Let X
be the input-output matrix, w
the wage vector, c
the household consumption vector, d
the total final demand vector, and e
the employment coefficient.
Let A
be the direct coefficients matrix.
A <- input_requirement(X, d)
A_aug <- augmented_input_requirement(X,w,c,d)
rownames(A_aug) <- c(rownames(X), "wage_over_demand")
colnames(A_aug) <- c(rownames(X), "consumption_over_demand")
kable(A_aug)
agriculture_fishing | mining | manufacturing_industry | electricity_gas_water | construction | retail_hotels_restaurants | transport_communications_information | financial_services | real_state | business_services | personal_services | public_administration | consumption_over_demand | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
agriculture_fishing | 0.147 | 0.000 | 0.125 | 0.003 | 0.000 | 0.007 | 0.000 | 0.000 | 0.000 | 0.001 | 0.002 | 0.002 | 0.110 |
mining | 0.008 | 0.071 | 0.030 | 0.002 | 0.005 | 0.002 | 0.001 | 0.002 | 0.000 | 0.002 | 0.001 | 0.001 | 0.001 |
manufacturing_industry | 0.185 | 0.052 | 0.137 | 0.050 | 0.194 | 0.077 | 0.061 | 0.010 | 0.002 | 0.026 | 0.047 | 0.027 | 0.261 |
electricity_gas_water | 0.007 | 0.056 | 0.028 | 0.308 | 0.004 | 0.014 | 0.008 | 0.005 | 0.006 | 0.006 | 0.014 | 0.035 | 0.210 |
construction | 0.002 | 0.001 | 0.001 | 0.009 | 0.123 | 0.008 | 0.005 | 0.002 | 0.129 | 0.004 | 0.011 | 0.028 | 0.001 |
retail_hotels_restaurants | 0.049 | 0.027 | 0.037 | 0.023 | 0.053 | 0.070 | 0.057 | 0.015 | 0.004 | 0.031 | 0.040 | 0.018 | 0.522 |
transport_communications_information | 0.036 | 0.034 | 0.057 | 0.027 | 0.019 | 0.099 | 0.144 | 0.041 | 0.004 | 0.044 | 0.019 | 0.037 | 0.311 |
financial_services | 0.028 | 0.006 | 0.015 | 0.018 | 0.028 | 0.036 | 0.020 | 0.109 | 0.039 | 0.019 | 0.009 | 0.003 | 0.438 |
real_state | 0.003 | 0.003 | 0.005 | 0.002 | 0.003 | 0.048 | 0.015 | 0.010 | 0.014 | 0.024 | 0.023 | 0.009 | 0.699 |
business_services | 0.029 | 0.091 | 0.065 | 0.041 | 0.056 | 0.094 | 0.073 | 0.090 | 0.019 | 0.123 | 0.042 | 0.047 | 0.051 |
personal_services | 0.001 | 0.001 | 0.003 | 0.001 | 0.001 | 0.004 | 0.005 | 0.003 | 0.001 | 0.003 | 0.034 | 0.003 | 0.451 |
public_administration | 0.001 | 0.001 | 0.002 | 0.002 | 0.000 | 0.004 | 0.003 | 0.001 | 0.000 | 0.001 | 0.002 | 0.003 | 0.034 |
wage_over_demand | 0.146 | 0.090 | 0.104 | 0.064 | 0.241 | 0.251 | 0.154 | 0.255 | 0.030 | 0.299 | 0.554 | 0.541 | 0.000 |
Let B
be the output allocation matrix.
