Package ‘liGP’

July 17, 2021

Title Locally Induced Gaussian Process Regression
Version 1.0.1

Date 2021-06-29

Maintainer D. Austin Cole <austin.cole8@vt.edu>

Description
Performs locally induced approximate GP regression for large computer experiments and spa-
tial datasets following Cole D.A., Christianson, R., Gramacy, R.B. (2021) Statistics and Comput-
ing, 31(3), 1-21, <arXiv:2008.12857>. The approximation is based on small local designs com-
bined with a set of inducing points (latent design points) for predictions at particular inputs. Paral-
lelization is supported for generating predictions over an immense out-of-sample testing set. Lo-
cal optimization of the inducing points design is provided based on variance-based criteria. In-
ducing point template schemes, including scaling of space-filling designs, are also provided.

Depends R (>=3.4)

Imports hetGP, laGP, doParallel, foreach
Suggests lhs

License LGPL

Encoding UTF-8

RoxygenNote 7.1.1

NeedsCompilation yes

Author D. Austin Cole [aut, cre],
Ryan B Christianson [cph],
Robert B. Gramacy [cph]

Repository CRAN
Date/Publication 2021-07-17 06:00:02 UTC

R topics documented:

borehole e 2
build_gauss_measure_ipTemplate 3
build_ipTemplate 6
build_neighborhood 9

https://arxiv.org/abs/2008.12857

2 borehole
calc_IMSE e e 11
calc WIMSE 12
giGP . . 14
herbtooth 17
LGP . . . 18
LiGPforloop e 24
LIGP_gauss_measure e e 27
IoiGP 29
optIPALC e 32
optIPWIMSE 34
gnormscale e e e e e 37
scale_gauss_measure_ipTemplate 38
scale_ipTemplate L 40
Index 43
borehole Borehole equation data generator
Description
Generates a vector of outputs from the borehole function, a common testing function for computer
experiments. The function models water flow through a borehole.
Usage
borehole(X)
Arguments
X amatrix containing the full (large) design matrix of input locations in [0,1]"8
Details
For more details, see Worley, B. A. (1987). Deterministic uncertainty analysis (No. CONF-871101-
30). Oak Ridge National Lab., TN (USA)
Value
a vector of evaluations of the borehole function, length = nrow(X)
References

Harper, W. V., & Gupta, S. K. (1983). Sensitivity/uncertainty analysis of a borehole scenario com-
paring Latin Hypercube Sampling and deterministic sensitivity approaches (No. BMI/ONWI-516).
Battelle Memorial Inst., Columbus, OH (USA). Office of Nuclear Waste Isolation.

Worley, B. A. (1987). Deterministic uncertainty analysis (No. CONF-871101-30). Oak Ridge
National Lab., TN (USA).

build_gauss_measure_ipTemplate 3

Examples

X <- matrix(runif(800), ncol=8)
borehole(X)

build_gauss_measure_ipTemplate
Inducing point template design for a Gaussian measure built through
sequential optimization

Description

Constructs a design of inducing points around a Gaussian measure whose mean is the center of
the design matrix and its local neighborhood. The output is an inducing point design centered
at the origin that can be used as a template for predictions anywhere in the design space (with a
local neighborhood of the same size). The inducing points are sequentially selected by optimizing
"wimse", weighted Integrated Mean Squared Error.

Usage

build_gauss_measure_ipTemplate(X = NULL, Y = NULL, M, N, gauss_sd,
theta = NULL, g = 1e-4, seq_length=20,
ip_bounds = NULL, integral_bounds = NULL,
num_multistart = 20,
epsK = sqrt(.Machine$double.eps), epsQ = le-5,
reps = FALSE, verbose = TRUE)

Arguments

X amatrix containing the full (large) design matrix of input locations. If using a
list for reps, this entry is not used

Y a vector of responses/dependent values with length(Y)=nrow(X). If using a list
for reps, this entry is not used

