kpcalg: Kernel PC Algorithm for Causal Structure Detection

Kernel PC (kPC) algorithm for causal structure learning and causal inference using graphical models. kPC is a version of PC algorithm that uses kernel based independence criteria in order to be able to deal with non-linear relationships and non-Gaussian noise.

Version: 1.0.1
Depends: R (≥ 3.0.2)
Imports: pcalg, energy, kernlab, parallel, mgcv, RSpectra, methods, graph, stats, utils
Suggests: Rgraphviz, knitr
Published: 2017-01-22
Author: Petras Verbyla, Nina Ines Bertille Desgranges, Lorenz Wernisch
Maintainer: Petras Verbyla <petras.verbyla at mrc-bsu.cam.ac.uk>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: no
CRAN checks: kpcalg results

Documentation:

Reference manual: kpcalg.pdf
Vignettes: kpcalg tutorial

Downloads:

Package source: kpcalg_1.0.1.tar.gz
Windows binaries: r-devel: kpcalg_1.0.1.zip, r-release: kpcalg_1.0.1.zip, r-oldrel: kpcalg_1.0.1.zip
macOS binaries: r-release (arm64): kpcalg_1.0.1.tgz, r-oldrel (arm64): kpcalg_1.0.1.tgz, r-release (x86_64): kpcalg_1.0.1.tgz, r-oldrel (x86_64): kpcalg_1.0.1.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=kpcalg to link to this page.