
Package ‘influential’
August 6, 2022

Type Package

Title Identification and Classification of the Most Influential Nodes

Language en-US

Version 2.2.6

Author Abbas (Adrian) Salavaty [aut, cre], Mirana Ramialison [ths], Peter D. Currie [ths]

Maintainer Adrian Salavaty <abbas.salavaty@gmail.com>

Description Contains functions for the classification and ranking of top candidate features, reconstruc-
tion of networks from
adjacency matrices and data frames, analysis of the topology of the network
and calculation of centrality measures, and identification of the most
influential nodes. Also, a function is provided for running SIRIR model, which
is the combination of leave-one-out cross validation technique and the conven-
tional SIR model, on a network to unsupervisedly rank the true influence of vertices. Addition-
ally, some functions have been provided for the assessment
of dependence and correlation of two network centrality measures as well as
the conditional probability of deviation from their corresponding means in opposite direction.
Fred Viole and David Nawrocki (2013, ISBN:1490523995).
Csardi G, Nepusz T (2006). ``The igraph software package for complex network research.'' Inter-
Journal, Complex Systems, 1695.
Adopted algorithms and sources are referenced in function document.

Imports igraph, janitor, ranger, coop, data.table, ggplot2

Suggests Hmisc (>= 4.3-0), mgcv (>= 1.8-31), nortest (>= 1.0-4), NNS
(>= 0.4.7.1), parallel, shiny, shinythemes, shinyWidgets,
shinyjs, shinycssloaders, colourpicker, magrittr, DT, knitr,
rmarkdown

Depends R (>= 2.10)

URL https://github.com/asalavaty/influential,

https://asalavaty.github.io/influential/

BugReports https://github.com/asalavaty/influential/issues

License GPL-3

Encoding UTF-8

1

https://github.com/asalavaty/influential
https://asalavaty.github.io/influential/
https://github.com/asalavaty/influential/issues

2 R topics documented:

LazyData true

RoxygenNote 7.2.1

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2022-08-06 07:30:06 UTC

R topics documented:

betweenness . 3
centrality.measures . 4
cent_network.vis . 5
clusterRank . 8
coexpression.adjacency . 9
coexpression.data . 10
collective.influence . 10
comp_manipulate . 11
cond.prob.analysis . 13
degree . 14
diff_data.assembly . 15
double.cent.assess . 16
double.cent.assess.noRegression . 17
exir . 19
exir.vis . 22
fcor . 25
graph_from_adjacency_matrix . 26
graph_from_data_frame . 27
graph_from_incidence_matrix . 28
hubness.score . 29
h_index . 31
ivi . 32
ivi.from.indices . 33
lh_index . 34
neighborhood.connectivity . 35
runShinyApp . 36
sif2igraph . 37
sirir . 37
spreading.score . 39
V . 40

Index 41

betweenness 3

betweenness Vertex betweenness centrality

Description

This function and all of its descriptions have been obtained from the igraph package.

Usage

betweenness(
graph,
v = V(graph),
directed = TRUE,
weights = NULL,
normalized = FALSE,
...

)

Arguments

graph The graph to analyze (an igraph graph).

v The vertices for which the vertex betweenness will be calculated.

directed Logical, whether directed paths should be considered while determining the
shortest paths.

weights Optional positive weight vector for calculating weighted betweenness. If the
graph has a weight edge attribute, then this is used by default. Weights are used
to calculate weighted shortest paths, so they are interpreted as distances.

normalized Logical scalar, whether to normalize the betweenness scores. If TRUE, then the
results are normalized.

... Additional arguments according to the original betweenness function in the
package igraph.

Value

A numeric vector with the betweenness score for each vertex in v.

See Also

ivi, cent_network.vis, and betweenness for a complete description on this function

Other centrality functions: clusterRank(), collective.influence(), degree(), h_index(),
lh_index(), neighborhood.connectivity(), sirir()

4 centrality.measures

Examples

MyData <- coexpression.data
My_graph <- graph_from_data_frame(MyData)
GraphVertices <- V(My_graph)
My_graph_betweenness <- betweenness(My_graph, v = GraphVertices,

directed = FALSE, normalized = FALSE)

centrality.measures Centrality measures dataset

Description

The centrality measures of a co-expression network of lncRNAs and mRNAs in lung adenocarci-
noma

Usage

centrality.measures

Format

A data frame with 794 rows and 6 variables:

\

DC Degree Centrality

CR ClusterRank

NC Neighborhood Connectivity

LH_index Local H-index

BC Betweenness Centrality

CI Collective Influence ...

Source

https://pubmed.ncbi.nlm.nih.gov/31211495/

https://pubmed.ncbi.nlm.nih.gov/31211495/

cent_network.vis 5

cent_network.vis Centrality-based network visualization

Description

This function has been developed for the visualization of a network based on applying a cen-
trality measure to the size and color of network nodes. You are also able to adjust the direct-
edness and weight of connections. Some of the documentations of the arguments of this func-
tion have been adapted from ggplot2 and igraph packages. A shiny app has also been devel-
oped for the calculation of IVI as well as IVI-based network visualization, which is accessible
using the ‘influential::runShinyApp("IVI")‘ command. You can also access the shiny app online at
https://influential.erc.monash.edu/.

Usage

cent_network.vis(
graph,
cent.metric,
layout = "kk",
node.color = "viridis",
node.size.min = 3,
node.size.max = 15,
dist.power = 1,
node.shape = "circle",
stroke.size = 1.5,
stroke.color = "identical",
stroke.alpha = 0.6,
show.labels = TRUE,
label.cex = 0.4,
label.color = "black",
directed = FALSE,
arrow.width = 25,
arrow.length = 0.07,
edge.width = 0.5,
weighted = FALSE,
edge.width.min = 0.2,
edge.width.max = 1,
edge.color = "grey75",
edge.linetype = "solid",
legend.position = "right",
legend.direction = "vertical",
legend.title = "Centrality\nmeasure",
boxed.legend = TRUE,
show.plot.title = TRUE,
plot.title = "Centrality Measure-based Network",
title.position = "center",
show.bottom.border = TRUE,

6 cent_network.vis

show.left.border = TRUE,
seed = 1234

)

Arguments

graph A graph (network) of the igraph class.

cent.metric A numeric vector of the desired centrality measure previously calculated by any
means. For example, you may use the function ivi for the calculation of the
Integrated Value of Influence (IVI) of network nodes. Please note that if the cen-
trality measure has been calculated by any means other than the influential
package, make sure that the order of the values in the cent.metric vector is
consistent with the order of vertices in the network (V(graph)).

layout The layout to be used for organizing network nodes. Current available layouts
include "kk", "star", "tree", "components", "circle", "automatic", "grid","sphere",
"random", "dh", "drl", "fr", "gem", "graphopt", "lgl", "mds", and "sugiyama"
(default is set to "kk"). For a complete description of different layouts and their
underlying algorithms please refer to the function layout_.

node.color A character string indicating the colormap option to use. Five options are avail-
able: "magma" (or "A"), "inferno" (or "B"), "plasma" (or "C"), "viridis" (or "D",
the default option) and "cividis" (or "E").

node.size.min The size of nodes with the lowest value of the centrality measure (default is set
to 3).

node.size.max The size of nodes with the highest value of the centrality measure (default is set
to 15).

dist.power The power to be used to visualize more distinction between nodes with high and
low centrality measure values. The higher the power, the smaller the nodes with
lower values of the centrality measure will become. Default is set to 1, meaning
the relative sizes of nodes are reflective of their actual centrality measure values.

node.shape The shape of nodes. Current available shapes include "circle","square",
"diamond", "triangle", and "inverted triangle" (default is set to "circle").
You can also set different shapes to different groups of nodes by providing a
character vector of shapes of nodes with the same length and order of network
vertices. This is useful when plotting a network that include different type of
node (for example, up- and down-regulated features).

stroke.size The size of stroke (border) around the nodes (default is set to 1.5).

stroke.color The color of stroke (border) around the nodes (default is set to "identical" mean-
ing that the stroke color of a node will be identical to its corresponding node
color). You can also set different colors to different groups of nodes by pro-
viding a character vector of colors of nodes with the same length and order of
network vertices. This is useful when plotting a network that include different
type of node (for example, up- and down-regulated features).