M a positive integer number of inducing points; M should be less than N

N the positive integer number of Nearest Neighbor (NN) locations used to build a
local neighborhood

gauss_sd a vector of standard deviations for the Gaussian measure with length(gauss_sd)=nrow(X).
Note: at this time, the Gaussian measure must only have one nonzero standard
deviation (i.e. the Gaussian measure is a slice)

theta the lengthscale parameter (positive number) in a Gaussian correlation function;
a (default) NULL value sets the lengthscale at the square of the 10th percentile
of pairwise distances between neighborhood points (similar to darg in 1aGP
package)

g the nugget parameter (positive number) in a covariance

seq_length a positive integer used to build sequences of this length in the nondegenerate

dimensions for the purpose of building a local neighbhorhood.

ip_bounds

integral_bounds

num_multistart

epsK

epsQ

reps

verbose

Details

build_gauss_measure_ipTemplate

a 2 by d matrix of the bounds used in the optimization of inducing points; the
first row contains minimum values, the second row the maximum values; if not
provided, the bounds of the center’s local neighborhood are used

a 2 by d matrix of the bounds used in the calculation of wimse; the first row
contains minimum values, the second row the maximum values; only relevant
when method="wimse"; if not provided, defaults to the range of each column of
X

a scalar positive integer indicating the number of multistart points used to opti-
mize each inducing point

a small positive number added to the diagonal of the correlation matrix of in-
ducing points for numerically stability for inversion

a small positive number added to the diagonal of the Q matrix (see Cole (2021))
for numerically stability for inversion

a notification of replicate design locations in the data set. If TRUE, the unique
design locations are used for the calculations along with the average response for
each unique design location. Alternatively, reps can be a list from find_reps
in the hetGP package. In this case, X and Y are not used.

when TRUE, prints the current number of inducing points selected during the
sequential optimization process

This function is built to deal with the special class of problems where 1iGP is used to predict and
integrate over a degenerate Gaussian measure where only one dimension has a nonzero standard
deviation. To build the wIMSE inducing point design, the function optIP.wIMSE is called with the
reference point being the median of the design matrix.

For each inducing point design, the first inducing point is placed at the predictive location (i.e. the

origin).

Value

The output is a 1ist with the following components.

Xm.t
Xn
Xc

gauss_sd

time

Author(s)

amatrix of Minducing points centered at the origin
amatrix of the local neighborhood at the center of the design

a matrix of the center of the design used to build the local neighborhood and
inducing point template

the gauss_sd used to generate the local neighborhood

a scalar giving the passage of wall-clock time elapsed for (substantive parts of)
the calculation

D. Austin Cole <austin.cole8@vt.edu>

build_gauss_measure_ipTemplate 5

References

D.A. Cole, R.B. Christianson, and R.B. Gramacy (2021). Locally Induced Gaussian Processes for
Large-Scale Simulation Experiments Statistics and Computing, 31(3), 1-21; preprint on arXiv:2008.12857;
https://arxiv.org/abs/2008.12857

See Also

optIP.wIMSE

Examples

"2D Toy Problem”
Herbie's Tooth function used in Cole et al (2020);
thanks to Lee, Gramacy, Taddy, and others who have used it before

build up a design with N=~40K locations
x <- seq(-2, 2, by=0.02)

X <- as.matrix(expand.grid(x, x))

Y <- herbtooth(X)

X_center <- apply(X, 2, median)

gauss_sd <- c(@, .05)

build a inducing point template, first with original weighted Integrated Mean-Square Error

int_bounds <- rbind(c(-2,-2), c(2,2))

wimse.out <- build_ipTemplate(X, Y, N=100, M=10, method='wimse',
integral_bounds=int_bounds)

Xm.t_wimse <- wimse.out$Xm.t

Xn <- wimse.out$Xn

wimse_gauss.out <- build_gauss_measure_ipTemplate(X, Y, N=100, M=10,
gauss_sd = gauss_sd,
integral_bounds=int_bounds)
Xm.t_wimse_gauss <- wimse_gauss.out$Xm.t
Xn_gauss <- wimse_gauss.out$Xn

