
https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

152 prl_fictitious_rp

Examples

Not run:
Run the model with a given data.frame as df
output <- prl_fictitious_multipleB(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- prl_fictitious_multipleB(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

prl_fictitious_rp Fictitious Update Model, with separate learning rates for positive and
negative prediction error (PE)

Description

Hierarchical Bayesian Modeling of the Probabilistic Reversal Learning Task using Fictitious Update
Model, with separate learning rates for positive and negative prediction error (PE). It has the fol-
lowing parameters: eta_pos (learning rate, +PE), eta_neg (learning rate, -PE), alpha (indecision
point), beta (inverse temperature).

• Task: Probabilistic Reversal Learning Task

• Model: Fictitious Update Model, with separate learning rates for positive and negative pre-
diction error (PE) (Glascher et al., 2009; Ouden et al., 2013)

Usage

prl_fictitious_rp(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,

prl_fictitious_rp 153

inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"choice", "outcome". See Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). For this model they
are: "ev_c", "ev_nc", "pe_c", "pe_nc", "dv".

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, there is no model-specific argument.

154 prl_fictitious_rp

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the Probabilistic Reversal Learning Task, there should be 3 columns of data with the labels
"subjID", "choice", "outcome". It is not necessary for the columns to be in this particular order,
however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Integer value representing the option chosen on that trial: 1 or 2.

outcome Integer value representing the outcome of that trial (where reward == 1, and loss == -1).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Contributors: Jaeyeong Yang (for model-based regressors) <<jaeyeong.yang1125@gmail.com>>,
Harhim Park (for model-based regressors) <<hrpark12@gmail.com>>

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://ccs-lab.github.io/team/jaeyeong-yang/
https://ccs-lab.github.io/team/harhim-park/

prl_fictitious_rp 155

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"prl_fictitious_rp").
allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for

each subject.
parVals List object containing the posterior samples over different parameters.
fit A class stanfit object that contains the fitted Stan model.
rawdata Data.frame containing the raw data used to fit the model, as specified by the user.
modelRegressor List object containing the extracted model-based regressors.

References

Glascher, J., Hampton, A. N., & O’Doherty, J. P. (2009). Determining a Role for Ventromedial Pre-
frontal Cortex in Encoding Action-Based Value Signals During Reward-Related Decision Making.
Cerebral Cortex, 19(2), 483-495. https://doi.org/10.1093/cercor/bhn098

Ouden, den, H. E. M., Daw, N. D., Fernandez, G., Elshout, J. A., Rijpkema, M., Hoogman, M., et
al. (2013). Dissociable Effects of Dopamine and Serotonin on Reversal Learning. Neuron, 80(4),
1090-1100. https://doi.org/10.1016/j.neuron.2013.08.030

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- prl_fictitious_rp(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- prl_fictitious_rp(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

156 prl_fictitious_rp_woa

prl_fictitious_rp_woa Fictitious Update Model, with separate learning rates for positive and
negative prediction error (PE), without alpha (indecision point)

Description

Hierarchical Bayesian Modeling of the Probabilistic Reversal Learning Task using Fictitious Up-
date Model, with separate learning rates for positive and negative prediction error (PE), without
alpha (indecision point). It has the following parameters: eta_pos (learning rate, +PE), eta_neg
(learning rate, -PE), beta (inverse temperature).

• Task: Probabilistic Reversal Learning Task

• Model: Fictitious Update Model, with separate learning rates for positive and negative pre-
diction error (PE), without alpha (indecision point) (Glascher et al., 2009; Ouden et al., 2013)

Usage

prl_fictitious_rp_woa(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"choice", "outcome". See Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

prl_fictitious_rp_woa 157

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). For this model they
are: "ev_c", "ev_nc", "pe_c", "pe_nc", "dv".

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the Probabilistic Reversal Learning Task, there should be 3 columns of data with the labels
"subjID", "choice", "outcome". It is not necessary for the columns to be in this particular order,
however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Integer value representing the option chosen on that trial: 1 or 2.

outcome Integer value representing the outcome of that trial (where reward == 1, and loss == -1).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

158 prl_fictitious_rp_woa

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Contributors: Jaeyeong Yang (for model-based regressors) <<jaeyeong.yang1125@gmail.com>>,
Harhim Park (for model-based regressors) <<hrpark12@gmail.com>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"prl_fictitious_rp_woa").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Glascher, J., Hampton, A. N., & O’Doherty, J. P. (2009). Determining a Role for Ventromedial Pre-
frontal Cortex in Encoding Action-Based Value Signals During Reward-Related Decision Making.
Cerebral Cortex, 19(2), 483-495. https://doi.org/10.1093/cercor/bhn098

Ouden, den, H. E. M., Daw, N. D., Fernandez, G., Elshout, J. A., Rijpkema, M., Hoogman, M., et
al. (2013). Dissociable Effects of Dopamine and Serotonin on Reversal Learning. Neuron, 80(4),
1090-1100. https://doi.org/10.1016/j.neuron.2013.08.030

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://ccs-lab.github.io/team/jaeyeong-yang/
https://ccs-lab.github.io/team/harhim-park/
https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

prl_fictitious_woa 159

Examples

Not run:
Run the model with a given data.frame as df
output <- prl_fictitious_rp_woa(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- prl_fictitious_rp_woa(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

prl_fictitious_woa Fictitious Update Model, without alpha (indecision point)

Description

Hierarchical Bayesian Modeling of the Probabilistic Reversal Learning Task using Fictitious Update
Model, without alpha (indecision point). It has the following parameters: eta (learning rate), beta
(inverse temperature).

• Task: Probabilistic Reversal Learning Task

• Model: Fictitious Update Model, without alpha (indecision point) (Glascher et al., 2009)

Usage

prl_fictitious_woa(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,

160 prl_fictitious_woa

vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"choice", "outcome". See Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). For this model they
are: "ev_c", "ev_nc", "pe_c", "pe_nc", "dv".

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for

prl_fictitious_woa 161

the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the Probabilistic Reversal Learning Task, there should be 3 columns of data with the labels
"subjID", "choice", "outcome". It is not necessary for the columns to be in this particular order,
however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Integer value representing the option chosen on that trial: 1 or 2.

outcome Integer value representing the outcome of that trial (where reward == 1, and loss == -1).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Contributors: Jaeyeong Yang (for model-based regressors) <<jaeyeong.yang1125@gmail.com>>,
Harhim Park (for model-based regressors) <<hrpark12@gmail.com>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"prl_fictitious_woa").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://ccs-lab.github.io/team/jaeyeong-yang/
https://ccs-lab.github.io/team/harhim-park/

162 prl_rp

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Glascher, J., Hampton, A. N., & O’Doherty, J. P. (2009). Determining a Role for Ventromedial Pre-
frontal Cortex in Encoding Action-Based Value Signals During Reward-Related Decision Making.
Cerebral Cortex, 19(2), 483-495. https://doi.org/10.1093/cercor/bhn098

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- prl_fictitious_woa(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- prl_fictitious_woa(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

prl_rp Reward-Punishment Model

https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

prl_rp 163

Description

Hierarchical Bayesian Modeling of the Probabilistic Reversal Learning Task using Reward-Punishment
Model. It has the following parameters: Apun (punishment learning rate), Arew (reward learning
rate), beta (inverse temperature).