stroke.alpha The transparency of the stroke (border) around the nodes which should be a
number between 0 and 1 (default is set to 0.6).

show.labels Logical scalar, whether to show node labels or not (default is set to TRUE).

cent_network.vis 7

label.cex The amount by which node labels should be scaled relative to the node sizes
(default is set to 0.4).

label.color The color of node labels (default is set to "black").

directed Logical scalar, whether to draw the network as directed or not (default is set to
FALSE).

arrow.width The width of arrows in the case the network is directed (default is set to 25).

arrow.length The length of arrows in inch in the case the network is directed (default is set to
0.07).

edge.width The constant width of edges if the network is unweighted (default is set to 0.5).

weighted Logical scalar, whether the network is a weighted network or not (default is set
to FALSE).

edge.width.min The width of edges with the lowest weight (default is set to 0.2). This parameter
is ignored for unweighted networks.

edge.width.max The width of edges with the highest weight (default is set to 1). This parameter
is ignored for unweighted networks.

edge.color The color of edges (default is set to "grey75").

edge.linetype The line type of edges. Current available linetypes include "twodash", "longdash",
"dotdash", "dotted", "dashed", and "solid" (default is set to "solid").

legend.position

The position of legends ("none", "left", "right", "bottom", "top", or two-element
numeric vector). The default is set to "right".

legend.direction

layout of items in legends ("horizontal" or "vertical"). The default is set to "ver-
tical".

legend.title The legend title in the string format (default is set to "Centrality measure").

boxed.legend Logical scalar, whether to draw a box around the legend or not (default is set to
TRUE).

show.plot.title

Logical scalar, whether to show the plot title or not (default is set to TRUE).

plot.title The plot title in the string format (default is set to "Centrality Measure-based
Network").

title.position The position of title ("left", "center", or "right"). The default is set to "center".
show.bottom.border

Logical scalar, whether to draw the bottom border line (default is set to TRUE).
show.left.border

Logical scalar, whether to draw the left border line (default is set to TRUE).

seed A single value, interpreted as an integer to be used for random number genera-
tion for preparing the network layout (default is set to 1234).

Value

A plot with the class ggplot.

8 clusterRank

See Also

ivi

Other visualization functions: exir.vis()

Examples

Not run:
MyData <- coexpression.data
My_graph <- graph_from_data_frame(MyData)
Graph_IVI <- ivi(graph = My_graph, mode = "all")
Graph_IVI_plot <- cent_network.vis(graph = My_graph, cent.metric = Graph_IVI,

legend.title = "IVI",
plot.title = "IVI-based Network")

End(Not run)

clusterRank ClusterRank (CR)

Description

This function calculates the ClusterRank of input vertices and works with both directed and undi-
rected networks. This function and all of its descriptions have been adapted from the centiserve
package with some minor modifications. ClusterRank is a local ranking algorithm which takes into
account not only the number of neighbors and the neighbors’ influences, but also the clustering
coefficient.

Usage

clusterRank(graph, vids = V(graph), directed = FALSE, loops = TRUE)

Arguments

graph The input graph as igraph object

vids Vertex sequence, the vertices for which the centrality values are returned. De-
fault is all vertices.

directed Logical scalar, whether to directed graph is analyzed. This argument is ignored
for undirected graphs.

loops Logical; whether the loop edges are also counted.

Value

A numeric vector contaning the ClusterRank centrality scores for the selected vertices.

coexpression.adjacency 9

See Also

ivi, cent_network.vis

Other centrality functions: betweenness(), collective.influence(), degree(), h_index(),
lh_index(), neighborhood.connectivity(), sirir()

Examples

MyData <- coexpression.data
My_graph <- graph_from_data_frame(MyData)
GraphVertices <- V(My_graph)
cr <- clusterRank(graph = My_graph, vids = GraphVertices, directed = FALSE, loops = TRUE)

coexpression.adjacency

Adjacency matrix

Description

The adjacency matrix of a co-expression network of lncRNAs and mRNAs in lung adenocarcinoma
that was generated using igraph functions

Usage

coexpression.adjacency

Format

A data frame with 794 rows and 794 variables:

lncRNA lncRNA symbol

lncRNA lncRNA symbol ...

Source

https://pubmed.ncbi.nlm.nih.gov/31211495/

https://pubmed.ncbi.nlm.nih.gov/31211495/

10 collective.influence

coexpression.data Co-expression dataset

Description

A co-expression dataset of lncRNAs and mRNAs in lung adenocarcinoma

Usage

coexpression.data

Format

A data frame with 2410 rows and 2 variables:

lncRNA lncRNA symbol

Coexpressed.Gene Co-expressed gene symbol ...

Source

https://pubmed.ncbi.nlm.nih.gov/31211495/

collective.influence Collective Influence (CI)

Description

This function calculates the collective influence of input vertices and works with both directed and
undirected networks. This function and its descriptions are obtained from https://github.com/ronammar/collective_influence
with minor modifications. Collective Influence as described by Morone & Makse (2015). In simple
terms, it is the product of the reduced degree (degree - 1) of a node and the total reduced degree of
all nodes at a distance d from the node.

Usage

collective.influence(graph, vertices = V(graph), mode = "all", d = 3)

Arguments

graph A graph (network) of the igraph class.

vertices A vector of desired vertices, which could be obtained by the V function.

mode The mode of collective influence depending on the directedness of the graph. If
the graph is undirected, the mode "all" should be specified. Otherwise, for the
calculation of collective influence based on incoming connections select "in"
and for the outgoing connections select "out". Also, if all of the connections are
desired, specify the "all" mode. Default mode is set to "all".

https://pubmed.ncbi.nlm.nih.gov/31211495/

comp_manipulate 11

d The distance, expressed in number of steps from a given node (default=3). Dis-
tance must be > 0. According to Morone & Makse (https://doi.org/10.1038/nature14604),
optimal results can be reached at d=3,4, but this depends on the size/"radius" of
the network. NOTE: the distance d is not inclusive. This means that nodes at a
distance of 3 from our node-of-interest do not include nodes at distances 1 and
2. Only 3.

Value

A vector of collective influence for each vertex of the graph corresponding to the order of vertices
output by V(graph).

See Also

ivi, cent_network.vis

Other centrality functions: betweenness(), clusterRank(), degree(), h_index(), lh_index(),
neighborhood.connectivity(), sirir()

Examples

MyData <- coexpression.data
My_graph <- graph_from_data_frame(MyData)
GraphVertices <- V(My_graph)
ci <- collective.influence(graph = My_graph, vertices = GraphVertices, mode = "all", d=3)

comp_manipulate Computational manipulation of cells

Description

This function works based on the SIRIR (SIR-based Influence Ranking) model and could be ap-
plied on the output of the ExIR model or any other independent association network. For feature
(gene/protein/etc.) knockout the SIRIR model is used to remove the feature from the network and
assess its impact on the flow of information (signaling) within the network. On the other hand, in
case of up-regulation a node similar to the desired node is added to the network with exactly the
same connections (edges) as of the original node. Next, the SIRIR model is used to evaluate the
difference in the flow of information/signaling after adding (up-regulating) the desired feature/node
compared with the original network. In case you are applying this function on the output of ExIR
model, you may note that as the gene/protein knockout would impact on the integrity of the under-
investigation network as well as the networks of other overlapping biological processes/pathways,
it is recommended to select those features that simultaneously have the highest (most significant)
ExIR-based rank and lowest knockout rank. In contrast, as the up-regulation would not affect the
integrity of the network, you may select the features with highest (most significant) ExIR-based and
up-regulation-based ranks. A shiny app has also been developed for Running the ExIR model, vi-
sualization of its results as well as computational simulation of knockout and/or up-regulation of its
top candidate outputs, which is accessible using the ‘influential::runShinyApp("ExIR")‘ command.
You can also access the shiny app online at https://influential.erc.monash.edu/.