plot locally optimized inducing point templates
ylim <- range(Xn_gauss[,2]) + c(-.03, .05)
plot(Xn, pch=16, cex=.5, col='grey',
xlab = 'x1', ylab = 'x2', ylim = ylim,
main='Locally optimized IP template based on Gaussian measure')
points(Xn_gauss, cex=.7)
points(X_center[1], X_center[2], pch=16, cex=1.5)
points(Xm.t_wimse, pch=2, lwd=2, col=3)
points(Xm.t_wimse_gauss, pch=6, lwd=2, col=2)
legend('topleft', pch = c(16, 1, 2, 3), col = c('grey', 1, 3, 2),
legend=c('Local neighborhood (wIMSE)',
'Local neighborhood (Gauss measure)',
'"WIMSE ip design',
'Gaussian measure ip design'))

https://arxiv.org/abs/2008.12857

6 build_ipTemplate

build_ipTemplate Inducing point template design built through sequential optimization

Description

Constructs a design of inducing points around the center of the design matrix and its local neighbor-
hood. The output is an inducing point design centered at the origin that can be used as a template
for predictions anywhere in the design space (with a local neighborhood of the same size). Dif-
ferent criteria are available to optimize the inducing points. The methods "wimse" and "alc" use
weighted Integrated Mean Squared Error and Active Learning Cohn respectively to sequentially
select inducing points.

Usage

build_ipTemplate(X = NULL, Y = NULL, M, N, theta = NULL, g = 1e-4,
method = c('wimse', 'alc'), ip_bounds = NULL,
integral_bounds = NULL, num_thread = 1, num_multistart = 20,
w_var = NULL, epsK = sqgrt(.Machine$double.eps), epsQ = le-5,
reps = FALSE, verbose = TRUE)

Arguments

X amatrix containing the full (large) design matrix of input locations. If using a
list for reps, this entry is not used.

Y a vector of responses/dependent values with length(Y)=nrow(X). If using a list
for reps, this entry is not used.

M a positive integer number of inducing points; M should be less than N
a positive integer number of Nearest Neighbor (NN) locations used to build a
local neighborhood

theta the lengthscale parameter (positive number) in a Gaussian correlation function;
a (default) NULL value sets the lengthscale at the square of the 10th percentile
of pairwise distances between neighborhood points (similar to darg in 1aGP
package)

g the nugget parameter (positive number) in a covariance

method specifies the method by which the inducing point template is built. In brief,
wIMSE ("wimse", default) minimizes the weighted integrated predictive vari-
ance and ALC ("alc"”) minimizes predictive variance

ip_bounds a 2 by d matrix of the bounds used in the optimization of inducing points; the

first row contains minimum values, the second row the maximum values; if not

provided, the bounds of the center’s local neighborhood are used
integral_bounds

a 2 by d matrix of the bounds used in the calculation of wimse; the first row

contains minimum values, the second row the maximum values; only relevant

when method="wimse"; if not provided, defaults to the range of each column of

X

build_ipTemplate 7

num_thread a scalar positive integer indicating the number of GPUs available for calculating
ALC; only relevant when method="alc"

num_multistart a scalar positive integer indicating the number of multistart points used to opti-
mize each inducing point with wIMSE or ALC

w_var a scalar positive number used as the variance for the Gaussian weight in wIMSE.
If NULL, theta is used.

epsK a small positive number added to the diagonal of the correlation matrix of in-
ducing points for numerically stability for inversion

epsQ a small positive number added to the diagonal of the Q matrix (see Cole (2021))
for numerically stability for inversion

reps a notification of replicate design locations in the data set. If TRUE, the unique
design locations are used for the calculations along with the average response for
each unique design location. Alternatively, reps can be a list from find_reps
in the hetGP package. In this case, X and Y are not used.

verbose when TRUE, prints the current number of inducing points selected during the
sequential optimization process

Details

This function calls separate subroutines for certain methods. For method=wimse, the function
optIP.wIMSE is called with the reference point being the median of the design matrix. If method=alc,
optIP.ALC is called with the predictive variance being minimized at the median of the design ma-
trix. For any inducing point design, the first inducing point is placed at the predictive location (i.e.
the origin).

Value

The output is a 1ist with the following components.