• Task: Probabilistic Reversal Learning Task

• Model: Reward-Punishment Model (Ouden et al., 2013)

Usage

prl_rp(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"choice", "outcome". See Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

164 prl_rp

modelRegressor Whether to export model-based regressors (TRUE or FALSE). For this model they
are: "ev_c", "ev_nc", "pe".

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the Probabilistic Reversal Learning Task, there should be 3 columns of data with the labels
"subjID", "choice", "outcome". It is not necessary for the columns to be in this particular order,
however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Integer value representing the option chosen on that trial: 1 or 2.

outcome Integer value representing the outcome of that trial (where reward == 1, and loss == -1).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

prl_rp 165

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Contributors: Jaeyeong Yang (for model-based regressors) <<jaeyeong.yang1125@gmail.com>>,
Harhim Park (for model-based regressors) <<hrpark12@gmail.com>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"prl_rp").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Ouden, den, H. E. M., Daw, N. D., Fernandez, G., Elshout, J. A., Rijpkema, M., Hoogman, M., et
al. (2013). Dissociable Effects of Dopamine and Serotonin on Reversal Learning. Neuron, 80(4),
1090-1100. https://doi.org/10.1016/j.neuron.2013.08.030

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- prl_rp(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- prl_rp(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://ccs-lab.github.io/team/jaeyeong-yang/
https://ccs-lab.github.io/team/harhim-park/
https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

166 prl_rp_multipleB

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

prl_rp_multipleB Reward-Punishment Model

Description

Multiple-Block Hierarchical Bayesian Modeling of the Probabilistic Reversal Learning Task using
Reward-Punishment Model. It has the following parameters: Apun (punishment learning rate), Arew
(reward learning rate), beta (inverse temperature).

• Task: Probabilistic Reversal Learning Task

• Model: Reward-Punishment Model (Ouden et al., 2013)

Usage

prl_rp_multipleB(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

prl_rp_multipleB 167

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"block", "choice", "outcome". See Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). For this model they
are: "ev_c", "ev_nc", "pe".

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the Probabilistic Reversal Learning Task, there should be 4 columns of data with the labels
"subjID", "block", "choice", "outcome". It is not necessary for the columns to be in this particular
order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

block A unique identifier for each of the multiple blocks within each subject.

168 prl_rp_multipleB

choice Integer value representing the option chosen on that trial: 1 or 2.

outcome Integer value representing the outcome of that trial (where reward == 1, and loss == -1).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Contributors: Jaeyeong Yang (for model-based regressors) <<jaeyeong.yang1125@gmail.com>>,
Harhim Park (for model-based regressors) <<hrpark12@gmail.com>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"prl_rp_multipleB").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://ccs-lab.github.io/team/jaeyeong-yang/
https://ccs-lab.github.io/team/harhim-park/

pstRT_ddm 169

References

Ouden, den, H. E. M., Daw, N. D., Fernandez, G., Elshout, J. A., Rijpkema, M., Hoogman, M., et
al. (2013). Dissociable Effects of Dopamine and Serotonin on Reversal Learning. Neuron, 80(4),
1090-1100. https://doi.org/10.1016/j.neuron.2013.08.030

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- prl_rp_multipleB(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- prl_rp_multipleB(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

pstRT_ddm Drift Diffusion Model

Description

Hierarchical Bayesian Modeling of the Probabilistic Selection Task (with RT data) using Drift Dif-
fusion Model. It has the following parameters: a (boundary separation), tau (non-decision time),
d1 (drift rate scaling), d2 (drift rate scaling), d3 (drift rate scaling).

• Task: Probabilistic Selection Task (with RT data) (Frank et al., 2007; Frank et al., 2004)

• Model: Drift Diffusion Model (Pedersen et al., 2017)

https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

170 pstRT_ddm

Usage

pstRT_ddm(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"cond", "choice", "RT". See Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for
this model.

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "choice_os",
"RT_os"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

pstRT_ddm 171

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, it’s possible to set model-specific argument(s) as follows:

RTbound Floating point value representing the lower bound (i.e., minimum
allowed) reaction time. Defaults to 0.1 (100 milliseconds).

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the Probabilistic Selection Task (with RT data), there should be 4 columns of data with the
labels "subjID", "cond", "choice", "RT". It is not necessary for the columns to be in this particular
order, however it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

cond Integer value representing the task condition of the given trial (AB == 1, CD == 2, EF == 3).

choice Integer value representing the option chosen on the given trial (1 or 2).

RT Float value representing the time taken for the response on the given trial.

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to

172 pstRT_ddm

’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Contributors: Hoyoung Doh <<hoyoung.doh@gmail.com>>, Sanghoon Kang <<sanghoon.kang@yale.edu>>,
Jihyun K. Hur <<jihyun.hur@yale.edu>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"pstRT_ddm").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Frank, M. J., Santamaria, A., O’Reilly, R. C., & Willcutt, E. (2007). Testing computational models
of dopamine and noradrenaline dysfunction in attention deficit/hyperactivity disorder. Neuropsy-
chopharmacology, 32(7), 1583-1599.

Frank, M. J., Seeberger, L. C., & O’reilly, R. C. (2004). By carrot or by stick: cognitive reinforce-
ment learning in parkinsonism. Science, 306(5703), 1940-1943.

Pedersen, M. L., Frank, M. J., & Biele, G. (2017). The drift diffusion model as the choice rule in
reinforcement learning. Psychonomic bulletin & review, 24(4), 1234-1251.

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- pstRT_ddm(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- pstRT_ddm(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://hydoh.github.io/
https://medicine.yale.edu/lab/goldfarb/profile/sanghoon_kang/
https://jihyuncindyhur.github.io/
https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

pstRT_rlddm1 173

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

pstRT_rlddm1 Reinforcement Learning Drift Diffusion Model 1

Description

Hierarchical Bayesian Modeling of the Probabilistic Selection Task (with RT data) using Reinforce-
ment Learning Drift Diffusion Model 1. It has the following parameters: a (boundary separation),
tau (non-decision time), v (drift rate scaling), alpha (learning rate).

• Task: Probabilistic Selection Task (with RT data) (Frank et al., 2007; Frank et al., 2004)

• Model: Reinforcement Learning Drift Diffusion Model 1 (Pedersen et al., 2017)

Usage

pstRT_rlddm1(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

174 pstRT_rlddm1

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "sub-
jID", "cond", "prob", "choice", "RT", "feedback". See Details below for more
information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). For this model they
are: "Q1", "Q2".