12 comp_manipulate

Usage

comp_manipulate(
exir_output = NULL,
graph = NULL,
ko_vertices = V(graph),
upregulate_vertices = V(graph),
beta = 0.5,
gamma = 1,
no.sim = igraph::vcount(graph) * 100,
seed = 1234

)

Arguments

exir_output The output of the ExIR model (optional).

graph A graph (network) of the igraph class (not required if the exir_output is in-
putted).

ko_vertices A vector of desired vertices/features to knockout. Default is set to V(graph)
meaning to assess the knockout of all vertices/features.

upregulate_vertices

A vector of desired vertices/features to up-regulate. Default is set to V(graph)
meaning to assess the up-regulation of all vertices/features.

beta Non-negative scalar corresponding to the SIRIR model. The rate of infection of
an individual that is susceptible and has a single infected neighbor. The infec-
tion rate of a susceptible individual with n infected neighbors is n times beta.
Formally this is the rate parameter of an exponential distribution.

gamma Positive scalar corresponding to the SIRIR model. The rate of recovery of an
infected individual. Formally, this is the rate parameter of an exponential distri-
bution.

no.sim Integer scalar corresponding to the SIRIR model. The number of simulation runs
to perform SIR model on for the original network as well perturbed networks
generated by leave-one-out technique. You may choose a different no.sim based
on the available memory on your system.

seed A single value, interpreted as an integer to be used for random number genera-
tion.

Value

Depending on the input data, a list including one to three data frames of knockout/up-regulation
rankings.

See Also

exir, sirir, and sir for a complete description on SIR model

Other integrative ranking functions: exir(), hubness.score(), ivi.from.indices(), ivi(),
spreading.score()

cond.prob.analysis 13

Examples

Not run:
set.seed(1234)
My_graph <- igraph::sample_gnp(n=50, p=0.05)
GraphVertices <- V(My_graph)
Computational_manipulation <- comp_manipulate(graph = My_graph, beta = 0.5,

gamma = 1, no.sim = 10, seed = 1234)

End(Not run)

cond.prob.analysis Conditional probability of deviation from means

Description

This function calculates the conditional probability of deviation of two centrality measures (or any
two other continuous variables) from their corresponding means in opposite directions.

Usage

cond.prob.analysis(data, nodes.colname, Desired.colname, Condition.colname)

Arguments

data A data frame containing the values of two continuous variables and the name of
observations (nodes).

nodes.colname The character format (quoted) name of the column containing the name of ob-
servations (nodes).

Desired.colname

The character format (quoted) name of the column containing the values of the
desired variable.

Condition.colname

The character format (quoted) name of the column containing the values of the
condition variable.

Value

A list of two objects including the conditional probability of deviation of two centrality measures
(or any two other continuous variables) from their corresponding means in opposite directions based
on both the entire network and the split-half random sample of network nodes.

See Also

Other centrality association assessment functions: double.cent.assess.noRegression(), double.cent.assess()

14 degree

Examples

MyData <- centrality.measures
My.conditional.prob <- cond.prob.analysis(data = MyData,

nodes.colname = rownames(MyData),
Desired.colname = "BC",
Condition.colname = "NC")

degree Degree of the vertices

Description

This function and all of its descriptions have been obtained from the igraph package.

Usage

degree(
graph,
v = V(graph),
mode = c("all", "out", "in", "total"),
loops = TRUE,
normalized = FALSE

)

Arguments

graph The graph to analyze (an igraph graph).

v The ids of vertices of which the degree will be calculated.

mode Character string, “out” for out-degree, “in” for in-degree or “total” for the sum
of the two. For undirected graphs this argument is ignored. “all” is a synonym
of “total”.

loops Logical; whether the loop edges are also counted. If the graph has a weight edge
attribute, then this is used by default. Weights are used to calculate weighted
shortest paths, so they are interpreted as distances.

normalized Logical scalar, whether to normalize the degree. If TRUE then the result is
divided by n-1, where n is the number of vertices in the graph.

Value

A numeric vector of the same length as argument v.

See Also

ivi, cent_network.vis, and degree for a complete description on this function

Other centrality functions: betweenness(), clusterRank(), collective.influence(), h_index(),
lh_index(), neighborhood.connectivity(), sirir()

diff_data.assembly 15

Examples

MyData <- coexpression.data
My_graph <- graph_from_data_frame(MyData)
GraphVertices <- V(My_graph)
My_graph_degree <- degree(My_graph, v = GraphVertices, normalized = FALSE)

diff_data.assembly Assembling the differential/regression data

Description

This function assembles a dataframe required for running the ExIR model. You may provide as
many differential/regression data as you wish. Also, the datasets should be filtered beforehand ac-
cording to your desired thresholds and, consequently, should only include the significant data. Each
dataset provided should be a dataframe with one or two columns. The first column should always in-
clude differential/regression values and the second one (if provided) the significance values. Please
also note that the significance (adjusted P-value) column is mandatory for differential datasets.

Usage

diff_data.assembly(...)

Arguments

... Desired datasets/dataframes.

Value

A dataframe including the collective list of features in rows and all of the differential/regression
data and their statistical significance in columns with the same order provided by the user.

See Also

exir

Examples

Not run:
my.Diff_data <- diff_data.assembly(Differential_data1,

Differential_data2,
Regression_data1))

End(Not run)

16 double.cent.assess

double.cent.assess Assessment of innate features and associations of two network central-
ity measures (dependent and independent)

Description

This function assesses innate features and the association of two centrality measures (or any two
other continuous variables) from the aspect of distribution mode, dependence, linearity, monotonic-
ity, partial-moments based correlation, and conditional probability of deviating from corresponding
means in opposite direction. This function assumes one variable as dependent and the other as inde-
pendent for regression analyses. The non-linear nature of the association of two centrality measures
is evaluated based on generalized additive models (GAM). The monotonicity of the association
is evaluated based on comparing the squared coefficient of Spearman correlation and R-squared of
rank regression analysis. Also, the correlation between two variables is assessed via non-linear non-
parametric statistics (NNS). For the conditional probability assessment, the independent variable is
considered as the condition variable.

Usage

double.cent.assess(
data,
nodes.colname,
dependent.colname,
independent.colname,
plot = FALSE

)

Arguments

data A data frame containing the values of two continuous variables and the name of
observations (nodes).

nodes.colname The character format (quoted) name of the column containing the name of ob-
servations (nodes).

dependent.colname

The character format (quoted) name of the column containing the values of the
dependent variable.

independent.colname

The character format (quoted) name of the column containing the values of the
independent variable.

plot logical; FALSE (default) Plots quadrant means of NNS correlation analysis.

Value

A list of 11 objects including:

- Summary of the basic statistics of two centrality measures (or any two other continuous variables).

double.cent.assess.noRegression 17

- The results of normality assessment of two variable (p-value > 0.05 imply that the variable is
normally distributed).

- Description of the normality assessment of the dependent variable.

- Description of the normality assessment of the independent variable.

- Results of the generalized additive modeling (GAM) of the data.

- The association type based on simultaneous consideration of normality assessment, GAM Compu-
tation with smoothness estimation, Spearman correlation, and ranked regression analysis of splines.

- The Hoeffding’s D Statistic of dependence (ranging from -0.5 to 1).

- Description of the dependence significance.

- Correlation between variables based on the NNS method.

- The last two objects are the conditional probability of deviation of two centrality measures from
their corresponding means in opposite directions based on both the entire network and the split-half
random sample of network nodes.

See Also

ad.test for Anderson-Darling test for normality, gam for Generalized additive models with inte-
grated smoothness estimation, lm for Fitting Linear Models, hoeffd for Matrix of Hoeffding’s D
Statistics, and NNS.dep for NNS Dependence

Other centrality association assessment functions: cond.prob.analysis(), double.cent.assess.noRegression()

Examples

Not run:
MyData <- centrality.measures
My.metrics.assessment <- double.cent.assess(data = MyData,

nodes.colname = rownames(MyData),
dependent.colname = "BC",
independent.colname = "NC")

End(Not run)

double.cent.assess.noRegression

Assessment of innate features and associations of two network central-
ity measures

Description

This function assesses innate features and the association of two centrality measures (or any two
other continuous variables) from the aspect of distribution mode, dependence, linearity, partial-
moments based correlation, and conditional probability of deviating from corresponding means in
opposite direction (centrality2 is used as the condition variable). This function doesn’t consider
which variable is dependent and which one is independent and no regression analysis is done. Also,
the correlation between two variables is assessed via non-linear non-parametric statistics (NNS).
For the conditional probability assessment, the centrality2 variable is considered as the condition
variable.