Xm. t amatrix of Minducing points centered at the origin
Xn amatrix of the local neighborhood at the center of the design
time a scalar giving the passage of wall-clock time elapsed for (substantive parts of)

the calculation

Author(s)

D. Austin Cole <austin.cole8@vt.edu>

References

D.A. Cole, R.B. Christianson, and R.B. Gramacy (2021). Locally Induced Gaussian Processes for
Large-Scale Simulation Experiments Statistics and Computing, 31(3), 1-21; preprint on arXiv:2008.12857;
https://arxiv.org/abs/2008.12857

See Also

optIP.wIMSE,optIP.ALC

https://arxiv.org/abs/2008.12857

8 build_ipTemplate

Examples

"1D Toy Problem”
Test function from Forrester et al (2008);

library(hetGP)
X <- as.matrix(seq(@, 1, length=1000))
Y <= f1d(X)

int_bounds <- matrix(c(@, 1))

Center of design space used to build inducing point templates
X_center <- median(X)

Optimize inducing points with weighted Integrated Mean-Square Error
wimse.out <- build_ipTemplate(X, Y, N=100, M=10, method="wimse", integral_bounds=int_bounds)
Xm.t_wimse <- wimse.out$Xm.t

now optimize inducing points using Active Learning Cohn

alc.out <- build_ipTemplate(X, Y, N=100, M=10, method="alc", integral_bounds=int_bounds)
Xm.t_alc <- alc.out$Xm.t

Xn <- alc.out$Xn ## X_center neighborhood

plot locally optimized inducing point templates

plot(X, Y, pch=16, cex=.5, col='grey')

points(Xn, f1d(Xn), col=2)

points(Xm.t_wimse + X_center, rep(-4, 10), pch=2, col=3)

points(Xm.t_alc + X_center, rep(-5, 10), pch=3, col=4)

legend('topleft', pch = c(16, 16, 2, 3), col = c('grey', 2, 3, 4),
legend=c('Data', 'Local neighborhood', 'wIMSE inducing point design',

"ALC inducing point design'))

"2D Toy Problem”
Herbie's Tooth function used in Cole et al (2020);
thanks to Lee, Gramacy, Taddy, and others who have used it before

build up a design with N=~40K locations
x <- seq(-2, 2, by=0.02)

X <- as.matrix(expand.grid(x, x))

Y <- herbtooth(X)

X_center <- apply(X, 2, median)

build a inducing point template, first with weighted Integrated Mean-Square Error
int_bounds <- rbind(c(-2,-2), c(2,2))

wimse.out <- build_ipTemplate(X, Y, N=100, M=10, method="wimse", integral_bounds=int_bounds)
Xm.t_wimse <- wimse.out$Xm.t

now optimize inducing points using Active Learning Cohn

alc.out <- build_ipTemplate(X, Y, N=100, M=10, method="alc", integral_bounds=int_bounds)
Xm.t_alc <- alc.out$Xm.t

Xn <- alc.out$Xn

build_neighborhood 9

plot locally optimized inducing point templates
plot(Xn, pch=16, cex=.5, col='grey',
xlab = 'x1', ylab = 'x2', main='Locally optimized IP templates')
points(X_center[1], X_center[2], pch=16, cex=1.5)
points(Xm.t_wimse, pch=2, lwd=2, col=3)
points(Xm.t_alc, pch =3, lwd=2, col=4)
legend('topleft', pch = c(16, 2, 3), col = c('grey', 3, 4),
legend=c('Local neighborhood', 'wIMSE inducing point design',
'"ALC inducing point design'))

build_neighborhood Nearest Neighbor (NN) data subset given a center

Description

Constructs a neighborhood of points that are a subset of the data for a given center (i.e. predictive)
location.

Usage

build_neighborhood(N, xx = NULL, X = NULL, Y = NULL, reps_list = NULL)

Arguments
N the positive integer number of Nearest Neighbor (NN) locations used to build a
local neighborhood
XX a row matrix of the location of the neighborhood’s center. If NULL, the center
(median) of the data is used
X amatrix containing the full (large) design matrix of input locations. If reps_list
is supplied, this entry is not used.
Y a vector of responses/dependent values with length(Y)=nrow(X).If reps_list
is supplied, this entry is not used.
reps_list a list from find_reps in the hetGP package, that includes the entries X@ and Z0.
In this case, X and Y are not used.
Details

This function builds a local neighborhood around the center xx. If X is supplied, the N NN points
are found and chosen. If reps_list is supplied, N unique data locations X0 are supplied, along with
their averaged responses (Z0) and original responses (Z1ist).