agriculture_fishing | mining | manufacturing_industry | electricity_gas_water | construction | retail_hotels_restaurants | transport_communications_information | financial_services | real_state | business_services | personal_services | public_administration | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
agriculture_fishing | 0.147 | 0.000 | 0.524 | 0.002 | 0.001 | 0.020 | 0.000 | 0.000 | 0.000 | 0.002 | 0.003 | 0.002 |
mining | 0.003 | 0.071 | 0.054 | 0.001 | 0.004 | 0.002 | 0.001 | 0.001 | 0.000 | 0.002 | 0.001 | 0.000 |
manufacturing_industry | 0.044 | 0.029 | 0.137 | 0.010 | 0.086 | 0.050 | 0.035 | 0.002 | 0.000 | 0.012 | 0.021 | 0.005 |
electricity_gas_water | 0.008 | 0.153 | 0.138 | 0.308 | 0.009 | 0.044 | 0.024 | 0.006 | 0.008 | 0.015 | 0.031 | 0.033 |
construction | 0.001 | 0.001 | 0.002 | 0.004 | 0.123 | 0.012 | 0.007 | 0.001 | 0.077 | 0.004 | 0.011 | 0.012 |
retail_hotels_restaurants | 0.018 | 0.024 | 0.058 | 0.007 | 0.037 | 0.070 | 0.050 | 0.006 | 0.001 | 0.022 | 0.028 | 0.005 |
transport_communications_information | 0.015 | 0.034 | 0.100 | 0.010 | 0.015 | 0.113 | 0.144 | 0.017 | 0.002 | 0.035 | 0.015 | 0.013 |
financial_services | 0.029 | 0.013 | 0.064 | 0.015 | 0.053 | 0.098 | 0.047 | 0.109 | 0.044 | 0.036 | 0.017 | 0.002 |
real_state | 0.003 | 0.006 | 0.019 | 0.002 | 0.005 | 0.115 | 0.033 | 0.009 | 0.014 | 0.040 | 0.038 | 0.006 |
business_services | 0.015 | 0.111 | 0.142 | 0.018 | 0.055 | 0.133 | 0.090 | 0.047 | 0.011 | 0.123 | 0.041 | 0.020 |
personal_services | 0.000 | 0.002 | 0.006 | 0.000 | 0.001 | 0.005 | 0.007 | 0.002 | 0.000 | 0.003 | 0.034 | 0.001 |
public_administration | 0.002 | 0.003 | 0.009 | 0.002 | 0.000 | 0.013 | 0.009 | 0.001 | 0.000 | 0.002 | 0.004 | 0.003 |
Let I
be the identity matrix. Leontief inverse is the same as solving I - A
.
agriculture_fishing | mining | manufacturing_industry | electricity_gas_water | construction | retail_hotels_restaurants | transport_communications_information | financial_services | real_state | business_services | personal_services | public_administration | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
agriculture_fishing | 1.214 | 0.014 | 0.181 | 0.021 | 0.043 | 0.029 | 0.017 | 0.005 | 0.007 | 0.009 | 0.014 | 0.011 |
mining | 0.020 | 1.080 | 0.042 | 0.007 | 0.016 | 0.007 | 0.005 | 0.003 | 0.003 | 0.004 | 0.004 | 0.003 |
manufacturing_industry | 0.283 | 0.088 | 1.225 | 0.106 | 0.286 | 0.128 | 0.106 | 0.029 | 0.043 | 0.051 | 0.077 | 0.055 |
electricity_gas_water | 0.030 | 0.094 | 0.059 | 1.454 | 0.025 | 0.033 | 0.023 | 0.013 | 0.013 | 0.016 | 0.027 | 0.055 |
construction | 0.007 | 0.005 | 0.007 | 0.018 | 1.145 | 0.022 | 0.013 | 0.006 | 0.151 | 0.011 | 0.019 | 0.035 |
retail_hotels_restaurants | 0.087 | 0.048 | 0.074 | 0.050 | 0.090 | 1.100 | 0.085 | 0.029 | 0.019 | 0.048 | 0.055 | 0.032 |
transport_communications_information | 0.090 | 0.066 | 0.110 | 0.067 | 0.067 | 0.150 | 1.195 | 0.067 | 0.018 | 0.071 | 0.041 | 0.059 |
financial_services | 0.052 | 0.018 | 0.037 | 0.039 | 0.051 | 0.058 | 0.037 | 1.129 | 0.053 | 0.031 | 0.019 | 0.011 |
real_state | 0.014 | 0.011 | 0.016 | 0.010 | 0.014 | 0.061 | 0.027 | 0.017 | 1.018 | 0.032 | 0.030 | 0.014 |
business_services | 0.087 | 0.137 | 0.126 | 0.094 | 0.120 | 0.152 | 0.124 | 0.129 | 0.045 | 1.162 | 0.070 | 0.073 |
personal_services | 0.003 | 0.003 | 0.005 | 0.003 | 0.003 | 0.006 | 0.008 | 0.005 | 0.001 | 0.004 | 1.036 | 0.004 |
public_administration | 0.003 | 0.002 | 0.003 | 0.003 | 0.001 | 0.005 | 0.004 | 0.001 | 0.001 | 0.002 | 0.002 | 1.004 |
The required output is given by L * d
.
output | |
---|---|
agriculture_fishing | 25832 |
mining | 31674 |
manufacturing_industry | 81363 |
electricity_gas_water | 23428 |
construction | 28817 |
retail_hotels_restaurants | 47168 |
transport_communications_information | 50606 |
financial_services | 21588 |
real_state | 18686 |
business_services | 51363 |
personal_services | 23148 |
public_administration | 9746 |
Let W
be a matrix where each column is w
with the same dimension as L
. The income multiplier is the column sum of the element-wise multiplication of L
and W
element-wise divided by w
.