18 double.cent.assess.noRegression

Usage

double.cent.assess.noRegression(
data,
nodes.colname,
centrality1.colname,
centrality2.colname

)

Arguments

data A data frame containing the values of two continuous variables and the name of
observations (nodes).

nodes.colname The character format (quoted) name of the column containing the name of ob-
servations (nodes).

centrality1.colname

The character format (quoted) name of the column containing the values of the
Centrality_1 variable.

centrality2.colname

The character format (quoted) name of the column containing the values of the
Centrality_2 variable.

Value

A list of nine objects including:

- Summary of the basic statistics of two centrality measures (or any two other continuous variables).

- The results of normality assessment of two variable (p-value > 0.05 imply that the variable is
normally distributed).

- Description of the normality assessment of the centrality1 (first variable).

- Description of the normality assessment of the centrality2 (second variable).

- The Hoeffding’s D Statistic of dependence (ranging from -0.5 to 1).

- Description of the dependence significance.

- Correlation between variables based on the NNS method.

- The last two objects are the conditional probability of deviation of two centrality measures from
their corresponding means in opposite directions based on both the entire network and the split-half
random sample of network nodes.

See Also

ad.test for Anderson-Darling test for normality, hoeffd for Matrix of Hoeffding’s D Statistics,
and NNS.dep for NNS Dependence

Other centrality association assessment functions: cond.prob.analysis(), double.cent.assess()

exir 19

Examples

Not run:
MyData <- centrality.measures
My.metrics.assessment <- double.cent.assess.noRegression(data = MyData,

nodes.colname = rownames(MyData),
centrality1.colname = "BC",
centrality2.colname = "NC")

End(Not run)

exir Experimental data-based Integrated Ranking

Description

This function runs the Experimental data-based Integrated Ranking (ExIR) model for the classifica-
tion and ranking of top candidate features. The input data could come from any type of experiment
such as transcriptomics and proteomics. A shiny app has also been developed for Running the
ExIR model, visualization of its results as well as computational simulation of knockout and/or up-
regulation of its top candidate outputs, which is accessible using the ‘influential::runShinyApp("ExIR")‘
command. You can also access the shiny app online at https://influential.erc.monash.edu/.

Usage

exir(
Desired_list = NULL,
Diff_data,
Diff_value,
Regr_value = NULL,
Sig_value,
Exptl_data,
Condition_colname,
Normalize = FALSE,
cor_thresh_method = "mr",
r = 0.5,
mr = 20,
max.connections = 50000,
alpha = 0.05,
num_trees = 10000,
mtry = NULL,
num_permutations = 100,
inf_const = 10^10,
seed = 1234,
verbose = TRUE

)

20 exir

Arguments

Desired_list (Optional) A character vector of your desired features. This vector could be, for
instance, a list of features obtained from cluster analysis, time-course analysis,
or a list of dysregulated features with a specific sign.

Diff_data A dataframe of all significant differential/regression data and their statistical
significance values (p-value/adjusted p-value). Note that the differential data
should be in the log fold-change (log2FC) format. You may have selected a pro-
portion of the differential data as the significant ones according to your desired
thresholds. A function, named diff_data.assembly, has also been provided
for the convenient assembling of the Diff_data dataframe.

Diff_value An integer vector containing the column number(s) of the differential data in
the Diff_data dataframe. The differential data could result from any type of
differential data analysis. One example could be the fold changes (FCs) obtained
from differential expression analyses. The user may provide as many differential
data as he/she wish.

Regr_value (Optional) An integer vector containing the column number(s) of the regression
data in the Diff_data dataframe. The regression data could result from any type
of regression data analysis or other analyses such as time-course data analyses
that are based on regression models.

Sig_value An integer vector containing the column number(s) of the significance values
(p-value/adjusted p-value) of both differential and regression data (if provided).
Providing significance values for the regression data is optional.

Exptl_data A dataframe containing all of the experimental data including a column for spec-
ifying the conditions. The features/variables of the dataframe should be as the
columns and the samples should come in the rows. The condition column should
be of the character class. For example, if the study includes several replicates of
cancer and normal samples, the condition column should include "cancer" and
"normal" as the conditions of different samples. Also, the prior normalization of
the experimental data is highly recommended. Otherwise, the user may set the
Normalize argument to TRUE for a simple log2 transformation of the data. The
experimental data could come from a variety sources such as transcriptomics
and proteomics assays.

Condition_colname

A string or character vector specifying the name of the column "condition" of
the Exptl_data dataframe.

Normalize Logical; whether the experimental data should be normalized or not (default is
FALSE). If TRUE, the experimental data will be log2 transformed.

cor_thresh_method

A character string indicating the method for filtering the correlation results, ei-
ther "mr" (default; Mutual Rank) or "cor.coefficient".

r The threshold of Spearman correlation coefficient for the selection of correlated
features (default is 0.5).

mr An integer determining the threshold of mutual rank for the selection of corre-
lated features (default is 20). Note that higher mr values considerably increase
the computation time.

exir 21

max.connections

The maximum number of connections to be included in the association network.
Higher max.connections might increase the computation time, cost, and accu-
racy of the results (default is 50,000).

alpha The threshold of the statistical significance (p-value) used throughout the entire
model (default is 0.05)

num_trees Number of trees to be used for the random forests classification (supervised
machine learning). Default is set to 10000.

mtry Number of features to possibly split at in each node. Default is the (rounded
down) square root of the number of variables. Alternatively, a single argument
function returning an integer, given the number of independent variables.

num_permutations

Number of permutations to be used for computation of the statistical significance
(p-values) of the importance scores resulted from random forests classification
(default is 100).

inf_const The constant value to be multiplied by the maximum absolute value of differ-
ential (logFC) values for the substitution with infinite differential values. This
results in noticeably high biomarker values for features with infinite differential
values compared with other features. Having said that, the user can still use
the biomarker rank to compare all of the features. This parameter is ignored if
no infinite value is present within Diff_data. However, this is used in the case
of sc-seq experiments where some genes are uniquely expressed in a specific
cell-type and consequently get infinite differential values. Note that the sign of
differential value is preserved (default is 10^10).

seed The seed to be used for all of the random processes throughout the model (de-
fault is 1234).

verbose Logical; whether the accomplishment of different stages of the model should be
printed (default is TRUE).

Value

A list of one graph and one to four tables including:

- Driver table: Top candidate drivers

- DE-mediator table: Top candidate differentially expressed/abundant mediators

- nonDE-mediator table: Top candidate non-differentially expressed/abundant mediators

- Biomarker table: Top candidate biomarkers

The number of returned tables depends on the input data and specified arguments.

See Also

exir.vis, diff_data.assembly, pcor, prcomp, ranger, importance_pvalues

Other integrative ranking functions: comp_manipulate(), hubness.score(), ivi.from.indices(),
ivi(), spreading.score()

22 exir.vis

exir.vis Visualization of ExIR results

Description

This function has been developed for the visualization of ExIR results. Some of the documentations
of the arguments of this function have been adapted from ggplot2 package. A shiny app has also
been developed for Running the ExIR model, visualization of its results as well as computational
simulation of knockout and/or up-regulation of its top candidate outputs, which is accessible using
the ‘influential::runShinyApp("ExIR")‘ command. You can also access the shiny app online at
https://influential.erc.monash.edu/.

