This vignette details the structure and construction of the incidence_fit
and incidence_fit_list
classes, which are produced by the fit()
and fit_optim_split()
functions, respectively. By the end of this tutorial, you should be able to construct incidence_fit
and incidence_fit_list
objects for use with your own models.
incidence_fit
objectAn incidence_fit
object contains three elements:
$model
: The model fit to an incidence
object. Currently, this represents a log-linear model, but it can be any model.$info
: Information derived from the model
r
The growth rater.conf
the confidence interval of r
pred
a data frame containing the predictions of the model using the true dates (dates
), their numeric version used in the model (dates.x
), the predicted value (fit
), and the lower (lwr
) and upper (upr
) bounds of the associated confidence interval.doubling
the predicted doubling time in days (only if r
is positive)doubling.conf
the confidence interval of the doubling timehalving
the predicted halving time in days (only if r
is negative)halving.conf
the confidence interval of the halving time$origin
: the date corresponding to day ‘0’Internally, when fit()
is run, these elements are constructed by function incidence:::extract_info()
. First we need to setup data. We will use simulated Ebola outbreak data from the outbreaks package over weekly intervals and calculate the fit for the first 20 weeks:
library(outbreaks)
library(incidence)
ebola_sim$linelist$date_of_onset
dat <- incidence(dat, interval = "week")
i <-
i#> <incidence object>
#> [5888 cases from days 2014-04-07 to 2015-04-27]
#> [5888 cases from ISO weeks 2014-W15 to 2015-W18]
#>
#> $counts: matrix with 56 rows and 1 columns
#> $n: 5888 cases in total
#> $dates: 56 dates marking the left-side of bins
#> $interval: 1 week
#> $timespan: 386 days
#> $cumulative: FALSE
fit(i[1:20])
f <-
f#> <incidence_fit object>
#>
#> $model: regression of log-incidence over time
#>
#> $info: list containing the following items:
#> $r (daily growth rate):
#> [1] 0.03175771
#>
#> $r.conf (confidence interval):
#> 2.5 % 97.5 %
#> [1,] 0.02596229 0.03755314
#>
#> $doubling (doubling time in days):
#> [1] 21.8261
#>
#> $doubling.conf (confidence interval):
#> 2.5 % 97.5 %
#> [1,] 18.45777 26.69823
#>
#> $pred: data.frame of incidence predictions (20 rows, 5 columns)
plot(i, fit = f)
As you can see, the incidence_fit
object has a print method and a plot method. If you want to access individual elements in the $info
element, you can use the get_info()
function:
get_info(f, "r")
#> [1] 0.03175771
get_info(f, "r.conf")
#> 2.5 % 97.5 %
#> [1,] 0.02596229 0.03755314
get_info(f, "doubling.conf")
#> 2.5 % 97.5 %
#> [1,] 18.45777 26.69823
This will be important later when we combine several incidence_fit
objects into a single incidence_fit_list
.
incidence_fit
object from scratchThe incidence_fit
object can be constructed from any model from which you can derive the daily growth rate, doubling/halving times, predictions, and confidence intervals. The following three steps show roughly how it is done from model fitting to construction.
