hdImpute
: Batched high dimensional imputationhdImpute
is a correlation-based batch process for addressing high dimensional imputation problems. There are relatively few algorithms designed to handle imputation of missing data in high dimensional contexts in a relatively fast, efficient manner. Further, of the existing algorithms, even fewer are flexible enough to natively handle mixed-type data, often requiring a great deal of preprocessing to get the data into proper shape, and then postprocessing to return data to its original form. Such decisions as well as assumptions made by many algorithms regarding for example, the data generating process, limit the performance, flexibility, and usability of the algorithm. Built on top of a recent set of complementary algorithms for nonparametric imputation via chained random forests, missForest
and missRanger
, I offer a batch-based approach for subsetting the data based on ranked cross-feature correlations, and then imputing each batch separately, and then joining imputes subsets in the final step. The process is extremely fast and accurate after a bit of tuning to find the optimal batch size. As a result, high dimensional imputation is more accessible, and researchers are not forced to decide between speed or accuracy.
See the R-Bloggers post covering hdImpute
here.
Note: A detailed complementary paper is currently under review and will be linked here soon.
Dev version:
devtools::install_github("pdwaggoner/hdImpute")
library(hdImpute)
Stable (CRAN) version:
install.packages("hdImpute")
library(hdImpute)
hdImpute
includes four core functions. The first three are to proceed by individual stages ((1) build the correlation matrix, (2) flatten and rank the matrix to give a ranked feature list, and (3) build batches, impute, and join). The fourth function below (hdImpute()
) is meant to run all stages simultaneously, which is slightly less flexible, but much simpler.
feature_cor()
: creates the correlation matrix
flatten_mat()
: flattens the correlation matrix from the previous stage, and ranks the features based on absolute correlations. Thus, the input for flatten_mat()
should be the stored output from feature_cor()
.
impute_batches()
: creates batches based on the feature rankings from flatten_mat()
, and then imputes missing values for each batch, until all batches are completed. Then, joins the batches to give a completed, imputed data set.
hdImpute()
: does everything for you. At a minimum, pass the raw data object (data
) along with specifying the batch size (batch
) to hdImpute()
to return a complete, imputed data set (same as you’d get from the individual stages in the above three functions).
For a complete demonstration of the package, take a look at the vignette.
This software is in its infancy, though an early version is on CRAN. As such, wide engagement with it and collaboration is welcomed! Before collaborating, please take a look at and abide by the contributor code of conduct. Here’s a sampling of how to contribute:
Submit an issue reporting a bug, requesting a feature enhancement, etc.
Suggest changes directly via a pull request
Reach out directly with ideas if you’re uneasy with public interaction
Thanks for using the tool. I hope its useful.