library(insee)
library(tidyverse)
library(raster)
library(rgdal)
library(geosphere)
library(broom)
library(viridis)
library(mapproj)
dataset_list = get_dataset_list()
list_idbank =
get_idbank_list("TCRED-ESTIMATIONS-POPULATION") %>%
filter(AGE == "00-") %>% #all ages
filter(SEXE == 0) %>% #men and women
filter(str_detect(REF_AREA, "^D")) %>% #select only departements
add_insee_title()
list_idbank_selected = list_idbank %>% pull(idbank)
# get population data by departement
pop = get_insee_idbank(list_idbank_selected)
#get departements' geographical limits
FranceMap <- raster::getData(name = "GADM", country = "FRA", level = 2)
# extract the population by departement in 2020
pop_plot = pop %>%
group_by(TITLE_EN) %>%
filter(DATE == "2020-01-01") %>%
mutate(dptm = gsub("D", "", REF_AREA)) %>%
filter(dptm %in% FranceMap@data$CC_2) %>%
mutate(dptm = factor(dptm, levels = FranceMap@data$CC_2)) %>%
arrange(dptm) %>%
mutate(id = dptm)
vec_pop = pop_plot %>% pull(OBS_VALUE)
# add population data to the departement object map
FranceMap@data$pop = vec_pop
get_area = function(long, lat){
area = areaPolygon(data.frame(long = long, lat = lat)) / 1000000
return(data.frame(area = area))
}
# extract the departements' limits from the spatial object and compute the surface
FranceMap_tidy_area <-
broom::tidy(FranceMap) %>%
group_by(id) %>%
group_modify(~get_area(long = .x$long, lat = .x$lat))
FranceMap_tidy <-
broom::tidy(FranceMap) %>%
left_join(FranceMap_tidy_area)
# mapping table
dptm_df = data.frame(dptm = FranceMap@data$CC_2,
dptm_name = FranceMap@data$NAME_2,
pop = FranceMap@data$pop,
id = rownames(FranceMap@data))
FranceMap_tidy_final_all =
FranceMap_tidy %>%
left_join(dptm_df, by = "id") %>%
mutate(pop_density = pop/area) %>%
mutate(density_range = case_when(pop_density < 40 ~ "< 40",
pop_density >= 40 & pop_density < 50 ~ "[40, 50]",
pop_density >= 50 & pop_density < 70 ~ "[50, 70]",
pop_density >= 70 & pop_density < 100 ~ "[70, 100]",
pop_density >= 100 & pop_density < 120 ~ "[100, 120]",
pop_density >= 120 & pop_density < 160 ~ "[120, 160]",
pop_density >= 160 & pop_density < 200 ~ "[160, 200]",
pop_density >= 200 & pop_density < 240 ~ "[200, 240]",
pop_density >= 240 & pop_density < 260 ~ "[240, 260]",
pop_density >= 260 & pop_density < 410 ~ "[260, 410]",
pop_density >= 410 & pop_density < 600 ~ "[410, 600]",
pop_density >= 600 & pop_density < 1000 ~ "[600, 1000]",
pop_density >= 5000 & pop_density < 10000 ~ "[5000, 10000]",
pop_density >= 20000 ~ ">= 20000"
)) %>%
mutate(`people per square kilometer` = factor(density_range,
levels = c("< 40","[40, 50]", "[50, 70]","[70, 100]",
"[100, 120]", "[120, 160]", "[160, 200]",
"[200, 240]", "[240, 260]", "[260, 410]",
"[410, 600]", "[600, 1000]",
"[5000, 10000]", ">= 20000")))
ggplot(data = FranceMap_tidy_final_all,
aes(fill = `people per square kilometer`, x = long, y = lat, group = group) ,
size = 0, alpha = 0.9) +
geom_polygon() +
geom_path(colour = "white") +
coord_map() +
theme_void() +
scale_fill_viridis(discrete = T) +
ggtitle("Distribution of the population within French territory in 2020") +
labs(subtitle = "the density displayed here is an approximation, it should not be considered as an official statistics")