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cv.interep k-folds cross-validation for interep

Description

This function does k-fold cross-validation for interep and returns the optimal value of lambda.

Usage

cv.interep(e, g, y, beta0, lambda1, lambda2, nfolds, corre, pmethod, maxits)

Arguments

e matrix of environment factors.

g matrix of omics factors. In the case study, the omics measurements are lipidomics
data.

y the longitudinal response.

beta0 the intial value for the coefficient vector.

lambda1 a user-supplied sequence of λ1 values, which serves as a tuning parameter for
individual predictors.

lambda2 a user-supplied sequence of λ2 values, which serves as a tuning parameter for
interactions.

nfolds the number of folds for cross-validation.

corre the working correlation structure that is used in the estimation algorithm. interep
provides three choices for the working correlation structure: "a" as AR-1", "i"
as "independence" and "e" as "exchangeable".

pmethod the penalization method. "mixed" refers to MCP penalty to individual main
effects and group MCP penalty to interactions; "individual" means MCP penalty
to all effects.

maxits the maximum number of iterations that is used in the estimation algorithm.
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Details

When dealing with predictors with both main effects and interactions, this function returns two
optimal tuning parameters, λ1 and λ2; when there are only main effects in the predictors, this
function returns λ1, which is the optimal tuning parameter for individual predictors containing
main effects.

Value

an object of class "cv.interep" is returned, which is a list with components:

lam1 the optimal λ1.

lam2 the optimal λ2.
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dat simulated data for demonstrating the features of interep

Description

Simulated data for demonstrating the features of interep.

Usage

data("dat")

Format

Each data consists of six components: e, z, x, y, coef and index; index shows the location of the true
coefficients used to generate y.

Examples

data("dat")
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dmcp This function obtains the first derivative function of MCP (Minimax
Concave Penalty)

Description

This function obtains the first derivative function of MCP (Minimax Concave Penalty)

Usage

dmcp(theta, lambda, gamma = 3)

Arguments

theta a coefficient vector.

lambda the tuning parameter.

gamma the regularization parameter in MCP (Minimax Concave Penalty). It balances
between the unbiasedness and concavity of MCP.

Details

Rigorously speaking, the regularization parametre γ needs to be obtained via a data-driven ap-
proach. Published studies suggest experimenting with a few values, such as 1.8, 3, 4.5, 6, and 10,
then fixing its value. In our numerical study, we have examined this sequence and found that the
results are not sensitive to the choice of value of γ, and set the value at 3. In practice, to be prudent,
values other than 3 should also be investigated. Similar discussions can be found in the references
below.

Value

the first derivative of MCP function.
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Examples

theta=runif(20,-5,5)
lambda=1
dmcp(theta,lambda,gamma=3)

interep fit generalized estimaitng equations with given tuning parameters

Description

This function makes predictions for generalized estimating equation with a given value of lambda.
Typical usage is to have the cv.interep function compute the optimal lambda, then provide it to the
interep function.

Usage

interep(e, g, y, beta0, corre, pmethod, lam1, lam2, maxits)

Arguments

e matrix of environment factors.
g matrix of omics factors. In the case study, the omics measurements are lipidomics

data.
y the longitudinal response.
beta0 the inital coefficient vector.
corre the working correlation structure that is used in the estimation algorithm. interep

provides three choices for the working correlation structure: "a" as AR-1", "i"
as "independence" and "e" as "exchangeable".

pmethod the penalization method. "mixed" refers to MCP penalty to individual main
effects and group MCP penalty to interactions; "individual" means MCP penalty
to all effects.

lam1 the tuning parameter lambda1 for individual predictors.
lam2 the tuning parameter lambda2 for interactions.
maxits the maximum number of iterations that is used in the estimation algorithm. The

default value is 30

Value

coef the coefficient vector.

References
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Zhou, F., Ren, J., Lu, X., Ma, S. and Wu, C. (2020) Gene–Environment Interaction: a Variable
Selection Perspective. Epistasis, Methods in Molecular Biology. Humana Press. (Accepted)
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Examples

data("dat")
e=dat$e
g=dat$z
y=dat$y
beta0=dat$coef
index=dat$index
b = interep(e, g, y,beta0,corre="e",pmethod="mixed",lam1=dat$lam1, lam2=dat$lam2,maxits=30)
b[abs(b)<0.05]=0
pos = which(b != 0)
tp = length(intersect(index, pos))
fp = length(pos) - tp
list(tp=tp, fp=fp)

penalty This function gives the penalty functions

Description

This function gives the penalty functions

Usage

penalty(x, n, p, q, beta, lam1, pmethod, p1, lam2)

Arguments

x matrix of covariates.

n the sample size.

p the number of predictors.

q the number of environment factors.

beta the coefficient vector.

lam1 the tuning parameter lambda1 for individual penalty.

pmethod the penalization method. "mixed" refers to MCP penalty to individual main
effects and group MCP penalty to interactions; "individual" means MCP penalty
to all effects.

p1 the number of gene factors.

lam2 the tuning parameter lambda2 for group penalty.

Value

E the penalty function.
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reformat This function changes the format of the longitudinal data from wide
format to long format

Description

This function changes the format of the longitudinal data from wide format to long format

Usage

reformat(k, y, x)

Arguments

k the number of repeated measurement.

y the longitudinal response.

x a matrix of predictors, consisting of omics and environment factors, as well as
their interactions. In the case study, the omics measurements are lipidomics
data.
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