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "choice_os",
"RT_os", "choice_sm", "RT_sm", "fd_sm"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, it’s possible to set model-specific argument(s) as follows:

RTbound Floating point value representing the lower bound (i.e., minimum
allowed) reaction time. Defaults to 0.1 (100 milliseconds).

initQ Floating point value representing the model’s initial value of any choice.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the Probabilistic Selection Task (with RT data), there should be 6 columns of data with the

pstRT_rlddm1 175

labels "subjID", "cond", "prob", "choice", "RT", "feedback". It is not necessary for the columns
to be in this particular order, however it is necessary that they be labeled correctly and contain the
information below:

subjID A unique identifier for each subject in the data-set.

cond Integer value representing the task condition of the given trial (AB == 1, CD == 2, EF == 3).

prob Float value representing the probability that a correct response (1) is rewarded in the current
task condition.

choice Integer value representing the option chosen on the given trial (1 or 2).

RT Float value representing the time taken for the response on the given trial.

feedback Integer value representing the outcome of the given trial (where ’correct’ == 1, and
’incorrect’ == 0).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Contributors: Hoyoung Doh <<hoyoung.doh@gmail.com>>, Sanghoon Kang <<sanghoon.kang@yale.edu>>,
Jihyun K. Hur <<jihyun.hur@yale.edu>>

Value

A class "hBayesDM" object modelData with the following components:

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://hydoh.github.io/
https://medicine.yale.edu/lab/goldfarb/profile/sanghoon_kang/
https://jihyuncindyhur.github.io/

176 pstRT_rlddm1

model Character value that is the name of the model (\code"pstRT_rlddm1").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Frank, M. J., Santamaria, A., O’Reilly, R. C., & Willcutt, E. (2007). Testing computational models
of dopamine and noradrenaline dysfunction in attention deficit/hyperactivity disorder. Neuropsy-
chopharmacology, 32(7), 1583-1599.

Frank, M. J., Seeberger, L. C., & O’reilly, R. C. (2004). By carrot or by stick: cognitive reinforce-
ment learning in parkinsonism. Science, 306(5703), 1940-1943.

Pedersen, M. L., Frank, M. J., & Biele, G. (2017). The drift diffusion model as the choice rule in
reinforcement learning. Psychonomic bulletin & review, 24(4), 1234-1251.

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- pstRT_rlddm1(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- pstRT_rlddm1(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

pstRT_rlddm6 177

pstRT_rlddm6 Reinforcement Learning Drift Diffusion Model 6

Description

Hierarchical Bayesian Modeling of the Probabilistic Selection Task (with RT data) using Reinforce-
ment Learning Drift Diffusion Model 6. It has the following parameters: a (boundary separation),
bp (boundary separation power), tau (non-decision time), v (drift rate scaling), alpha_pos (learn-
ing rate for positive prediction error), alpha_neg (learning rate for negative prediction error).

• Task: Probabilistic Selection Task (with RT data) (Frank et al., 2007; Frank et al., 2004)

• Model: Reinforcement Learning Drift Diffusion Model 6 (Pedersen et al., 2017)

Usage

pstRT_rlddm6(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"iter", "cond", "prob", "choice", "RT", "feedback". See Details below for more
information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

178 pstRT_rlddm6

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). For this model they
are: "Q1", "Q2".

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "choice_os",
"RT_os", "choice_sm", "RT_sm", "fd_sm"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, it’s possible to set model-specific argument(s) as follows:

RTbound Floating point value representing the lower bound (i.e., minimum
allowed) reaction time. Defaults to 0.1 (100 milliseconds).

initQ Floating point value representing the model’s initial value of any choice.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the Probabilistic Selection Task (with RT data), there should be 7 columns of data with the labels
"subjID", "iter", "cond", "prob", "choice", "RT", "feedback". It is not necessary for the columns to
be in this particular order, however it is necessary that they be labeled correctly and contain the
information below:

subjID A unique identifier for each subject in the data-set.

iter Integer value representing the trial number for each task condition.

cond Integer value representing the task condition of the given trial (AB == 1, CD == 2, EF == 3).

prob Float value representing the probability that a correct response (1) is rewarded in the current
task condition.

choice Integer value representing the option chosen on the given trial (1 or 2).

RT Float value representing the time taken for the response on the given trial.

pstRT_rlddm6 179

feedback Integer value representing the outcome of the given trial (where ’correct’ == 1, and
’incorrect’ == 0).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Contributors: Hoyoung Doh <<hoyoung.doh@gmail.com>>, Sanghoon Kang <<sanghoon.kang@yale.edu>>,
Jihyun K. Hur <<jihyun.hur@yale.edu>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"pstRT_rlddm6").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://hydoh.github.io/
https://medicine.yale.edu/lab/goldfarb/profile/sanghoon_kang/
https://jihyuncindyhur.github.io/

180 pst_gainloss_Q

References

Frank, M. J., Santamaria, A., O’Reilly, R. C., & Willcutt, E. (2007). Testing computational models
of dopamine and noradrenaline dysfunction in attention deficit/hyperactivity disorder. Neuropsy-
chopharmacology, 32(7), 1583-1599.

Frank, M. J., Seeberger, L. C., & O’reilly, R. C. (2004). By carrot or by stick: cognitive reinforce-
ment learning in parkinsonism. Science, 306(5703), 1940-1943.

Pedersen, M. L., Frank, M. J., & Biele, G. (2017). The drift diffusion model as the choice rule in
reinforcement learning. Psychonomic bulletin & review, 24(4), 1234-1251.

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- pstRT_rlddm6(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- pstRT_rlddm6(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

pst_gainloss_Q Gain-Loss Q Learning Model

Description

Hierarchical Bayesian Modeling of the Probabilistic Selection Task using Gain-Loss Q Learn-
ing Model. It has the following parameters: alpha_pos (learning rate for positive feedbacks),
alpha_neg (learning rate for negative feedbacks), beta (inverse temperature).

https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

pst_gainloss_Q 181

• Task: Probabilistic Selection Task

• Model: Gain-Loss Q Learning Model (Frank et al., 2007)

Usage

pst_gainloss_Q(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"type", "choice", "reward". See Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for
this model.

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

182 pst_gainloss_Q

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the Probabilistic Selection Task, there should be 4 columns of data with the labels "subjID",
"type", "choice", "reward". It is not necessary for the columns to be in this particular order, however
it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

type Two-digit number indicating which pair of stimuli were presented for that trial, e.g. 12, 34,
or 56. The digit on the left (tens-digit) indicates the presented stimulus for option1, while the
digit on the right (ones-digit) indicates that for option2. Code for each stimulus type (1~6) is
defined as for 80% (type 1), 20% (type 2), 70% (type 3), 30% (type 4), 60% (type 5), 40%
(type 6). The modeling will still work even if different probabilities are used for the stimuli;
however, the total number of stimuli should be less than or equal to 6.

choice Whether the subject chose the left option (option1) out of the given two options (i.e. if
option1 was chosen, 1; if option2 was chosen, 0).

reward Amount of reward earned as a result of the trial.