The default model for fit()
is a log-linear model on the intervals between dates. To fit this model, we will need to create a data frame with the counts and the midpoints of the intervals:
# ensure all dates have at least one incidence
i[1:20]
i2 <- i2[apply(get_counts(i2), 1, min) > 0]
i2 <- as.data.frame(i2, long = TRUE)
df <-$dates.x <- get_dates(i2, position = "center", count_days = TRUE)
dfhead(df)
#> dates weeks isoweeks counts dates.x
#> 1 2014-04-07 2014-W15 2014-W15 1 3.5
#> 2 2014-04-14 2014-W16 2014-W16 1 10.5
#> 3 2014-04-21 2014-W17 2014-W17 5 17.5
#> 4 2014-04-28 2014-W18 2014-W18 4 24.5
#> 5 2014-05-05 2014-W19 2014-W19 12 31.5
#> 6 2014-05-12 2014-W20 2014-W20 18 38.5
stats::lm(log(counts) ~ dates.x, data = df)
lm1 <-
lm1#>
#> Call:
#> stats::lm(formula = log(counts) ~ dates.x, data = df)
#>
#> Coefficients:
#> (Intercept) dates.x
#> 0.81660 0.03176
If we compare that to the $model
element produced from fit()
, we can see that it is identical:
all.equal(f$model, lm1)
#> [1] TRUE
$info
list:The $info
list is created directly from the model itself:
stats::coef(lm1)["dates.x"]
r <- stats::confint(lm1, "dates.x", 0.95)
r.conf <- data.frame(dates.x = sort(unique(lm1$model$dates.x)))
new.data <- exp(stats::predict(lm1, newdata = new.data, interval = "confidence",
pred <-level = 0.95))
cbind.data.frame(new.data, pred)
pred <- list(
info_list <-r = r,
r.conf = r.conf,
doubling = log(2) / r,
doubling.conf = log(2) / r.conf,
pred = pred
)
info_list#> $r
#> dates.x
#> 0.03175771
#>
#> $r.conf
#> 2.5 % 97.5 %
#> dates.x 0.02596229 0.03755314
#>
#> $doubling
#> dates.x
#> 21.8261
#>
#> $doubling.conf
#> 2.5 % 97.5 %
#> dates.x 26.69823 18.45777
#>
#> $pred
#> dates.x fit lwr upr
#> 1 3.5 2.528815 1.611099 3.969283
#> 2 10.5 3.158367 2.082082 4.791013
#> 3 17.5 3.944645 2.687383 5.790104
#> 4 24.5 4.926668 3.463102 7.008763
#> 5 31.5 6.153167 4.453513 8.501484
#> 6 38.5 7.685004 5.711842 10.339797
#> 7 45.5 9.598194 7.300398 12.619220
#> 8 52.5 11.987674 9.289763 15.469105
#> 9 59.5 14.972017 11.757263 19.065771
#> 10 66.5 18.699315 14.786028 23.648299
#> 11 73.5 23.354529 18.467024 29.535566
#> 12 80.5 29.168662 22.905640 37.144163
#> 13 87.5 36.430229 28.231348 47.010209
#> 14 94.5 45.499570 34.607028 59.820534
#> 15 101.5 56.826734 42.236196 76.457588
#> 16 108.5 70.973805 51.369116 98.060497
#> 17 115.5 88.642805 62.309665 126.104782
#> 18 122.5 110.710519 75.424156 162.505217
#> 19 129.5 138.272012 91.152689 209.748604
#> 20 136.5 172.694966 110.023332 271.065700
the last step is to combine everything into a list and create the object.