10 build_neighborhood

Value

The output is a 1ist with the following components:
XX arow matrix of the neighborhood’s center

If reps_list=NULL,

Xn amatrix of the local neighborhood’s design points.
Yn a vector of the local neighborhood’s responses. Only provided when Y is pro-
vided.

If reps_list is provided,

Xno amatrix of the local neighborhood’s unique design locations.

Yno a vector of averages observations at Xn@.

mult a vector of the number of replicates at Xn@.

Yn_list a list where each element corresponds to observations at a design in Xn@.
Author(s)

D. Austin Cole <austin.cole8@vt.edu>

References

D.A. Cole, R.B. Christianson, and R.B. Gramacy (2021). Locally Induced Gaussian Processes for
Large-Scale Simulation Experiments Statistics and Computing, 31(3), 1-21; preprint on arXiv:2008.12857;
https://arxiv.org/abs/2008.12857

Examples

"2D Toy Problem”

Herbie's Tooth function used in Cole et al (2021);

thanks to Lee, Gramacy, Taddy, and others who have used it before
library(hetGP)

Build data with replicates

x <- seq(-2, 2, by=0.05)

X <- as.matrix(expand.grid(x, x))

X <= rbind(X, X)

Y <- herbtooth(X) + rnorm(nrow(X), sd = .02)
reps_list <- find_reps(X, Y)

xx <- matrix(c(-0.12, 1.53), nrow=1)

Build neighborhoods
neighborhoodl <- build_neighborhood(N=100, xx=xx, X=X, Y=Y)
neighborhood2 <- build_neighborhood(N=100, xx=xx, reps_list=reps_list)

Compare neighborhood sizes

Xn@_range <- apply(neighborhood2$Xn@, 2, range)

plot(X, xlim = Xn@_range[,1] + c(-.15, .15), ylim = Xn@_range[,2] + c(-.1, .25),
pch=3)

https://arxiv.org/abs/2008.12857

calc IMSE 11

points(neighborhood2$Xn@, pch=16, col='grey")
points(neighborhood1$Xn, col=2, lwd=2)

points(xx, pch=17, col=3, cex=1.5)

legend('topleft', ncol=2, pch=c(3, 17, 16, 1), col=c(1, 3, 'grey', 2),

legend=c('Design locations', 'Neighborhood center',
'Xn based on unique locations', 'Xn ignoring unique locations'))
calc_IMSE Integrated Mean-Square Error Given a New Inducing Point
Description

Calculates the Integrated Mean-Square Error (IMSE) given a set of data points, inducing point
design, and new proposed inducing point location.

Usage

calc_IMSE(xm1, Xm = NULL, X, theta = NULL, g = 1e-4,
integral_bounds = NULL, epskK = sqrt(.Machine$double.eps),
epsQ = 1e-5, mult = NULL)

Arguments

xm1 a vector containg the location of a proposed inducing point

Xm optional design matrix of existing inducing points; ncol (Xm) = length(xm1)

X the design matrix of input locations; ncol (X) = length(xm1)

theta the lengthscale parameter (positive number) in a Gaussian correlation function;
a (default) NULL value sets the lengthscale at the square of the 10th percentile of
pairwise distances between input locations X (similar to darg in 1aGP package)

g the nugget parameter (positive number) in the covariance

integral_bounds
a 2 by d matrix containing the domain bounds for the data; first row contains
minimum values for each dimension, second row contains maximum values; if
integral_bounds is NULL, defaults to range of the input locations X

epsK a small positive number added to the diagonal of the correlation matrix, of in-
ducing points, K, for numerically stability for inversion

epsQ a small positive number added to the diagonal of the Q matrix (see Cole (2021))
for numerically stability for inversion

mult an optional vector of length nrow(X) that contains the number of replicates for
each design location in X
Details

The function calculates the integrated mean-square error over the provided domain (integral_bounds).
The IMSE is calculated in closed-form.