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

pst_gainloss_Q 183

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Contributors: Jaeyeong Yang <<jaeyeong.yang1125@gmail.com>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"pst_gainloss_Q").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Frank, M. J., Moustafa, A. A., Haughey, H. M., Curran, T., & Hutchison, K. E. (2007). Genetic
triple dissociation reveals multiple roles for dopamine in reinforcement learning. Proceedings of
the National Academy of Sciences, 104(41), 16311-16316.

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- pst_gainloss_Q(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- pst_gainloss_Q(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://ccs-lab.github.io/team/jaeyeong-yang/
https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

184 pst_Q

plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

pst_Q Q Learning Model

Description

Hierarchical Bayesian Modeling of the Probabilistic Selection Task using Q Learning Model. It has
the following parameters: alpha (learning rate), beta (inverse temperature).

• Task: Probabilistic Selection Task

• Model: Q Learning Model (Frank et al., 2007)

Usage

pst_Q(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

pst_Q 185

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"type", "choice", "reward". See Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for
this model.

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the Probabilistic Selection Task, there should be 4 columns of data with the labels "subjID",
"type", "choice", "reward". It is not necessary for the columns to be in this particular order, however
it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

186 pst_Q

type Two-digit number indicating which pair of stimuli were presented for that trial, e.g. 12, 34,
or 56. The digit on the left (tens-digit) indicates the presented stimulus for option1, while the
digit on the right (ones-digit) indicates that for option2. Code for each stimulus type (1~6) is
defined as for 80% (type 1), 20% (type 2), 70% (type 3), 30% (type 4), 60% (type 5), 40%
(type 6). The modeling will still work even if different probabilities are used for the stimuli;
however, the total number of stimuli should be less than or equal to 6.

choice Whether the subject chose the left option (option1) out of the given two options (i.e. if
option1 was chosen, 1; if option2 was chosen, 0).

reward Amount of reward earned as a result of the trial.

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Contributors: David Munoz Tord <<david.munoztord@unige.ch>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"pst_Q").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://david-munoztord.com/

ra_noLA 187

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Frank, M. J., Moustafa, A. A., Haughey, H. M., Curran, T., & Hutchison, K. E. (2007). Genetic
triple dissociation reveals multiple roles for dopamine in reinforcement learning. Proceedings of
the National Academy of Sciences, 104(41), 16311-16316.

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- pst_Q(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- pst_Q(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

ra_noLA Prospect Theory, without loss aversion (LA) parameter

https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

188 ra_noLA

Description

Hierarchical Bayesian Modeling of the Risk Aversion Task using Prospect Theory, without loss
aversion (LA) parameter. It has the following parameters: rho (risk aversion), tau (inverse temper-
ature).

• Task: Risk Aversion Task

• Model: Prospect Theory, without loss aversion (LA) parameter (Sokol-Hessner et al., 2009)

Usage

ra_noLA(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"gain", "loss", "cert", "gamble". See Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

ra_noLA 189

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for
this model.

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the Risk Aversion Task, there should be 5 columns of data with the labels "subjID", "gain",
"loss", "cert", "gamble". It is not necessary for the columns to be in this particular order, however it
is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

gain Possible (50%) gain outcome of a risky option (e.g. 9).

loss Possible (50%) loss outcome of a risky option (e.g. 5, or -5).

cert Guaranteed amount of a safe option. "cert" is assumed to be zero or greater than zero.

gamble If gamble was taken, gamble == 1; else gamble == 0.

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple

190 ra_noLA

chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"ra_noLA").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Sokol-Hessner, P., Hsu, M., Curley, N. G., Delgado, M. R., Camerer, C. F., Phelps, E. A., & Smith,
E. E. (2009). Thinking like a Trader Selectively Reduces Individuals’ Loss Aversion. Proceed-
ings of the National Academy of Sciences of the United States of America, 106(13), 5035-5040.
https://www.pnas.org/content/106/13/5035

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- ra_noLA(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- ra_noLA(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

ra_noRA 191

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

ra_noRA Prospect Theory, without risk aversion (RA) parameter

Description

Hierarchical Bayesian Modeling of the Risk Aversion Task using Prospect Theory, without risk
aversion (RA) parameter. It has the following parameters: lambda (loss aversion), tau (inverse
temperature).

• Task: Risk Aversion Task

• Model: Prospect Theory, without risk aversion (RA) parameter (Sokol-Hessner et al., 2009)

Usage

ra_noRA(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

192 ra_noRA

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"gain", "loss", "cert", "gamble". See Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for
this model.

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the Risk Aversion Task, there should be 5 columns of data with the labels "subjID", "gain",
"loss", "cert", "gamble". It is not necessary for the columns to be in this particular order, however it
is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

gain Possible (50%) gain outcome of a risky option (e.g. 9).

ra_noRA 193

loss Possible (50%) loss outcome of a risky option (e.g. 5, or -5).

cert Guaranteed amount of a safe option. "cert" is assumed to be zero or greater than zero.

gamble If gamble was taken, gamble == 1; else gamble == 0.

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"ra_noRA").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/

194 ra_prospect

References

Sokol-Hessner, P., Hsu, M., Curley, N. G., Delgado, M. R., Camerer, C. F., Phelps, E. A., & Smith,
E. E. (2009). Thinking like a Trader Selectively Reduces Individuals’ Loss Aversion. Proceed-
ings of the National Academy of Sciences of the United States of America, 106(13), 5035-5040.
https://www.pnas.org/content/106/13/5035

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- ra_noRA(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- ra_noRA(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

ra_prospect Prospect Theory

Description

Hierarchical Bayesian Modeling of the Risk Aversion Task using Prospect Theory. It has the fol-
lowing parameters: rho (risk aversion), lambda (loss aversion), tau (inverse temperature).

• Task: Risk Aversion Task

• Model: Prospect Theory (Sokol-Hessner et al., 2009)

https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

ra_prospect 195

Usage

ra_prospect(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"gain", "loss", "cert", "gamble". See Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for
this model.

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

196 ra_prospect

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the Risk Aversion Task, there should be 5 columns of data with the labels "subjID", "gain",
"loss", "cert", "gamble". It is not necessary for the columns to be in this particular order, however it
is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

gain Possible (50%) gain outcome of a risky option (e.g. 9).

loss Possible (50%) loss outcome of a risky option (e.g. 5, or -5).

cert Guaranteed amount of a safe option. "cert" is assumed to be zero or greater than zero.

gamble If gamble was taken, gamble == 1; else gamble == 0.