Let E
be a matrix where each column is e
with the same dimension as L
. The employment multiplier is the column sum of the element-wise multiplication of L
and E
element-wise divided by e
.
sm <- round(cbind(out,inc,emp),4)
rownames(sm) <- rownames(X)
colnames(sm) <- c("output_multiplier", "income_multiplier", "employment_multiplier")
kable(sm)
output_multiplier | income_multiplier | employment_multiplier | |
---|---|---|---|
agriculture_fishing | 1.89 | 0.291 | 94.3 |
mining | 1.57 | 0.187 | 21.4 |
manufacturing_industry | 1.88 | 0.250 | 46.2 |
electricity_gas_water | 1.87 | 0.177 | 22.3 |
construction | 1.86 | 0.400 | 55.3 |
retail_hotels_restaurants | 1.75 | 0.393 | 78.3 |
transport_communications_information | 1.64 | 0.278 | 41.3 |
financial_services | 1.44 | 0.354 | 24.9 |
real_state | 1.37 | 0.109 | 14.5 |
business_services | 1.44 | 0.393 | 29.1 |
personal_services | 1.40 | 0.639 | 90.8 |
public_administration | 1.36 | 0.607 | 53.9 |
bl <- backward_linkage(A)
fl <- forward_linkage(A)
bfl <- cbind(bl,fl)
rownames(bfl) <- rownames(X)
colnames(bfl) <- c("backward_linkage", "forward_linkage")
kable(bfl)
backward_linkage | forward_linkage | |
---|---|---|
agriculture_fishing | 0.496 | 0.288 |
mining | 0.343 | 0.123 |
manufacturing_industry | 0.506 | 0.869 |
electricity_gas_water | 0.486 | 0.491 |
construction | 0.487 | 0.322 |
retail_hotels_restaurants | 0.462 | 0.424 |
transport_communications_information | 0.393 | 0.561 |
financial_services | 0.288 | 0.330 |
real_state | 0.217 | 0.159 |
business_services | 0.283 | 0.770 |
personal_services | 0.243 | 0.059 |
public_administration | 0.211 | 0.019 |
bl <- power_dispersion(L)
bl_cv <- power_dispersion_cv(L)
bl_t <- cbind(bl,bl_cv)
rownames(bl_t) <- rownames(X)
colnames(bl_t) <- c("power_dispersion", "power_dispersion_cv")
kable(bl_t)
power_dispersion | power_dispersion_cv | |
---|---|---|
agriculture_fishing | 1.165 | 2.14 |
mining | 0.965 | 2.40 |
manufacturing_industry | 1.161 | 2.10 |
electricity_gas_water | 1.154 | 2.59 |
construction | 1.147 | 2.07 |
retail_hotels_restaurants | 1.079 | 2.05 |
transport_communications_information | 1.014 | 2.38 |
financial_services | 0.884 | 2.68 |
real_state | 0.845 | 2.60 |
business_services | 0.888 | 2.64 |
personal_services | 0.860 | 2.65 |
public_administration | 0.836 | 2.66 |
sl <- sensitivity_dispersion(L)
sl_cv <- sensitivity_dispersion_cv(L)
sl_t <- cbind(sl,sl_cv)
rownames(sl_t) <- rownames(X)
colnames(sl_t) <- c("power_dispersion", "power_dispersion_cv")
kable(sl_t)
power_dispersion | power_dispersion_cv | |
---|---|---|
agriculture_fishing | 0.965 | 2.60 |
mining | 0.736 | 3.12 |
manufacturing_industry | 1.526 | 1.54 |
electricity_gas_water | 1.136 | 2.63 |
construction | 0.887 | 2.68 |
retail_hotels_restaurants | 1.058 | 2.09 |
transport_communications_information | 1.234 | 1.94 |
financial_services | 0.947 | 2.52 |
real_state | 0.779 | 2.84 |
business_services | 1.430 | 1.61 |
