joinet: Multivariate Elastic Net Regression

Implements high-dimensional multivariate regression by stacked generalisation (Rauschenberger 2021 <doi:10.1093/bioinformatics/btab576>). For positively correlated outcomes, a single multivariate regression is typically more predictive than multiple univariate regressions. Includes functions for model fitting, extracting coefficients, outcome prediction, and performance measurement. If required, install MRCE or remMap from GitHub (<https://github.com/cran/MRCE>, <https://github.com/cran/remMap>).

Version: 0.0.10
Depends: R (≥ 3.0.0)
Imports: glmnet, palasso, cornet
Suggests: knitr, rmarkdown, testthat, MASS
Enhances: mice, earth, spls, MRCE, remMap, MultivariateRandomForest, SiER, mcen, GPM, RMTL, MTPS
Published: 2021-08-09
Author: Armin Rauschenberger [aut, cre]
Maintainer: Armin Rauschenberger <armin.rauschenberger at uni.lu>
BugReports: https://github.com/rauschenberger/joinet/issues
License: GPL-3
URL: https://github.com/rauschenberger/joinet
NeedsCompilation: no
Language: en-GB
Citation: joinet citation info
Materials: README NEWS
In views: MachineLearning
CRAN checks: joinet results

Documentation:

Reference manual: joinet.pdf
Vignettes: article
vignette
analysis

Downloads:

Package source: joinet_0.0.10.tar.gz
Windows binaries: r-devel: joinet_0.0.10.zip, r-release: joinet_0.0.10.zip, r-oldrel: joinet_0.0.10.zip
macOS binaries: r-release (arm64): joinet_0.0.10.tgz, r-oldrel (arm64): joinet_0.0.10.tgz, r-release (x86_64): joinet_0.0.10.tgz, r-oldrel (x86_64): joinet_0.0.10.tgz
Old sources: joinet archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=joinet to link to this page.