min(get_dates(i2))
origin <-$pred$dates <- origin + info_list$pred$dates.x
info_list list(
the_fit <-lm = lm1,
info = info_list,
origin = min(get_dates(i2))
)class(the_fit) <- "incidence_fit"
the_fit#> <incidence_fit object>
#>
#> $model: regression of log-incidence over time
#>
#> $info: list containing the following items:
#> $r (daily growth rate):
#> dates.x
#> 0.03175771
#>
#> $r.conf (confidence interval):
#> 2.5 % 97.5 %
#> dates.x 0.02596229 0.03755314
#>
#> $doubling (doubling time in days):
#> dates.x
#> 21.8261
#>
#> $doubling.conf (confidence interval):
#> 2.5 % 97.5 %
#> dates.x 26.69823 18.45777
#>
#> $pred: data.frame of incidence predictions (20 rows, 5 columns)
plot(i, fit = the_fit)
incidence_fit_list
objectThere are several reasons for having multiple fits to a single incidence
object. One may want to have a separate fit for different groups represented in the object, or one may want to split the fits at the peak of the epidemic. To aid in plotting and summarizing the different fits, we’ve created the incidence_fit_list
class. This class has two defining features:
incidence_fit
objects or lists containing incidence_fit
objects.incidence_fit
objects in the object. Each list element contains a vector that defines where an incidence_fit
object is within the incidence_fit_list
.The reason for this structure is because it is sometimes necessary to nest lists of incidence_fit
objects within lists. When this happens, accessing individual elements of the objects cumbersome. To alleviate this, each object has a distinct path within the named list in the “locations” attribute that allows one to access the object directly since R allows you to traverse the elements of a nested list by subsetting with a vector:
list(a = list(b = 1, c = 2),d = list(e = list(f = 3, g = 4), h = 5))
l <-str(l)
#> List of 2
#> $ a:List of 2
#> ..$ b: num 1
#> ..$ c: num 2
#> $ d:List of 2
#> ..$ e:List of 2
#> .. ..$ f: num 3
#> .. ..$ g: num 4
#> ..$ h: num 5
c("a", "b")]]
l[[#> [1] 1
c("d", "e", "f")]]
l[[#> [1] 3
The function fit_optim_split()
attempts to find the optimal split point in an epicurve, producing an incidence_fit_list
object in the $fit
element of the returned list:
fit_optim_split(i)
fl <-$fit
fl#> <list of incidence_fit objects>
#>
#> attr(x, 'locations'): list of vectors with the locations of each incidence_fit object
#>
#> 'before'
#> 'after'
#>
#> $model: regression of log-incidence over time
#>
#> $info: list containing the following items:
#> $r (daily growth rate):
#> before after
#> 0.02982209 -0.01016191
#>
#> $r.conf (confidence interval):
#> 2.5 % 97.5 %
#> before 0.02608945 0.033554736
#> after -0.01102526 -0.009298561
#>
#> $doubling (doubling time in days):
#> before
#> 23.24274
#>
#> $doubling.conf (confidence interval):
#> 2.5 % 97.5 %
#> before 20.65721 26.5681
#>
#> $halving (halving time in days):
#> after
#> 68.21031
#>
#> $halving.conf (confidence interval):
#> 2.5 % 97.5 %
#> after 62.86899 74.54349
#>
#> $pred: data.frame of incidence predictions (57 rows, 6 columns)
plot(i, fit = fl$fit)
Here you can see that the object looks very similar to the incidence_fit
object, but it has extra information. The first thing you may notice is the fact that both “doubling” and “halving” are shown. This is because the two fits have different signs for the daily growth rate. The second thing you may notice is the fact that there is something called attr(x, 'locations')
. This attribute gives the location of the incidence_fit
objects within the list. We can illustrate how this works if we look at the structure of the object:
str(fl$fit, max.level = 2)
#> List of 2
#> $ before:List of 3
#> ..$ model :List of 12
#> .. ..- attr(*, "class")= chr "lm"
#> ..$ info :List of 5
#> ..$ origin: Date[1:1], format: "2014-04-07"
#> ..- attr(*, "class")= chr "incidence_fit"
#> $ after :List of 3
#> ..$ model :List of 12
#> .. ..- attr(*, "class")= chr "lm"
#> ..$ info :List of 5
#> ..$ origin: Date[1:1], format: "2014-09-22"
#> ..- attr(*, "class")= chr "incidence_fit"
#> - attr(*, "locations")=List of 2
#> ..$ : chr "before"
#> ..$ : chr "after"
#> - attr(*, "class")= chr "incidence_fit_list"
Internally, all of the methods for incidence_fit_list
use the ‘locations’ attribute to navigate:
methods(class = "incidence_fit_list")
#> [1] get_fit get_info plot print
#> see '?methods' for accessing help and source code
For example, it’s often useful to extract the growth rate for all models at once. The get_info()
method allows us to do this easily:
get_info(fl$fit, "r")
#> before after
#> 0.02982209 -0.01016191
get_info(fl$fit, "r.conf")
#> 2.5 % 97.5 %
#> before 0.02608945 0.033554736
#> after -0.01102526 -0.009298561
Because doubling or halving is determined by whether or not r
is negative, we automatically filter out the results that don’t make sense, but you can include them with na.rm = FALSE
:
get_info(fl$fit, "doubling.conf")
#> 2.5 % 97.5 %
#> before 20.65721 26.5681
get_info(fl$fit, "doubling.conf", na.rm = FALSE)
#> 2.5 % 97.5 %
#> before 20.65721 26.5681
#> after NA NA
Above, we showed the example of a basic incidence_fit_list
class with two objects representing the fits before and after the peak of an epicurve. However, it is often useful evaluate fits for different groups separately. Here, we will construct an incidence object, but define groups by gender:
ebola_sim$linelist$gender
gen <- incidence(dat, interval = "week", group = gen)
ig <-plot(ig, border = "grey98")
Now if we calculate an optimal fit split, we will end up with four different fits: two for each defined gender.