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman

ra_prospect 197

& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"ra_prospect").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Sokol-Hessner, P., Hsu, M., Curley, N. G., Delgado, M. R., Camerer, C. F., Phelps, E. A., & Smith,
E. E. (2009). Thinking like a Trader Selectively Reduces Individuals’ Loss Aversion. Proceed-
ings of the National Academy of Sciences of the United States of America, 106(13), 5035-5040.
https://www.pnas.org/content/106/13/5035

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- ra_prospect(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- ra_prospect(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

198 rdt_happiness

printFit(output)

End(Not run)

rdt_happiness Happiness Computational Model

Description

Hierarchical Bayesian Modeling of the Risky Decision Task using Happiness Computational Model.
It has the following parameters: w0 (baseline), w1 (weight of certain rewards), w2 (weight of ex-
pected values), w3 (weight of reward prediction errors), gam (forgetting factor), sig (standard devi-
ation of error).

• Task: Risky Decision Task

• Model: Happiness Computational Model (Rutledge et al., 2014)

Usage

rdt_happiness(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"gain", "loss", "cert", "type", "gamble", "outcome", "happy", "RT_happy". See
Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

rdt_happiness 199

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for
this model.

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the Risky Decision Task, there should be 9 columns of data with the labels "subjID", "gain",
"loss", "cert", "type", "gamble", "outcome", "happy", "RT_happy". It is not necessary for the
columns to be in this particular order, however it is necessary that they be labeled correctly and
contain the information below:

subjID A unique identifier for each subject in the data-set.

gain Possible (50%) gain outcome of a risky option (e.g. 9).

loss Possible (50%) loss outcome of a risky option (e.g. 5, or -5).

cert Guaranteed amount of a safe option.

type loss == -1, mixed == 0, gain == 1

gamble If gamble was taken, gamble == 1; else gamble == 0.

outcome Result of the trial.

happy Happiness score.

200 rdt_happiness

RT_happy Reaction time for answering the happiness score.

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.
nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.
nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".
nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.
Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Contributors: Harhim Park <<hrpark12@gmail.com>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"rdt_happiness").
allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for

each subject.
parVals List object containing the posterior samples over different parameters.
fit A class stanfit object that contains the fitted Stan model.
rawdata Data.frame containing the raw data used to fit the model, as specified by the user.
modelRegressor List object containing the extracted model-based regressors.

References

Rutledge, R. B., Skandali, N., Dayan, P., & Dolan, R. J. (2014). A computational and neural model
of momentary subjective well-being. Proceedings of the National Academy of Sciences, 111(33),
12252-12257.

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://ccs-lab.github.io/team/harhim-park/

rhat 201

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- rdt_happiness(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- rdt_happiness(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

rhat Function for extracting Rhat values from an hBayesDM object

Description

A convenience function for extracting Rhat values from an hBayesDM object. Can also check if all
Rhat values are less than or equal to a specified value. If variational inference was used, an error
message will be displayed.

Usage

rhat(fit = NULL, less = NULL)

Arguments

fit Model output of class hBayesDM

less A numeric value specifying how to check Rhat values. Defaults to FALSE.

https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

202 task2AFC_sdt

Value

If 'less' is specified, then rhat(fit, less) will return TRUE if all Rhat values are less than or
equal to 'less'. If any values are greater than 'less', rhat(fit, less) will return FALSE. If
'less' is left unspecified (NULL), rhat(fit) will return a data.frame object containing all Rhat
values.

task2AFC_sdt Signal detection theory model

Description

Hierarchical Bayesian Modeling of the 2-alternative forced choice task using Signal detection the-
ory model. It has the following parameters: d (discriminability), c (decision bias (criteria)).

• Task: 2-alternative forced choice task

• Model: Signal detection theory model

Usage

task2AFC_sdt(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"stimulus", "response". See Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

task2AFC_sdt 203

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for
this model.

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the 2-alternative forced choice task, there should be 3 columns of data with the labels "subjID",
"stimulus", "response". It is not necessary for the columns to be in this particular order, however it
is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

stimulus Types of Stimuli (Should be 1 or 0. 1 for Signal and 0 for Noise)

response Types of Responses (It should be same format as the stimulus field. Should be 1 or 0)

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument

204 task2AFC_sdt

can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Contributors: Heesun Park <<heesunpark26@gmail.com>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"task2AFC_sdt").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- task2AFC_sdt(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- task2AFC_sdt(

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://heesunpark26.github.io/
https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

ts_par4 205

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

ts_par4 Hybrid Model, with 4 parameters

Description

Hierarchical Bayesian Modeling of the Two-Step Task using Hybrid Model, with 4 parameters. It
has the following parameters: a (learning rate for both stages 1 & 2), beta (inverse temperature for
both stages 1 & 2), pi (perseverance), w (model-based weight).

• Task: Two-Step Task (Daw et al., 2011)

• Model: Hybrid Model, with 4 parameters (Daw et al., 2011; Wunderlich et al., 2012)

Usage

ts_par4(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

206 ts_par4

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "sub-
jID", "level1_choice", "level2_choice", "reward". See Details below for more
information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for
this model.

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred_step1",
"y_pred_step2"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, it’s possible to set model-specific argument(s) as follows:

trans_prob Common state transition probability from Stage (Level) 1 to Stage
(Level) 2. Defaults to 0.7.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the Two-Step Task, there should be 4 columns of data with the labels "subjID", "level1_choice",
"level2_choice", "reward". It is not necessary for the columns to be in this particular order, however
it is necessary that they be labeled correctly and contain the information below:

ts_par4 207

subjID A unique identifier for each subject in the data-set.

level1_choice Choice made for Level (Stage) 1 (1: stimulus 1, 2: stimulus 2).

level2_choice Choice made for Level (Stage) 2 (1: stimulus 3, 2: stimulus 4, 3: stimulus 5, 4:
stimulus 6).
Note that, in our notation, choosing stimulus 1 in Level 1 leads to stimulus 3 & 4 in Level 2
with a common (0.7 by default) transition. Similarly, choosing stimulus 2 in Level 1 leads to
stimulus 5 & 6 in Level 2 with a common (0.7 by default) transition. To change this default
transition probability, set the function argument ‘trans_prob‘ to your preferred value.

reward Reward after Level 2 (0 or 1).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Contributors: Harhim Park <<hrpark12@gmail.com>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"ts_par4").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://ccs-lab.github.io/team/harhim-park/

208 ts_par4

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Daw, N. D., Gershman, S. J., Seymour, B., Ben Seymour, Dayan, P., & Dolan, R. J. (2011). Model-
Based Influences on Humans’ Choices and Striatal Prediction Errors. Neuron, 69(6), 1204-1215.
https://doi.org/10.1016/j.neuron.2011.02.027

Daw, N. D., Gershman, S. J., Seymour, B., Ben Seymour, Dayan, P., & Dolan, R. J. (2011). Model-
Based Influences on Humans’ Choices and Striatal Prediction Errors. Neuron, 69(6), 1204-1215.
https://doi.org/10.1016/j.neuron.2011.02.027

Wunderlich, K., Smittenaar, P., & Dolan, R. J. (2012). Dopamine enhances model-based over
model-free choice behavior. Neuron, 75(3), 418-424.