Usage

exir.vis(
exir.results,
synonyms.table = NULL,
n = 10,
driver.type = "combined",
biomarker.type = "combined",
show.drivers = TRUE,
show.biomarkers = TRUE,
show.de.mediators = TRUE,
show.nonDE.mediators = TRUE,
basis = "Rank",
label.position = "top",
nrow = 1,
dot.size.min = 2,
dot.size.max = 5,
type.color = "viridis",
stroke.size = 1.5,
stroke.alpha = 1,
dot.color.low = "blue",
dot.color.high = "red",
legend.position = "bottom",
legend.direction = "vertical",
legends.layout = "horizontal",
boxed.legend = TRUE,
show.plot.title = TRUE,
plot.title = "auto",
title.position = "left",
plot.title.size = 12,
show.plot.subtitle = TRUE,
plot.subtitle = "auto",
subtitle.position = "left",
y.axis.title = "Feature",
show.y.axis.grid = TRUE

exir.vis 23

)

Arguments

exir.results An object of class "ExIR_Result" which is the output of the function "exir".

synonyms.table (Optional) A data frame or matrix with two columns including a column for the
used feature names in the input data of the "exir" model and the other column
their synonyms. Note, the original feature names should always come as the first
column and the synonyms as the second one. For example, if the original feature
names used for running the "exir" model are Ensembl gene symbols, you can
use their HGNC synonyms in the second column to be used for the visualization
of the ExIR results

n An integer specifying the number of top candidates to be selected from each
category of ExIR results (default is set to 10).

driver.type A string specifying the type of drivers to be used for the selection of top N
candidates. The possible types include "combined" (meaning both driver types),
"accelerator" and "decelerator" (default is set to "combined").

biomarker.type A string specifying the type of biomarkers to be used for the selection of top
N candidates. Possible types include "combined" (meaning both biomarker
types), "up-regulated" and "down-regulated" (default is set to "combined").

show.drivers Logical scalar, whether to show Drivers or not (default is set to TRUE).
show.biomarkers

Logical scalar, whether to show Biomarkers or not (default is set to TRUE).
show.de.mediators

Logical scalar, whether to show DE-mediators or not (default is set to TRUE).
show.nonDE.mediators

Logical scalar, whether to show nonDE-mediators or not (default is set to TRUE).

basis A string specifying the basis for the selection of top N candidates from each cat-
egory of the results. Possible options include "Rank" and "Adjusted p-value"
(default is set to "Rank").

label.position By default, the labels are displayed on the top of the plot. Using label.position it
is possible to place the labels on either of the four sides by setting label.position
= c("top", "bottom", "left", "right").

nrow Number of rows of the plot (default is set to 1).

dot.size.min The size of dots with the lowest statistical significance (default is set to 2).

dot.size.max The size of dots with the highest statistical significance (default is set to 5).

type.color A character string or function indicating the color palette to be used for the visu-
alization of different types of candidates. You may choose one of the Viridis
palettes including "magma" (or "A"), "inferno" (or "B"), "plasma" (or "C"),
"viridis" (or "D", the default option) and "cividis" (or "E"), use a function speci-
fying your desired palette, or manually specify the vector of colors for different
types.

stroke.size The size of stroke (border) around the dots (default is set to 1.5).

stroke.alpha The transparency of the stroke (border) around the dots which should be a num-
ber between 0 and 1 (default is set to 1).

24 exir.vis

dot.color.low The color to be used for the visualization of dots (features) with the lowest Z-
score values (default is set to "blue").

dot.color.high The color to be used for the visualization of dots (features) with the highest
Z-score values (default is set to "red").

legend.position

The position of legends ("none", "left", "right", "bottom", "top", or two-element
numeric vector). The default is set to "bottom".

legend.direction

Layout of items in legends ("horizontal" or "vertical"). The default is set to
"vertical".

legends.layout Layout of different legends of the plot ("horizontal" or "vertical"). The default
is set to "horizontal".

boxed.legend Logical scalar, whether to draw a box around the legend or not (default is set to
TRUE).

show.plot.title

Logical scalar, whether to show the plot title or not (default is set to TRUE).
plot.title The plot title in the string format (default is set to "auto" which automatically

generates a title for the plot).
title.position The position of title ("left", "center", or "right"). The default is set to "left".
plot.title.size

The font size of the plot title (default is set to 12).
show.plot.subtitle

Logical scalar, whether to show the plot subtitle or not (default is set to TRUE).
plot.subtitle The plot subtitle in the string format (default is set to "auto" which automatically

generates a subtitle for the plot).
subtitle.position

The position of subtitle ("left", "center", or "right"). The default is set to "left".
y.axis.title The title of the y axis (features title). Default is set to "Features".
show.y.axis.grid

Logical scalar, whether to draw y axis grid lines (default is set to TRUE).

Value

A plot with the class ggplot.

See Also

exir

Other visualization functions: cent_network.vis()

Examples

Not run:
MyResults <- exir.results
ExIR.plot <- exir.vis(exir.results = MyResults, n = 5)

End(Not run)

fcor 25

fcor Fast correlation and mutual rank analysis

Description

This function calculates Pearson/Spearman correlations between all pairs of features in a ma-
trix/dataframe much faster than the base R cor function. It is also possible to simultaneously calcu-
late mutual rank (MR) of correlations as well as their p-values and adjusted p-values. Additionally,
this function can automatically combine and flatten the result matrices. Selecting correlated fea-
tures using an MR-based threshold rather than based on their correlation coefficients or an arbitrary
p-value is more efficient and accurate in inferring functional associations in systems, for example
in gene regulatory networks.

Usage

fcor(
data,
use = "everything",
method = "spearman",
mutualRank = TRUE,
pvalue = FALSE,
adjust = "BH",
flat = TRUE

)

Arguments

data A numeric dataframe/matrix (features on columns and samples on rows).

use The NA handler, as in R’s cov() and cor() functions. Options are "everything",
"all.obs", and "complete.obs".

method a character string indicating which correlation coefficient is to be computed.
One of "pearson" or "spearman" (default).

mutualRank logical, whether to calculate mutual ranks of correlations or not.

pvalue logical, whether to calculate p-values of correlations or not.

adjust p-value correction method (when pvalue = TRUE), a character string including
any of "BH" (default), "bonferroni", holm", "hochberg", "hommel", or "none".

flat logical, whether to combine and flatten the result matrices or not.

Value

Depending on the input data, a dataframe or list including cor (correlation coefficients), mr (mutual
ranks of correlation coefficients), p (p-values of correlation coefficients), and p.adj (adjusted p-
values).

26 graph_from_adjacency_matrix

See Also

pcor, p.adjust, and graph_from_data_frame

Examples

Not run:
set.seed(1234)
data <- datasets::attitude
cor <- fcor(data = data)

End(Not run)

graph_from_adjacency_matrix

Creating igraph graphs from adjacency matrices

Description

This function and all of its descriptions have been obtained from the igraph package.

Usage

graph_from_adjacency_matrix(
adjmatrix,
mode = c("directed", "undirected", "max", "min", "upper", "lower", "plus"),
weighted = NULL,
diag = TRUE,
add.colnames = NULL,
add.rownames = NA

)

Arguments

adjmatrix A square adjacency matrix. From igraph version 0.5.1 this can be a sparse matrix
created with the Matrix package.

mode Character scalar, specifies how igraph should interpret the supplied matrix. See
also the weighted argument, the interpretation depends on that too. Possible
values are: directed, undirected, upper, lower, max, min, plus.

weighted This argument specifies whether to create a weighted graph from an adjacency
matrix. If it is NULL then an unweighted graph is created and the elements
of the adjacency matrix gives the number of edges between the vertices. If it
is a character constant then for every non-zero matrix entry an edge is created
and the value of the entry is added as an edge attribute named by the weighted
argument. If it is TRUE then a weighted graph is created and the name of the
edge attribute will be weight.

diag Logical scalar, whether to include the diagonal of the matrix in the calculation.
If this is FALSE then the diagonal is zerod out first.

graph_from_data_frame 27

add.colnames Character scalar, whether to add the column names as vertex attributes. If it is
‘NULL’ (the default) then, if present, column names are added as vertex attribute
‘name’. If ‘NA’ then they will not be added. If a character constant, then it gives
the name of the vertex attribute to add.

add.rownames Character scalar, whether to add the row names as vertex attributes. Possible
values the same as the previous argument. By default row names are not added.
If ‘add.rownames’ and ‘add.colnames’ specify the same vertex attribute, then
the former is ignored.

Value

An igraph graph object.