fit_optim_split(ig)
fg <-plot(ig, fit = fg$fit, border = "grey98", stack = FALSE)
#> Scale for 'colour' is already present. Adding another scale for 'colour',
#> which will replace the existing scale.
#> Scale for 'colour' is already present. Adding another scale for 'colour',
#> which will replace the existing scale.
#> Scale for 'colour' is already present. Adding another scale for 'colour',
#> which will replace the existing scale.
#> Scale for 'colour' is already present. Adding another scale for 'colour',
#> which will replace the existing scale.
If we look at the fit object, we can see again that it is an incidence_fit_list
but this time with four fits defined.
$fit
fg#> <list of incidence_fit objects>
#>
#> attr(x, 'locations'): list of vectors with the locations of each incidence_fit object
#>
#> 'f', 'before'
#> 'm', 'before'
#> 'f', 'after'
#> 'm', 'after'
#>
#> $model: regression of log-incidence over time
#>
#> $info: list containing the following items:
#> $r (daily growth rate):
#> f_before m_before f_after m_after
#> 0.02570604 0.02883607 -0.01002297 -0.01038307
#>
#> $r.conf (confidence interval):
#> 2.5 % 97.5 %
#> f_before 0.02289333 0.028518743
#> m_before 0.02502254 0.032649606
#> f_after -0.01102735 -0.009018595
#> m_after -0.01138910 -0.009377034
#>
#> $doubling (doubling time in days):
#> f_before m_before
#> 26.96437 24.03750
#>
#> $doubling.conf (confidence interval):
#> 2.5 % 97.5 %
#> f_before 24.30497 30.27725
#> m_before 21.22988 27.70091
#>
#> $halving (halving time in days):
#> f_after m_after
#> 69.15586 66.75746
#>
#> $halving.conf (confidence interval):
#> 2.5 % 97.5 %
#> f_after 62.85711 76.85756
#> m_after 60.86059 73.91966
#>
#> $pred: data.frame of incidence predictions (111 rows, 7 columns)
str(fg$fit, max.level = 3)
#> List of 2
#> $ f:List of 2
#> ..$ before:List of 3
#> .. ..$ model :List of 12
#> .. .. ..- attr(*, "class")= chr "lm"
#> .. ..$ info :List of 5
#> .. ..$ origin: Date[1:1], format: "2014-04-07"
#> .. ..- attr(*, "class")= chr "incidence_fit"
#> ..$ after :List of 3
#> .. ..$ model :List of 12
#> .. .. ..- attr(*, "class")= chr "lm"
#> .. ..$ info :List of 5
#> .. ..$ origin: Date[1:1], format: "2014-09-22"
#> .. ..- attr(*, "class")= chr "incidence_fit"
#> ..- attr(*, "locations")=List of 2
#> .. ..$ : chr "before"
#> .. ..$ : chr "after"
#> ..- attr(*, "class")= chr "incidence_fit_list"
#> $ m:List of 2
#> ..$ before:List of 3
#> .. ..$ model :List of 12
#> .. .. ..- attr(*, "class")= chr "lm"
#> .. ..$ info :List of 5
#> .. ..$ origin: Date[1:1], format: "2014-04-14"
#> .. ..- attr(*, "class")= chr "incidence_fit"
#> ..$ after :List of 3