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- ts_par4(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- ts_par4(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

ts_par6 209

ts_par6 Hybrid Model, with 6 parameters

Description

Hierarchical Bayesian Modeling of the Two-Step Task using Hybrid Model, with 6 parameters. It
has the following parameters: a1 (learning rate in stage 1), beta1 (inverse temperature in stage 1),
a2 (learning rate in stage 2), beta2 (inverse temperature in stage 2), pi (perseverance), w (model-
based weight).

• Task: Two-Step Task (Daw et al., 2011)

• Model: Hybrid Model, with 6 parameters (Daw et al., 2011)

Usage

ts_par6(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "sub-
jID", "level1_choice", "level2_choice", "reward". See Details below for more
information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

210 ts_par6

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for
this model.

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred_step1",
"y_pred_step2"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, it’s possible to set model-specific argument(s) as follows:

trans_prob Common state transition probability from Stage (Level) 1 to Stage
(Level) 2. Defaults to 0.7.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the Two-Step Task, there should be 4 columns of data with the labels "subjID", "level1_choice",
"level2_choice", "reward". It is not necessary for the columns to be in this particular order, however
it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

level1_choice Choice made for Level (Stage) 1 (1: stimulus 1, 2: stimulus 2).

level2_choice Choice made for Level (Stage) 2 (1: stimulus 3, 2: stimulus 4, 3: stimulus 5, 4:
stimulus 6).
Note that, in our notation, choosing stimulus 1 in Level 1 leads to stimulus 3 & 4 in Level 2
with a common (0.7 by default) transition. Similarly, choosing stimulus 2 in Level 1 leads to
stimulus 5 & 6 in Level 2 with a common (0.7 by default) transition. To change this default
transition probability, set the function argument ‘trans_prob‘ to your preferred value.

reward Reward after Level 2 (0 or 1).

ts_par6 211

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Contributors: Harhim Park <<hrpark12@gmail.com>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"ts_par6").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Daw, N. D., Gershman, S. J., Seymour, B., Ben Seymour, Dayan, P., & Dolan, R. J. (2011). Model-
Based Influences on Humans’ Choices and Striatal Prediction Errors. Neuron, 69(6), 1204-1215.
https://doi.org/10.1016/j.neuron.2011.02.027

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://ccs-lab.github.io/team/harhim-park/

212 ts_par7

Daw, N. D., Gershman, S. J., Seymour, B., Ben Seymour, Dayan, P., & Dolan, R. J. (2011). Model-
Based Influences on Humans’ Choices and Striatal Prediction Errors. Neuron, 69(6), 1204-1215.
https://doi.org/10.1016/j.neuron.2011.02.027

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- ts_par6(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- ts_par6(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

ts_par7 Hybrid Model, with 7 parameters (original model)

Description

Hierarchical Bayesian Modeling of the Two-Step Task using Hybrid Model, with 7 parameters
(original model). It has the following parameters: a1 (learning rate in stage 1), beta1 (inverse
temperature in stage 1), a2 (learning rate in stage 2), beta2 (inverse temperature in stage 2), pi
(perseverance), w (model-based weight), lambda (eligibility trace).

• Task: Two-Step Task (Daw et al., 2011)

• Model: Hybrid Model, with 7 parameters (original model) (Daw et al., 2011)

https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

ts_par7 213

Usage

ts_par7(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "sub-
jID", "level1_choice", "level2_choice", "reward". See Details below for more
information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for
this model.

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred_step1",
"y_pred_step2"

214 ts_par7

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, it’s possible to set model-specific argument(s) as follows:

trans_prob Common state transition probability from Stage (Level) 1 to Stage
(Level) 2. Defaults to 0.7.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the Two-Step Task, there should be 4 columns of data with the labels "subjID", "level1_choice",
"level2_choice", "reward". It is not necessary for the columns to be in this particular order, however
it is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

level1_choice Choice made for Level (Stage) 1 (1: stimulus 1, 2: stimulus 2).

level2_choice Choice made for Level (Stage) 2 (1: stimulus 3, 2: stimulus 4, 3: stimulus 5, 4:
stimulus 6).
Note that, in our notation, choosing stimulus 1 in Level 1 leads to stimulus 3 & 4 in Level 2
with a common (0.7 by default) transition. Similarly, choosing stimulus 2 in Level 1 leads to
stimulus 5 & 6 in Level 2 with a common (0.7 by default) transition. To change this default
transition probability, set the function argument ‘trans_prob‘ to your preferred value.

reward Reward after Level 2 (0 or 1).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

ts_par7 215

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Contributors: Harhim Park <<hrpark12@gmail.com>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"ts_par7").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Daw, N. D., Gershman, S. J., Seymour, B., Ben Seymour, Dayan, P., & Dolan, R. J. (2011). Model-
Based Influences on Humans’ Choices and Striatal Prediction Errors. Neuron, 69(6), 1204-1215.
https://doi.org/10.1016/j.neuron.2011.02.027

Daw, N. D., Gershman, S. J., Seymour, B., Ben Seymour, Dayan, P., & Dolan, R. J. (2011). Model-
Based Influences on Humans’ Choices and Striatal Prediction Errors. Neuron, 69(6), 1204-1215.
https://doi.org/10.1016/j.neuron.2011.02.027

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- ts_par7(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://ccs-lab.github.io/team/harhim-park/
https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

216 ug_bayes

output <- ts_par7(
data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

ug_bayes Ideal Observer Model

Description

Hierarchical Bayesian Modeling of the Norm-Training Ultimatum Game using Ideal Observer
Model. It has the following parameters: alpha (envy), beta (guilt), tau (inverse temperature).

• Task: Norm-Training Ultimatum Game

• Model: Ideal Observer Model (Xiang et al., 2013)

Usage

ug_bayes(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

ug_bayes 217

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"offer", "accept". See Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for
this model.

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the Norm-Training Ultimatum Game, there should be 3 columns of data with the labels "sub-
jID", "offer", "accept". It is not necessary for the columns to be in this particular order, however it
is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

offer Floating point value representing the offer made in that trial (e.g. 4, 10, 11).

218 ug_bayes

accept 1 or 0, indicating whether the offer was accepted in that trial (where accepted == 1, rejected
== 0).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"ug_bayes").
allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for

each subject.
parVals List object containing the posterior samples over different parameters.
fit A class stanfit object that contains the fitted Stan model.
rawdata Data.frame containing the raw data used to fit the model, as specified by the user.
modelRegressor List object containing the extracted model-based regressors.

References

Xiang, T., Lohrenz, T., & Montague, P. R. (2013). Computational Substrates of Norms and Their Vi-
olations during Social Exchange. Journal of Neuroscience, 33(3), 1099-1108. https://doi.org/10.1523/JNEUROSCI.1642-
12.2013

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/

ug_delta 219

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- ug_bayes(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- ug_bayes(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

ug_delta Rescorla-Wagner (Delta) Model

Description

Hierarchical Bayesian Modeling of the Norm-Training Ultimatum Game using Rescorla-Wagner
(Delta) Model. It has the following parameters: alpha (envy), tau (inverse temperature), ep (norm
adaptation rate).