See Also

graph_from_adjacency_matrix for a complete description on this function

Other network_reconstruction functions: graph_from_data_frame(), graph_from_incidence_matrix(),
sif2igraph()

Examples

MyData <- coexpression.adjacency
My_graph <- graph_from_adjacency_matrix(MyData)

graph_from_data_frame Creating igraph graphs from data frames

Description

This function and all of its descriptions have been obtained from the igraph package.

Usage

graph_from_data_frame(d, directed = TRUE, vertices = NULL)

Arguments

d A data frame containing a symbolic edge list in the first two columns. Additional
columns are considered as edge attributes. Since version 0.7 this argument is
coerced to a data frame with as.data.frame.

directed Logical scalar, whether or not to create a directed graph.

vertices A data frame with vertex metadata, or NULL. Since version 0.7 of igraph this
argument is coerced to a data frame with as.data.frame, if not NULL.

Value

An igraph graph object.

28 graph_from_incidence_matrix

See Also

graph_from_adjacency_matrix for a complete description on this function

Other network_reconstruction functions: graph_from_adjacency_matrix(), graph_from_incidence_matrix(),
sif2igraph()

Examples

MyData <- coexpression.data
My_graph <- graph_from_data_frame(d=MyData)

graph_from_incidence_matrix

Creating igraph graphs from incidence matrices

Description

This function and all of its descriptions have been obtained from the igraph package.

Usage

graph_from_incidence_matrix(
incidence,
directed = FALSE,
mode = c("all", "out", "in", "total"),
multiple = FALSE,
weighted = NULL,
add.names = NULL

)

Arguments

incidence The input incidence matrix. It can also be a sparse matrix from the Matrix
package.

directed Logical scalar, whether to create a directed graph.

mode A character constant, defines the direction of the edges in directed graphs, ig-
nored for undirected graphs. If ‘out’, then edges go from vertices of the first
kind (corresponding to rows in the incidence matrix) to vertices of the second
kind (columns in the incidence matrix). If ‘in’, then the opposite direction is
used. If ‘all’ or ‘total’, then mutual edges are created.

multiple Logical scalar, specifies how to interpret the matrix elements. See details below.

weighted This argument specifies whether to create a weighted graph from the incidence
matrix. If it is NULL then an unweighted graph is created and the multiple
argument is used to determine the edges of the graph. If it is a character constant
then for every non-zero matrix entry an edge is created and the value of the entry
is added as an edge attribute named by the weighted argument. If it is TRUE then
a weighted graph is created and the name of the edge attribute will be ‘weight’.

hubness.score 29

add.names A character constant, NA or NULL. graph_from_incidence_matrix can add
the row and column names of the incidence matrix as vertex attributes. If this
argument is NULL (the default) and the incidence matrix has both row and col-
umn names, then these are added as the ‘name’ vertex attribute. If you want a
different vertex attribute for this, then give the name of the attributes as a char-
acter string. If this argument is NA, then no vertex attributes (other than type)
will be added.

Details

Bipartite graphs have a ‘type’ vertex attribute in igraph, this is boolean and FALSE for the vertices
of the first kind and TRUE for vertices of the second kind.

graph_from_incidence_matrix can operate in two modes, depending on the multiple argument. If
it is FALSE then a single edge is created for every non-zero element in the incidence matrix. If
multiple is TRUE, then the matrix elements are rounded up to the closest non-negative integer to
get the number of edges to create between a pair of vertices.

Value

A bipartite igraph graph. In other words, an igraph graph that has a vertex attribute type.

See Also

graph_from_incidence_matrix for a complete description on this function

Other network_reconstruction functions: graph_from_adjacency_matrix(), graph_from_data_frame(),
sif2igraph()

Examples

Not run:
inc <- matrix(sample(0:1, 15, repl=TRUE), 3, 5)
colnames(inc) <- letters[1:5]
rownames(inc) <- LETTERS[1:3]
My_graph <- graph_from_incidence_matrix(inc)

End(Not run)

hubness.score Hubness score

Description

This function calculates the Hubness score of the desired nodes from a graph. Hubness score reflects
the power of each node in its surrounding environment and is one of the major components of the
IVI.

30 hubness.score

Usage

hubness.score(
graph,
vertices = V(graph),
directed = FALSE,
mode = "all",
loops = TRUE,
scaled = TRUE

)

Arguments

graph A graph (network) of the igraph class.

vertices A vector of desired vertices, which could be obtained by the V function.

directed Logical scalar, whether to directed graph is analyzed. This argument is ignored
for undirected graphs.

mode The mode of Hubness score depending on the directedness of the graph. If
the graph is undirected, the mode "all" should be specified. Otherwise, for the
calculation of Hubness score based on incoming connections select "in" and for
the outgoing connections select "out". Also, if all of the connections are desired,
specify the "all" mode. Default mode is set to "all".

loops Logical; whether the loop edges are also counted.

scaled Logical; whether the end result should be 1-100 range normalized or not (default
is TRUE).

Value

A numeric vector with the Hubness scores.

See Also

cent_network.vis

Other integrative ranking functions: comp_manipulate(), exir(), ivi.from.indices(), ivi(),
spreading.score()

Examples

Not run:
MyData <- coexpression.data
My_graph <- graph_from_data_frame(MyData)
GraphVertices <- V(My_graph)
Hubness.score <- hubness.score(graph = My_graph, vertices = GraphVertices,

directed = FALSE, mode = "all",
loops = TRUE, scaled = TRUE)

End(Not run)

h_index 31

h_index H-index

Description

This function calculates the H-index of input vertices and works with both directed and undirected
networks.

Usage

h_index(graph, vertices = V(graph), mode = "all")

Arguments

graph A graph (network) of the igraph class.

vertices A vector of desired vertices, which could be obtained by the V function.

mode The mode of H-index depending on the directedness of the graph. If the graph
is undirected, the mode "all" should be specified. Otherwise, for the calculation
of H-index based on incoming connections select "in" and for the outgoing con-
nections select "out". Also, if all of the connections are desired, specify the "all"
mode. Default mode is set to "all".

Value

A vector including the H-index of each vertex inputted.

See Also

ivi, cent_network.vis

Other centrality functions: betweenness(), clusterRank(), collective.influence(), degree(),
lh_index(), neighborhood.connectivity(), sirir()

Examples

Not run:
MyData <- coexpression.data
My_graph <- graph_from_data_frame(MyData)
GraphVertices <- V(My_graph)
h.index <- h_index(graph = My_graph, vertices = GraphVertices, mode = "all")

End(Not run)

32 ivi

ivi Integrated Value of Influence (IVI)

Description

This function calculates the IVI of the desired nodes from a graph. #’ A shiny app has also been
developed for the calculation of IVI as well as IVI-based network visualization, which is accessible
using the ‘influential::runShinyApp("IVI")‘ command. You can also access the shiny app online at
https://influential.erc.monash.edu/.

Usage

ivi(
graph,
vertices = V(graph),
weights = NULL,
directed = FALSE,
mode = "all",
loops = TRUE,
d = 3,
scaled = TRUE

)

Arguments

graph A graph (network) of the igraph class.

vertices A vector of desired vertices, which could be obtained by the V function.

weights Optional positive weight vector for calculating weighted betweenness centrality
of nodes as a requirement for calculation of IVI. If the graph has a weight edge
attribute, then this is used by default. Weights are used to calculate weighted
shortest paths, so they are interpreted as distances.

directed Logical scalar, whether to directed graph is analyzed. This argument is ignored
for undirected graphs.

mode The mode of IVI depending on the directedness of the graph. If the graph is
undirected, the mode "all" should be specified. Otherwise, for the calculation of
IVI based on incoming connections select "in" and for the outgoing connections
select "out". Also, if all of the connections are desired, specify the "all" mode.
Default mode is set to "all".

loops Logical; whether the loop edges are also counted.

d The distance, expressed in number of steps from a given node (default=3). Dis-
tance must be > 0. According to Morone & Makse (https://doi.org/10.1038/nature14604),
optimal results can be reached at d=3,4, but this depends on the size/"radius" of
the network. NOTE: the distance d is not inclusive. This means that nodes at a
distance of 3 from our node-of-interest do not include nodes at distances 1 and
2. Only 3.

ivi.from.indices 33

scaled Logical; whether the end result should be 1-100 range normalized or not (default
is TRUE).