#> .. ..$ model :List of 12
#> .. .. ..- attr(*, "class")= chr "lm"
#> .. ..$ info :List of 5
#> .. ..$ origin: Date[1:1], format: "2014-09-15"
#> .. ..- attr(*, "class")= chr "incidence_fit"
#> ..- attr(*, "locations")=List of 2
#> .. ..$ : chr "before"
#> .. ..$ : chr "after"
#> ..- attr(*, "class")= chr "incidence_fit_list"
#> - attr(*, "locations")=List of 4
#> ..$ : chr [1:2] "f" "before"
#> ..$ : chr [1:2] "m" "before"
#> ..$ : chr [1:2] "f" "after"
#> ..$ : chr [1:2] "m" "after"
#> - attr(*, "class")= chr "incidence_fit_list"
Notice that the nested lists themselves are of class
incidence_fit_list
.
Now, even though the fits within nested lists, the ‘locations’ attributes still defines where they are within the object so that the get_info()
function still operates normally:
get_info(fg$fit, "r.conf")
#> 2.5 % 97.5 %
#> f_before 0.02289333 0.028518743
#> m_before 0.02502254 0.032649606
#> f_after -0.01102735 -0.009018595
#> m_after -0.01138910 -0.009377034
If you need to access all the fits easily, a convenience function to flatten the list is available in get_fit()
:
str(get_fit(fg$fit), max.level = 2)
#> List of 4
#> $ f_before:List of 3
#> ..$ model :List of 12
#> .. ..- attr(*, "class")= chr "lm"
#> ..$ info :List of 5
#> ..$ origin: Date[1:1], format: "2014-04-07"
#> ..- attr(*, "class")= chr "incidence_fit"
#> $ m_before:List of 3
#> ..$ model :List of 12
#> .. ..- attr(*, "class")= chr "lm"
#> ..$ info :List of 5
#> ..$ origin: Date[1:1], format: "2014-04-14"
#> ..- attr(*, "class")= chr "incidence_fit"
#> $ f_after :List of 3
#> ..$ model :List of 12
#> .. ..- attr(*, "class")= chr "lm"
#> ..$ info :List of 5
#> ..$ origin: Date[1:1], format: "2014-09-22"
#> ..- attr(*, "class")= chr "incidence_fit"
#> $ m_after :List of 3
#> ..$ model :List of 12
#> .. ..- attr(*, "class")= chr "lm"
#> ..$ info :List of 5
#> ..$ origin: Date[1:1], format: "2014-09-15"
#> ..- attr(*, "class")= chr "incidence_fit"
Because all that defines an incidence_fit_list
is the class definition and the ‘locations’ attribute that defines the positions of the incidence_fit
objects within the nesting, then it’s also possible to define the output of fit_optim_split()
as an incidence_fit_list
class:
print(locs <- attributes(fg$fit)$locations)
#> [[1]]
#> [1] "f" "before"
#>
#> [[2]]
#> [1] "m" "before"
#>
#> [[3]]
#> [1] "f" "after"
#>
#> [[4]]
#> [1] "m" "after"
for (i in seq_along(locs)) {
c("fit", locs[[i]])
locs[[i]] <-
}print(locs)
#> [[1]]
#> [1] "fit" "f" "before"
#>
#> [[2]]
#> [1] "fit" "m" "before"
#>
#> [[3]]
#> [1] "fit" "f" "after"
#>
#> [[4]]
#> [1] "fit" "m" "after"
fg
fg.ifl <-attributes(fg.ifl)$locations<- locs