• Task: Norm-Training Ultimatum Game

• Model: Rescorla-Wagner (Delta) Model (Gu et al., 2015)

Usage

ug_delta(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,

https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

220 ug_delta

ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"offer", "accept". See Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for
this model.

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, there is no model-specific argument.

ug_delta 221

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the Norm-Training Ultimatum Game, there should be 3 columns of data with the labels "sub-
jID", "offer", "accept". It is not necessary for the columns to be in this particular order, however it
is necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

offer Floating point value representing the offer made in that trial (e.g. 4, 10, 11).

accept 1 or 0, indicating whether the offer was accepted in that trial (where accepted == 1, rejected
== 0).

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated
from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Value

A class "hBayesDM" object modelData with the following components:

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/

222 ug_delta

model Character value that is the name of the model (\code"ug_delta").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Gu, X., Wang, X., Hula, A., Wang, S., Xu, S., Lohrenz, T. M., et al. (2015). Necessary, Yet
Dissociable Contributions of the Insular and Ventromedial Prefrontal Cortices to Norm Adapta-
tion: Computational and Lesion Evidence in Humans. Journal of Neuroscience, 35(2), 467-473.
https://doi.org/10.1523/JNEUROSCI.2906-14.2015

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- ug_delta(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Run the model with example data
output <- ug_delta(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

wcs_sql 223

wcs_sql Sequential Learning Model

Description

Hierarchical Bayesian Modeling of the Wisconsin Card Sorting Task using Sequential Learning
Model. It has the following parameters: r (reward sensitivity), p (punishment sensitivity), d (deci-
sion consistency or inverse temperature).

• Task: Wisconsin Card Sorting Task

• Model: Sequential Learning Model (Bishara et al., 2010)

Usage

wcs_sql(
data = NULL,
niter = 4000,
nwarmup = 1000,
nchain = 4,
ncore = 1,
nthin = 1,
inits = "vb",
indPars = "mean",
modelRegressor = FALSE,
vb = FALSE,
inc_postpred = FALSE,
adapt_delta = 0.95,
stepsize = 1,
max_treedepth = 10,
...

)

Arguments

data Data to be modeled. It should be given as a data.frame object, a filepath for a
tab-seperated txt file, "example" to use example data, or "choose" to choose
data with an interactive window. Columns in the dataset must include: "subjID",
"choice", "outcome". See Details below for more information.

niter Number of iterations, including warm-up. Defaults to 4000.

nwarmup Number of iterations used for warm-up only. Defaults to 1000.

nchain Number of Markov chains to run. Defaults to 4.

ncore Number of CPUs to be used for running. Defaults to 1.

nthin Every i == nthin sample will be used to generate the posterior distribution.
Defaults to 1. A higher number can be used when auto-correlation within the
MCMC sampling is high.

224 wcs_sql

inits Character value specifying how the initial values should be generated. Possible
options are "vb" (default), "fixed", "random", or your own initial values.

indPars Character value specifying how to summarize individual parameters. Current
options are: "mean", "median", or "mode".

modelRegressor Whether to export model-based regressors (TRUE or FALSE). Not available for
this model.

vb Use variational inference to approximately draw from a posterior distribution.
Defaults to FALSE.

inc_postpred Include trial-level posterior predictive simulations in model output (may greatly
increase file size). Defaults to FALSE. If set to TRUE, it includes: "y_pred"

adapt_delta Floating point value representing the target acceptance probability of a new sam-
ple in the MCMC chain. Must be between 0 and 1. See Details below.

stepsize Integer value specifying the size of each leapfrog step that the MCMC sampler
can take on each new iteration. See Details below.

max_treedepth Integer value specifying how many leapfrog steps the MCMC sampler can take
on each new iteration. See Details below.

... For this model, there is no model-specific argument.

Details

This section describes some of the function arguments in greater detail.

data should be assigned a character value specifying the full path and name (including extension
information, e.g. ".txt") of the file that contains the behavioral data-set of all subjects of interest for
the current analysis. The file should be a tab-delimited text file, whose rows represent trial-by-trial
observations and columns represent variables.
For the Wisconsin Card Sorting Task, there should be 3 columns of data with the labels "subjID",
"choice", "outcome". It is not necessary for the columns to be in this particular order, however it is
necessary that they be labeled correctly and contain the information below:

subjID A unique identifier for each subject in the data-set.

choice Integer value indicating which deck was chosen on that trial: 1, 2, 3, or 4.

outcome 1 or 0, indicating the outcome of that trial: correct == 1, wrong == 0.

*Note: The file may contain other columns of data (e.g. "ReactionTime", "trial_number", etc.), but
only the data within the column names listed above will be used during the modeling. As long as the
necessary columns mentioned above are present and labeled correctly, there is no need to remove
other miscellaneous data columns.

nwarmup is a numerical value that specifies how many MCMC samples should not be stored upon
the beginning of each chain. For those familiar with Bayesian methods, this is equivalent to burn-in
samples. Due to the nature of the MCMC algorithm, initial values (i.e. where the sampling chains
begin) can have a heavy influence on the generated posterior distributions. The nwarmup argument
can be set to a high number in order to curb the effects that initial values have on the resulting
posteriors.

nchain is a numerical value that specifies how many chains (i.e. independent sampling sequences)
should be used to draw samples from the posterior distribution. Since the posteriors are generated

wcs_sql 225

from a sampling process, it is good practice to run multiple chains to ensure that a reasonably rep-
resentative posterior is attained. When the sampling is complete, it is possible to check the multiple
chains for convergence by running the following line of code: plot(output, type = "trace").
The trace-plot should resemble a "furry caterpillar".

nthin is a numerical value that specifies the "skipping" behavior of the MCMC sampler, using
only every i == nthin samples to generate posterior distributions. By default, nthin is equal to 1,
meaning that every sample is used to generate the posterior.

Control Parameters: adapt_delta, stepsize, and max_treedepth are advanced options that
give the user more control over Stan’s MCMC sampler. It is recommended that only advanced users
change the default values, as alterations can profoundly change the sampler’s behavior. Refer to
’The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo (Hoffman
& Gelman, 2014, Journal of Machine Learning Research)’ for more information on the sampler
control parameters. One can also refer to ’Section 34.2. HMC Algorithm Parameters’ of the Stan
User’s Guide and Reference Manual, or to the help page for stan for a less technical description of
these arguments.