12 calc. wIMSE

Value

the integrated mean-sqaure error

Author(s)

D. Austin Cole <austin.cole8@vt.edu>

References

D.A. Cole, R.B. Christianson, and R.B. Gramacy (2021). Locally Induced Gaussian Processes for
Large-Scale Simulation Experiments Statistics and Computing, 31(3), 1-21; preprint on arXiv:2008.12857;
https://arxiv.org/abs/2008.12857

Examples

Build a set of input locations and existing inducing points
X = matrix(runif(100), ncol=2)
Xm = matrix(runif(10), ncol=2)

integral_bounds <- rbind(c(0,0), c(1,1))
xml_new <- c(.4, .2)

Calculate the integrated mean-square error
calc_IMSE(xm1=xm1_new, Xm=Xm, X=X,
integral_bounds=integral_bounds)

without an existing inducing point design
calc_IMSE(xml1=xm1_new, Xm=NULL, X=X,
integral_bounds=integral_bounds)

calc_wIMSE Weighted Integrated Mean-Square Error Given a New Inducing Point

Description

Calculates the Weighted Integrated Mean-Square Error (WIMSE) given a prediction location, local
neighborhood, design of inducing points, and new proposed inducing point location.

Usage

calc_wIMSE(xm1, Xm = NULL, Xn, theta = NULL, g = Te-4,
w_mean, w_var = NULL, integral_bounds = NULL,
epsK = sqgrt(.Machine$double.eps),
epsQ = 1e-5, mult = NULL)

https://arxiv.org/abs/2008.12857

calc wIMSE 13

Arguments

xm1 a vector containg the location of a proposed inducing point

Xm a design matrix of existing inducing points; ncol (Xm) = length(xm1)

Xn amatrix of the local neighborhood; ncol (Xn) = length(xm1)

theta the lengthscale parameter (positive number) in a Gaussian correlation function;
a (default) NULL value sets the lengthscale at the square of the 10th percentile
of pairwise distances between neighborhood points (similar to darg in 1aGP
package)

g the nugget parameter (positive number) in the covariance

w_mean a vector of the mean (center) of the Gaussian weight; length(w_mean) should
equal ncol(Xn)

w_var a positive number or vector of positive numbers (length equal to ncol(Xn))
denoting the variance(s) in the Gaussian weight. If NULL (default), theta is
used.

integral_bounds
a 2 by d matrix containing the domain bounds for the data; first row contains
minimum values for each dimension, second row contains maximum values; if
integral_bounds=NULL, defaults to range of the local neighborhood Xn

epsK a small positive number added to the diagonal of the correlation matrix, of in-
ducing points, K, for numerically stability for inversion

epsQ a small positive number added to the diagonal of the Q matrix (see Cole (2021))
for numerically stability for inversion

mult a vector of length nrow(X) that contains the number of replicates for each design
location in X

Details

The function calculates the integrated mean-square error with a Gaussian weight with mean w_mean
(i.e. predictive location) and variance w_var. By using a Gaussian weight along with a Gaussian
kernel for the GP, the wIMSE is calculated in closed-form.

Value

the weighted integrated mean-sqaure error

Author(s)

D. Austin Cole <austin.cole8@vt.edu>

References

D.A. Cole, R.B. Christianson, and R.B. Gramacy (2021). Locally Induced Gaussian Processes for
Large-Scale Simulation Experiments Statistics and Computing, 31(3), 1-21; preprint on arXiv:2008.12857;
https://arxiv.org/abs/2008.12857

https://arxiv.org/abs/2008.12857

14 giGP

Examples

Build a "local neighborhood” and existing inducing point design
X_center <- c¢(.5, .5)

Xn <- matrix(runif(100), ncol=2)

Xm <- matrix(runif(10), ncol=2)

integral_bounds <- rbind(c(0,0), c(1,1))
xml_new <- c(.4, .2)

Calculate the weighted integrated mean-square error
calc_wIMSE(xml=xm1_new, Xm=Xm, Xn=Xn, w_mean=X_center,
integral_bounds=integral_bounds)