class(fg.ifl) <- "incidence_fit_list"
Now when we print the object, we can see that it prints only the information related to the incidence_fit_list
:
fg.ifl#> <list of incidence_fit objects>
#>
#> attr(x, 'locations'): list of vectors with the locations of each incidence_fit object
#>
#> 'fit', 'f', 'before'
#> 'fit', 'm', 'before'
#> 'fit', 'f', 'after'
#> 'fit', 'm', 'after'
#>
#> $model: regression of log-incidence over time
#>
#> $info: list containing the following items:
#> $r (daily growth rate):
#> fit_f_before fit_m_before fit_f_after fit_m_after
#> 0.02570604 0.02883607 -0.01002297 -0.01038307
#>
#> $r.conf (confidence interval):
#> 2.5 % 97.5 %
#> fit_f_before 0.02289333 0.028518743
#> fit_m_before 0.02502254 0.032649606
#> fit_f_after -0.01102735 -0.009018595
#> fit_m_after -0.01138910 -0.009377034
#>
#> $doubling (doubling time in days):
#> fit_f_before fit_m_before
#> 26.96437 24.03750
#>
#> $doubling.conf (confidence interval):
#> 2.5 % 97.5 %
#> fit_f_before 24.30497 30.27725
#> fit_m_before 21.22988 27.70091
#>
#> $halving (halving time in days):
#> fit_f_after fit_m_after
#> 69.15586 66.75746
#>
#> $halving.conf (confidence interval):
#> 2.5 % 97.5 %
#> fit_f_after 62.85711 76.85756
#> fit_m_after 60.86059 73.91966
#>
#> $pred: data.frame of incidence predictions (111 rows, 7 columns)
But, we still retain all of the extra information in the list:
str(fg.ifl, max.level = 1)
#> List of 4
#> $ df :'data.frame': 26 obs. of 3 variables:
#> $ plot :List of 9
#> ..- attr(*, "class")= chr [1:2] "gg" "ggplot"
#> $ split: Date[1:2], format: "2014-09-22" "2014-09-15"
#> ..- attr(*, "names")="f" "m"
#> $ fit :List of 2
#> ..- attr(*, "locations")=List of 4
#> ..- attr(*, "class")= chr "incidence_fit_list"
#> - attr(*, "locations")=List of 4
#> - attr(*, "class")= chr "incidence_fit_list"
$split
fg.ifl#> f m
#> "2014-09-22" "2014-09-15"
$df
fg.ifl#> dates mean.R2 groups
#> 1 2014-08-04 0.7546016 f
#> 2 2014-08-11 0.8096672 f
#> 3 2014-08-18 0.8513743 f
#> 4 2014-08-25 0.8864424 f
#> 5 2014-09-01 0.9165063 f
#> 6 2014-09-08 0.9270248 f
#> 7 2014-09-15 0.9345352 f
#> 8 2014-09-22 0.9350323 f
#> 9 2014-09-29 0.9339121 f
#> 10 2014-10-06 0.9288956 f
#> 11 2014-10-13 0.9226037 f
#> 12 2014-10-20 0.9122727 f
#> 13 2014-10-27 0.9027890 f
#> 14 2014-08-04 0.7566712 m
#> 15 2014-08-11 0.8164693 m
#> 16 2014-08-18 0.8567850 m
#> 17 2014-08-25 0.8820669 m
#> 18 2014-09-01 0.9006668 m
#> 19 2014-09-08 0.9166004 m
#> 20 2014-09-15 0.9271862 m
#> 21 2014-09-22 0.9263339 m
#> 22 2014-09-29 0.9260695 m
#> 23 2014-10-06 0.9216350 m
#> 24 2014-10-13 0.9144120 m
#> 25 2014-10-20 0.9077086 m
#> 26 2014-10-27 0.8966333 m
$plot fg.ifl