Value

A numeric vector with the IVI values based on the provided centrality measures.

See Also

cent_network.vis

Other integrative ranking functions: comp_manipulate(), exir(), hubness.score(), ivi.from.indices(),
spreading.score()

Examples

Not run:
MyData <- coexpression.data
My_graph <- graph_from_data_frame(MyData)
GraphVertices <- V(My_graph)
My.vertices.IVI <- ivi(graph = My_graph, vertices = GraphVertices,

weights = NULL, directed = FALSE, mode = "all",
loops = TRUE, d = 3, scaled = TRUE)

End(Not run)

ivi.from.indices Integrated Value of Influence (IVI)

Description

This function calculates the IVI of the desired nodes from previously calculated centrality measures.
This function is not dependent to other packages and the required centrality measures, namely
degree centrality, ClusterRank, betweenness centrality, Collective Influence, local H-index, and
neighborhood connectivity could have been calculated by any means beforehand. A shiny app has
also been developed for the calculation of IVI as well as IVI-based network visualization, which
is accessible using the ‘influential::runShinyApp("IVI")‘ command. You can also access the shiny
app online at https://influential.erc.monash.edu/.

Usage

ivi.from.indices(DC, CR, LH_index, NC, BC, CI, scaled = TRUE)

Arguments

DC A vector containing the values of degree centrality of the desired vertices.

CR A vector containing the values of ClusterRank of the desired vertices.

LH_index A vector containing the values of local H-index of the desired vertices.

34 lh_index

NC A vector containing the values of neighborhood connectivity of the desired ver-
tices.

BC A vector containing the values of betweenness centrality of the desired vertices.

CI A vector containing the values of Collective Influence of the desired vertices.

scaled Logical; whether the end result should be 1-100 range normalized or not (default
is TRUE).

Value

A numeric vector with the IVI values based on the provided centrality measures.

See Also

cent_network.vis

Other integrative ranking functions: comp_manipulate(), exir(), hubness.score(), ivi(), spreading.score()

Examples

MyData <- centrality.measures
My.vertices.IVI <- ivi.from.indices(DC = centrality.measures$DC,

CR = centrality.measures$CR,
NC = centrality.measures$NC,
LH_index = centrality.measures$LH_index,
BC = centrality.measures$BC,
CI = centrality.measures$CI)

lh_index local H-index (LH-index)

Description

This function calculates the local H-index of input vertices and works with both directed and undi-
rected networks.

Usage

lh_index(graph, vertices = V(graph), mode = "all")

Arguments

graph A graph (network) of the igraph class.

vertices A vector of desired vertices, which could be obtained by the V function.

mode The mode of local H-index depending on the directedness of the graph. If the
graph is undirected, the mode "all" should be specified. Otherwise, for the cal-
culation of local H-index based on incoming connections select "in" and for the
outgoing connections select "out". Also, if all of the connections are desired,
specify the "all" mode. Default mode is set to "all".

neighborhood.connectivity 35

Value

A vector including the local H-index of each vertex inputted.

See Also

ivi, cent_network.vis

Other centrality functions: betweenness(), clusterRank(), collective.influence(), degree(),
h_index(), neighborhood.connectivity(), sirir()

Examples

Not run:
MyData <- coexpression.data
My_graph <- graph_from_data_frame(MyData)
GraphVertices <- V(My_graph)
lh.index <- lh_index(graph = My_graph, vertices = GraphVertices, mode = "all")

End(Not run)

neighborhood.connectivity

Neighborhood connectivity

Description

This function calculates the neighborhood connectivity of input vertices and works with both di-
rected and undirected networks.

Usage

neighborhood.connectivity(graph, vertices = V(graph), mode = "all")

Arguments

graph A graph (network) of the igraph class.

vertices A vector of desired vertices, which could be obtained by the V function.

mode The mode of neighborhood connectivity depending on the directedness of the
graph. If the graph is undirected, the mode "all" should be specified. Otherwise,
for the calculation of neighborhood connectivity based on incoming connections
select "in" and for the outgoing connections select "out". Also, if all of the
connections are desired, specify the "all" mode. Default mode is set to "all".

Value

A vector including the neighborhood connectivity score of each vertex inputted.

36 runShinyApp

See Also

ivi, cent_network.vis

Other centrality functions: betweenness(), clusterRank(), collective.influence(), degree(),
h_index(), lh_index(), sirir()

Examples

MyData <- coexpression.data
My_graph <- graph_from_data_frame(MyData)
GraphVertices <- V(My_graph)
neighrhood.co <- neighborhood.connectivity(graph = My_graph,

vertices = GraphVertices,
mode = "all")

runShinyApp Run shiny app

Description

Run shiny apps included in the influential R package. Also, a web-based Influential Software Pack-
age with a convenient user-interface (UI) has been developed for the comfort of all users including
those without a coding background.

Usage

runShinyApp(shinyApp)

Arguments

shinyApp The name of the shiny app you want to run. You can get the exact name of the
available shiny apps via the following command. list.files(system.file("ShinyApps",
package = "influential")). Please also note this function is case-sensitive.

Value

A shiny app.

https://influential.erc.monash.edu/
https://influential.erc.monash.edu/

sif2igraph 37

sif2igraph SIF to igraph

Description

This function imports and converts a SIF file from your local hard drive, cloud space, or internet
into a graph with an igraph class, which can then be used for the identification of most influential
nodes via the ivi function, for instance.

Usage

sif2igraph(Path, directed = FALSE)

Arguments

Path A string or character vector indicating the path to the desired SIF file. The SIF
file could be on your local hard drive, cloud space, or on the internet.

directed Logical scalar, whether or not to create a directed graph.

Value

An igraph graph object.

See Also

Other network_reconstruction functions: graph_from_adjacency_matrix(), graph_from_data_frame(),
graph_from_incidence_matrix()

Examples

Not run:
MyGraph <- sif2igraph(Path = "/Users/User1/Desktop/mygraph.sif", directed=FALSE)

End(Not run)

sirir SIR-based Influence Ranking

Description

This function is achieved by the integration susceptible-infected-recovered (SIR) model with the
leave-one-out cross validation technique and ranks network nodes based on their true universal
influence. One of the applications of this function is the assessment of performance of a novel al-
gorithm in identification of network influential nodes by considering the SIRIR ranks as the ground
truth (gold standard).

38 sirir

Usage

sirir(
graph,
vertices = V(graph),
beta = 0.5,
gamma = 1,
no.sim = igraph::vcount(graph) * 100,
seed = 1234

)

Arguments

graph A graph (network) of the igraph class.

vertices A vector of desired vertices, which could be obtained by the V function.

beta Non-negative scalar. The rate of infection of an individual that is susceptible
and has a single infected neighbor. The infection rate of a susceptible individual
with n infected neighbors is n times beta. Formally this is the rate parameter of
an exponential distribution.

gamma Positive scalar. The rate of recovery of an infected individual. Formally, this is
the rate parameter of an exponential distribution.

no.sim Integer scalar, the number of simulation runs to perform SIR model on for the
original network as well perturbed networks generated by leave-one-out tech-
nique. You may choose a different no.sim based on the available memory on
your system.

seed A single value, interpreted as an integer to be used for random number genera-
tion.

Value

A two-column dataframe; a column containing the difference values of the original and perturbed
networks and a column containing node influence rankings

See Also

cent_network.vis, and sir for a complete description on SIR model

Other centrality functions: betweenness(), clusterRank(), collective.influence(), degree(),
h_index(), lh_index(), neighborhood.connectivity()

Examples

set.seed(1234)
My_graph <- igraph::sample_gnp(n=50, p=0.05)
GraphVertices <- V(My_graph)
Influence.Ranks <- sirir(graph = My_graph, vertices = GraphVertices,

beta = 0.5, gamma = 1, no.sim = 10, seed = 1234)

spreading.score 39

spreading.score Spreading score

Description

This function calculates the Spreading score of the desired nodes from a graph. Spreading score
reflects the spreading potential of each node within a network and is one of the major components
of the IVI.