personal_services | 0.667 | 3.39 |
public_administration | 0.636 | 3.46 |
mp <- multiplier_product_matrix(L)
rownames(mp) <- rownames(X)
colnames(mp) <- rownames(X)
kable(mp)
agriculture_fishing | mining | manufacturing_industry | electricity_gas_water | construction | retail_hotels_restaurants | transport_communications_information | financial_services | real_state | business_services | personal_services | public_administration | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
agriculture_fishing | 0.152 | 0.116 | 0.240 | 0.179 | 0.140 | 0.167 | 0.194 | 0.149 | 0.123 | 0.225 | 0.105 | 0.100 |
mining | 0.126 | 0.096 | 0.199 | 0.148 | 0.116 | 0.138 | 0.161 | 0.124 | 0.102 | 0.187 | 0.087 | 0.083 |
manufacturing_industry | 0.151 | 0.116 | 0.240 | 0.178 | 0.139 | 0.166 | 0.194 | 0.149 | 0.122 | 0.225 | 0.105 | 0.100 |
electricity_gas_water | 0.151 | 0.115 | 0.238 | 0.177 | 0.138 | 0.165 | 0.192 | 0.148 | 0.122 | 0.223 | 0.104 | 0.099 |
construction | 0.150 | 0.114 | 0.237 | 0.176 | 0.138 | 0.164 | 0.191 | 0.147 | 0.121 | 0.222 | 0.103 | 0.099 |
retail_hotels_restaurants | 0.141 | 0.107 | 0.223 | 0.166 | 0.129 | 0.154 | 0.180 | 0.138 | 0.114 | 0.209 | 0.097 | 0.093 |
transport_communications_information | 0.132 | 0.101 | 0.209 | 0.156 | 0.122 | 0.145 | 0.169 | 0.130 | 0.107 | 0.196 | 0.091 | 0.087 |
financial_services | 0.115 | 0.088 | 0.182 | 0.136 | 0.106 | 0.126 | 0.148 | 0.113 | 0.093 | 0.171 | 0.080 | 0.076 |
real_state | 0.110 | 0.084 | 0.174 | 0.130 | 0.101 | 0.121 | 0.141 | 0.108 | 0.089 | 0.163 | 0.076 | 0.073 |
business_services | 0.116 | 0.088 | 0.183 | 0.136 | 0.107 | 0.127 | 0.148 | 0.114 | 0.094 | 0.172 | 0.080 | 0.076 |
personal_services | 0.112 | 0.086 | 0.177 | 0.132 | 0.103 | 0.123 | 0.143 | 0.110 | 0.091 | 0.166 | 0.078 | 0.074 |
public_administration | 0.109 | 0.083 | 0.172 | 0.128 | 0.100 | 0.120 | 0.139 | 0.107 | 0.088 | 0.162 | 0.075 | 0.072 |
bli <- backward_linkage(A_aug)
fli <- forward_linkage(A_aug)
bfli <- cbind(bli,fli)
rownames(bfli) <- c(rownames(X), "wage")
# wie = with induced effect
colnames(bfli) <- c("backward_linkage_wie", "forward_linkage_wie")
kable(bfli)
backward_linkage_wie | forward_linkage_wie | |
---|---|---|
agriculture_fishing | 0.643 | 0.398 |
mining | 0.433 | 0.123 |
manufacturing_industry | 0.609 | 1.130 |
electricity_gas_water | 0.550 | 0.702 |
construction | 0.728 | 0.323 |
retail_hotels_restaurants | 0.713 | 0.947 |
transport_communications_information | 0.547 | 0.872 |
financial_services | 0.543 | 0.768 |
real_state | 0.247 | 0.858 |
business_services | 0.582 | 0.821 |
personal_services | 0.797 | 0.510 |
public_administration | 0.752 | 0.053 |
wage | 3.090 | 2.729 |
Schuschny, Andres Ricardo. Topicos sobre el modelo de insumo-producto: teoria y aplicaciones. Cepal, 2005.
Pino Arriagada, Andres y Fuentes Navarro, Silvia. Derivacion y analisis de los multiplicadores de empleo para la economia nacional. Universidad del Bio-Bio, 2018.