Define weight's variance
calc_wIMSE(xm1=xml1_new, Xm=Xm, Xn=Xn, w_mean=X_center,
w_var=c(.1, .2), integral_bounds=integral_bounds)

Without an exisiting inducing point design
calc_wIMSE (xm1=xm1_new, Xm=NULL, Xn=Xn, w_mean=X_center,
integral_bounds=integral_bounds)

giGP Global Inducing Point Approximate GP Regression For Many Predic-
tive Locations

Description

Facilitates Gaussian process inference and prediction at a set of predictive locations through the
implementation of an inducing point design. Optimizes hyperparameters and returns the moments
of the predictive equations.

Usage

giGP(XX, X = NULL, Y = NULL, Xm, g = 1e-6, theta = NULL, nu = NULL,
epsK = sqrt(.Machine$double.eps), epsQ = 1e-5, tol = .01, reps = FALSE)

Arguments

XX amatrix of out-of-sample predictive locations with ncol (XX)=ncol (X)

X amatrix containing the full (large) design matrix of all input locations. If using
a list for reps, this entry is not used.

Y a vector of all responses/dependent values with length(Y)=nrow(X). If using a
list for reps, this entry is not used.

Xm amatrix containing the inducing points design with ncol (Xm)=ncol(X).

g an initial setting or fixed value for the nugget parameter. In order to optimize

the nugget, a list can be provided that includes:

* start — starting value to initialize the nugget

giGP

theta

nu

epsK

epsQ

tol

reps

Details

15

* min — minimum value in the allowable range for the nugget
* max — maximum value in the allowable range for the nugget
* ab — shape and rate parameters specifying a Gamma prior for the nugget

If ab is not provided, a prior is not placed with the likelihood for optimization.
If min and max aren’t provided, the nugget is not optimized. If a single positive
scalar is provided, the nugget is fixed for all predictions. If NULL, an initial
setting is based on garg in the 1aGP package.

an initial setting or fixed value for the lengthscale parameter. A (default) NULL
value generates an initial setting based on darg in the 1aGP package. Similarly,
a list can be provided that includes:

* start — starting value to initialize the lengthscale
e min — minimum value in the allowable range for the lengthscale
* max — maximum value in the allowable range for the lengthscale

* ab — shape and rate parameters specifying a Gamma prior for the length-
scale

If ab is not provided, a prior is not placed with the likelihood for optimization.
If min and max aren’t provided, the lengthscale is not optimized. If a single
positive scalar is provided, the lengthscale is fixed for all predictions.

a positive number used to set the scale parameter; default (NULL) calculates the
maximum likelihood estimator

a small positive number added to the diagonal of the correlation matrix of in-
ducing points for numerically stability for inversion. The value is automatically
increased if needed.

a small positive number added to the diagonal of the Q matrix (see Cole (2021))
for numerically stability for inversion. The value is automatically increased if
needed.

a positive number to serve as the tolerance level for covergence of the log-
likelihood when optimizing the hyperparameter(s) theta, g

a notification of replicate design locations in the data set. If TRUE, the unique
design locations are used for the calculations along with the average response for
each unique design location. Alternatively, reps can be a list from find_reps
in the hetGP package. In this case, X and Y are not used.

The function uses the likelihood and predictive equations derived in Snelson and Ghahramani
(2006) to fit a induced Gaussian Process for predictions. All the data {X, Y} and inducing points Xm
are used for each prediction.

Value

The output is a 1ist with the following components.

mean

var

a vector of predictive means of length nrow (XX)

a vector of predictive variances of length nrow(XX)

16 giGP

nu a vector of values of the scale parameter of length nrow(XX)

g a full version of the g argument

theta a full version of the theta argument

mle if g and/or theta is optimized, a matrix containing the values found for these
parameters and the number of required iterations, for each predictive location in
XX

eps a vector of the jitter values used on the correlation matrix and Q matrix

time a scalar giving the passage of wall-clock time elapsed for (substantive parts of)

the calculation

Author(s)

D. Austin Cole <austin.cole8@vt.edu>

References

D.A. Cole, R.B. Christianson, and R.B. Gramacy (2021). Locally Induced Gaussian Processes for
Large-Scale Simulation Experiments Statistics and Computing, 31(3), 1-21; preprint on arXiv:2008.12857;
https://arxiv.org/abs/2008.12857

E. Snelson Z. and Ghahramani. (2006). Sparse Gaussian Processes using Pseudo-inputs Advances
in Neural Information Processing Systems 18 , 1257-1264.