Usage

spreading.score(
graph,
vertices = V(graph),
weights = NULL,
directed = FALSE,
mode = "all",
loops = TRUE,
d = 3,
scaled = TRUE

)

Arguments

graph A graph (network) of the igraph class.
vertices A vector of desired vertices, which could be obtained by the V function.
weights Optional positive weight vector for calculating weighted betweenness centrality

of nodes as a requirement for calculation of IVI. If the graph has a weight edge
attribute, then this is used by default. Weights are used to calculate weighted
shortest paths, so they are interpreted as distances.

directed Logical scalar, whether to directed graph is analyzed. This argument is ignored
for undirected graphs.

mode The mode of Spreading score depending on the directedness of the graph. If
the graph is undirected, the mode "all" should be specified. Otherwise, for the
calculation of Spreading score based on incoming connections select "in" and
for the outgoing connections select "out". Also, if all of the connections are
desired, specify the "all" mode. Default mode is set to "all".

loops Logical; whether the loop edges are also counted.
d The distance, expressed in number of steps from a given node (default=3). Dis-

tance must be > 0. According to Morone & Makse (https://doi.org/10.1038/nature14604),
optimal results can be reached at d=3,4, but this depends on the size/"radius" of
the network. NOTE: the distance d is not inclusive. This means that nodes at a
distance of 3 from our node-of-interest do not include nodes at distances 1 and
2. Only 3.

scaled Logical; whether the end result should be 1-100 range normalized or not (default
is TRUE).

40 V

Value

A numeric vector with Spreading scores.

See Also

cent_network.vis

Other integrative ranking functions: comp_manipulate(), exir(), hubness.score(), ivi.from.indices(),
ivi()

Examples

Not run:
MyData <- coexpression.data
My_graph <- graph_from_data_frame(MyData)
GraphVertices <- V(My_graph)
Spreading.score <- spreading.score(graph = My_graph, vertices = GraphVertices,

weights = NULL, directed = FALSE, mode = "all",
loops = TRUE, d = 3, scaled = TRUE)

End(Not run)

V Vertices of an igraph graph

Description

This function and all of its descriptions have been obtained from the igraph package.

Usage

V(graph)

Arguments

graph The graph (an igraph graph)

Value

A vertex sequence containing all vertices, in the order of their numeric vertex ids.

See Also

V for a complete description on this function

Examples

MyData <- coexpression.data
My_graph <- graph_from_data_frame(MyData)
My_graph_vertices <- V(My_graph)

Index

∗ IVI
ivi, 32

∗ SIF.to.igraph
sif2igraph, 37

∗ association_assessment
cond.prob.analysis, 13
double.cent.assess, 16
double.cent.assess.noRegression,

17
∗ betweenness_centrality

betweenness, 3
∗ cent_network.vis

cent_network.vis, 5
∗ centrality association assessment functions

cond.prob.analysis, 13
double.cent.assess, 16
double.cent.assess.noRegression,

17
∗ centrality functions

betweenness, 3
clusterRank, 8
collective.influence, 10
degree, 14
h_index, 31
lh_index, 34
neighborhood.connectivity, 35
sirir, 37

∗ clusterRank
clusterRank, 8

∗ collective.influence
collective.influence, 10

∗ comp_manipulate
comp_manipulate, 11

∗ conditional_probability
cond.prob.analysis, 13

∗ datasets
centrality.measures, 4
coexpression.adjacency, 9
coexpression.data, 10

∗ degree_centrality
degree, 14

∗ dependence_assessment
double.cent.assess, 16
double.cent.assess.noRegression,

17
∗ diff_data.assembly

diff_data.assembly, 15
∗ exir.vis

exir.vis, 22
∗ exir

exir, 19
∗ fcor

fcor, 25
∗ graph_from_adjacencymatrices

graph_from_adjacency_matrix, 26
∗ graph_from_dataframe

graph_from_data_frame, 27
∗ graph_from_incidencematrices

graph_from_incidence_matrix, 28
∗ graph_vertices

V, 40
∗ h_index

h_index, 31
∗ hubness.score

hubness.score, 29
∗ integrated_value_of_influence

ivi, 32
∗ integrative ranking functions

comp_manipulate, 11
exir, 19
hubness.score, 29
ivi, 32
ivi.from.indices, 33
spreading.score, 39

∗ ivi.from.indices
ivi.from.indices, 33

∗ lh_index
lh_index, 34

41

42 INDEX

∗ neighborhood_connectivity
neighborhood.connectivity, 35

∗ network_reconstruction functions
graph_from_adjacency_matrix, 26
graph_from_data_frame, 27
graph_from_incidence_matrix, 28
sif2igraph, 37

∗ runShinyApp
runShinyApp, 36

∗ sirir
sirir, 37

∗ spreading.score
spreading.score, 39

∗ visualization functions
cent_network.vis, 5
exir.vis, 22

ad.test, 17, 18
adjmatrix2graph

(graph_from_adjacency_matrix),
26

BC (betweenness), 3
betweenness, 3, 3, 9, 11, 14, 31, 35, 36, 38

cent_network.vis, 3, 5, 9, 11, 14, 24, 30, 31,
33–36, 38, 40

centrality.measures, 4
CI (collective.influence), 10
clusterRank, 3, 8, 11, 14, 31, 35, 36, 38
coexpression.adjacency, 9
coexpression.data, 10
collective.influence, 3, 9, 10, 14, 31, 35,

36, 38
comp_manipulate, 11, 21, 30, 33, 34, 40
cond.prob.analysis, 13, 17, 18
CPA (cond.prob.analysis), 13
CR (clusterRank), 8

dataframe2graph
(graph_from_data_frame), 27

DC (degree), 14
DCA (double.cent.assess), 16
DCANR

(double.cent.assess.noRegression),
17

DDA (diff_data.assembly), 15
degree, 3, 9, 11, 14, 14, 31, 35, 36, 38
diff_data.assembly, 15, 20, 21

double.cent.assess, 13, 16, 18
double.cent.assess.noRegression, 13, 17,

17

ExIR (exir), 19
exir, 12, 15, 19, 24, 30, 33, 34, 40
exir.vis, 8, 21, 22

fcor, 25

gam, 17
graph_from_adjacency_matrix, 26, 27–29,

37
graph_from_data_frame, 26, 27, 27, 29, 37
graph_from_incidence_matrix, 27, 28, 28,

29, 37

h.index (h_index), 31
h_index, 3, 9, 11, 14, 31, 35, 36, 38
hoeffd, 17, 18
hubness.score, 12, 21, 29, 33, 34, 40

importance_pvalues, 21
incidencematrix2graph

(graph_from_incidence_matrix),
28

IVI (ivi), 32
ivi, 3, 6, 8, 9, 11, 12, 14, 21, 30, 31, 32,

34–36, 40
IVI.FI (ivi.from.indices), 33
ivi.from.indices, 12, 21, 30, 33, 33, 40

layout_, 6
lh.index (lh_index), 34
lh_index, 3, 9, 11, 14, 31, 34, 36, 38
lm, 17

NC (neighborhood.connectivity), 35
neighborhood.connectivity, 3, 9, 11, 14,

31, 35, 35, 38
NNS.dep, 17, 18

p.adjust, 26
pcor, 21, 26
prcomp, 21

ranger, 21
runShinyApp, 36

sif2igraph, 27–29, 37

INDEX 43

sir, 12, 38
SIRIR (sirir), 37
sirir, 3, 9, 11, 12, 14, 31, 35, 36, 37
spreading.score, 12, 21, 30, 33, 34, 39

V, 40, 40
vertices (V), 40

	betweenness
	centrality.measures
	cent_network.vis
	clusterRank
	coexpression.adjacency
	coexpression.data
	collective.influence
	comp_manipulate
	cond.prob.analysis
	degree
	diff_data.assembly
	double.cent.assess
	double.cent.assess.noRegression
	exir
	exir.vis
	fcor
	graph_from_adjacency_matrix
	graph_from_data_frame
	graph_from_incidence_matrix
	hubness.score
	h_index
	ivi
	ivi.from.indices
	lh_index
	neighborhood.connectivity
	runShinyApp
	sif2igraph
	sirir
	spreading.score
	V
	Index