Contributors: Dayeong Min <<mindy2801@snu.ac.kr>>

Value

A class "hBayesDM" object modelData with the following components:

model Character value that is the name of the model (\code"wcs_sql").

allIndPars Data.frame containing the summarized parameter values (as specified by indPars) for
each subject.

parVals List object containing the posterior samples over different parameters.

fit A class stanfit object that contains the fitted Stan model.

rawdata Data.frame containing the raw data used to fit the model, as specified by the user.

modelRegressor List object containing the extracted model-based regressors.

References

Bishara, A. J., Kruschke, J. K., Stout, J. C., Bechara, A., McCabe, D. P., & Busemeyer, J. R. (2010).
Sequential learning models for the Wisconsin card sort task: Assessing processes in substance
dependent individuals. Journal of Mathematical Psychology, 54(1), 5-13.

See Also

We refer users to our in-depth tutorial for an example of using hBayesDM: https://rpubs.com/
CCSL/hBayesDM

Examples

Not run:
Run the model with a given data.frame as df
output <- wcs_sql(

data = df, niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

https://mc-stan.org/users/documentation/
https://mc-stan.org/users/documentation/
https://ccs-lab.github.io/team/dayeong-min/
https://rpubs.com/CCSL/hBayesDM
https://rpubs.com/CCSL/hBayesDM

226 wcs_sql

Run the model with example data
output <- wcs_sql(

data = "example", niter = 2000, nwarmup = 1000, nchain = 4, ncore = 4)

Visually check convergence of the sampling chains (should look like 'hairy caterpillars')
plot(output, type = "trace")

Check Rhat values (all Rhat values should be less than or equal to 1.1)
rhat(output)

Plot the posterior distributions of the hyper-parameters (distributions should be unimodal)
plot(output)

Show the WAIC and LOOIC model fit estimates
printFit(output)

End(Not run)

Index

alt_delta, 5
alt_gamma, 9

bandit2arm_delta, 4, 12
bandit4arm2_kalman_filter, 4, 16
bandit4arm_2par_lapse, 19
bandit4arm_4par, 4, 23
bandit4arm_lapse, 4, 26
bandit4arm_lapse_decay, 29
bandit4arm_singleA_lapse, 33
banditNarm_2par_lapse, 36
banditNarm_4par, 39
banditNarm_delta, 43
banditNarm_kalman_filter, 46
banditNarm_lapse, 50
banditNarm_lapse_decay, 53
banditNarm_singleA_lapse, 57
bart_ewmv, 60
bart_par4, 64

cgt_cm, 4, 67
choiceRT_ddm, 4, 71
choiceRT_ddm_single, 4, 74
choiceRT_lba, 4
choiceRT_lba_single, 4
cra_exp, 4, 77
cra_linear, 4, 81

dbdm_prob_weight, 4, 84
dd_cs, 4, 88
dd_cs_single, 4, 91
dd_exp, 4, 95
dd_hyperbolic, 4, 98
dd_hyperbolic_single, 4, 102

estimate_mode, 105
extract_ic, 105

gng_m1, 4, 106
gng_m2, 4, 109
gng_m3, 4, 113

gng_m4, 4, 116

hBayesDM (hBayesDM-package), 4
hBayesDM-package, 4
HDIofMCMC, 119

igt_orl, 4, 120
igt_pvl_decay, 4, 123
igt_pvl_delta, 4, 127
igt_vpp, 4, 130

multiplot, 134

peer_ocu, 5, 134
plot.hBayesDM, 138
plotDist, 138
plotHDI, 139
plotInd, 140
printFit, 141
prl_ewa, 5, 142
prl_fictitious, 5, 145
prl_fictitious_multipleB, 5, 149
prl_fictitious_rp, 5, 152
prl_fictitious_rp_woa, 5, 156
prl_fictitious_woa, 5, 159
prl_rp, 5, 162
prl_rp_multipleB, 5, 166
pst_gainloss_Q, 5, 180
pst_Q, 184
pstRT_ddm, 169
pstRT_rlddm1, 173
pstRT_rlddm6, 177

ra_noLA, 5, 187
ra_noRA, 5, 191
ra_prospect, 5, 194
rdt_happiness, 5, 198
rhat, 201

stan, 8, 11, 15, 18, 21, 25, 28, 32, 35, 38, 42,
45, 49, 52, 56, 59, 62, 66, 69, 73, 76,

227

228 INDEX

79, 83, 86, 90, 93, 97, 100, 104, 108,
112, 115, 118, 122, 126, 129, 132,
136, 144, 148, 151, 154, 158, 161,
165, 168, 172, 175, 179, 183, 186,
190, 193, 197, 200, 204, 207, 211,
215, 218, 221, 225

stanfit, 8, 11, 15, 18, 22, 25, 28, 32, 35, 39,
42, 45, 49, 52, 56, 59, 63, 66, 70, 73,
76, 80, 83, 87, 90, 94, 97, 101, 104,
109, 112, 115, 119, 122, 126, 129,
133, 137, 144, 148, 151, 155, 158,
162, 165, 168, 172, 176, 179, 183,
187, 190, 193, 197, 200, 204, 208,
211, 215, 218, 222, 225

task2AFC_sdt, 202
ts_par4, 5, 205
ts_par6, 5, 209
ts_par7, 5, 212

ug_bayes, 5, 216
ug_delta, 5, 219

wcs_sql, 223

	hBayesDM-package
	alt_delta
	alt_gamma
	bandit2arm_delta
	bandit4arm2_kalman_filter
	bandit4arm_2par_lapse
	bandit4arm_4par
	bandit4arm_lapse
	bandit4arm_lapse_decay
	bandit4arm_singleA_lapse
	banditNarm_2par_lapse
	banditNarm_4par
	banditNarm_delta
	banditNarm_kalman_filter
	banditNarm_lapse
	banditNarm_lapse_decay
	banditNarm_singleA_lapse
	bart_ewmv
	bart_par4
	cgt_cm
	choiceRT_ddm
	choiceRT_ddm_single
	cra_exp
	cra_linear
	dbdm_prob_weight
	dd_cs
	dd_cs_single
	dd_exp
	dd_hyperbolic
	dd_hyperbolic_single
	estimate_mode
	extract_ic
	gng_m1
	gng_m2
	gng_m3
	gng_m4
	HDIofMCMC
	igt_orl
	igt_pvl_decay
	igt_pvl_delta
	igt_vpp
	multiplot
	peer_ocu
	plot.hBayesDM
	plotDist
	plotHDI
	plotInd
	printFit
	prl_ewa
	prl_fictitious
	prl_fictitious_multipleB
	prl_fictitious_rp
	prl_fictitious_rp_woa
	prl_fictitious_woa
	prl_rp
	prl_rp_multipleB
	pstRT_ddm
	pstRT_rlddm1
	pstRT_rlddm6
	pst_gainloss_Q
	pst_Q
	ra_noLA
	ra_noRA
	ra_prospect
	rdt_happiness
	rhat
	task2AFC_sdt
	ts_par4
	ts_par6
	ts_par7
	ug_bayes
	ug_delta
	wcs_sql
	Index