Examples

"1D Toy Problem”

Test function from Forrester et al (2008);
library(hetGP); library(lhs)

X <- matrix(seq(@, 1, length=1000))

Y <= f1d(X)

XX <- matrix(seq(@, 1, length=100))

YY <= f1d(XX)

Xm <- randomLHS(10,1)

out <- giGP(XX=XX, X=X, Y=Y, Xm=Xm, theta=.1)

par(mfrow=c(1,2))

plot(X, Y, type='l", lwd=4, ylim=c(-8, 16))

lines(XX, out$mean, lwd=3, 1lty=2, col=2)

points(Xm, rep(-8, 10), lwd=2, pch=3, col=3)

legend('topleft', legend=c('Test Function', 'Predicted mean', 'Inducing Points'),
lty=c(1, 2, NA), col=1:3, pch=c(NA, NA, 3), lwd=2)

plot(XX, YY - out$mean, ylab='Error', type = '1')

a "computer experiment”

Simple 2-d Herbie's Tooth function used in Cole et al (2020);
thanks to Lee, Gramacy, Taddy, and others who have used it before
library(lhs)

https://arxiv.org/abs/2008.12857

herbtooth 17

Build up a design with N=~40K locations
x <- seq(-2, 2, by=0.05)

X <- as.matrix(expand.grid(x, x))

Y <- herbtooth(X)

Build a inducing point template centered at origin
Xm <- 4*xrandomLHS(30, 2) - 2

Predictive grid with N'=400 locations,
xx <- seq(-1.975, 1.975, length=20)

XX <- as.matrix(expand.grid(xx, xx))

YY <- herbtooth(XX)

Get the predictive equations, first with fixed lengthscale and nugget
out <- giGP(XX=XX, X=X, Y=Y, Xm=Xm, theta=.1)

RMSE

sqrt(mean((out$mean - YY)*2))

Refine with optimizing the lengthscale

theta_list <- list(start = .1, min = .05, max = 5)
out2 <- giGP(XX=XX, X=X, Y=Y, Xm=Xm, theta=theta_list)
RMSE

sgrt(mean((out2$mean - YY)*2))

Visualize the results

orig_par <- par()

par(mfrow=c(1,3))

image(xx, xx, matrix(out2$mean, nrow=length(xx)), col=heat.colors(128),
xlab="x1", ylab="x2", main="Predicted mean")

image(xx, xx, matrix(out2$mean-YY, nrow=length(xx)), col=heat.colors(128),
xlab="x1", ylab="x2", main="Bias")

image(xx, xx, sqrt(out2$nu) *matrix(sqrt(out$var), nrow=length(xx)),
col=heat.colors(128), xlab="x1", ylab="x2", main="Stand. Dev.")

points(Xm, pch=3, col=3, lwd=2)

par(orig_par)

herbtooth Herbie’s Tooth function

Description

Two-dimensional function whose surface resembles a molar, with multiple local minima/maxima

Arguments

X amatrix or data.frame containing the full (large) design matrix of input loca-
tions in [-2,2]"2

18 liGP

Details

A non-stationary function with many local minima/maxima that is difficult to model with a global
model.

Value

a vector of evaluations of the Herbie’s tooth function, length = nrow(X)

Author(s)

D. Austin Cole <austin.cole8@vt.edu>

References

H.K.H. Lee, R.B. Gramacy, C. Linkletter, and G. Gray. 2011. Optimization Subject to Hidden
Constraints via Statistical Emulation Pacific Journal of Optimization 7 (3): 467-78.

Examples
X <= matrix(runif (200, min = -2, max = 2), ncol=2)
herbtooth(X)
1iGP Localized Inducing Point Approximate GP Regression For Many Pre-
dictive Locations
Description

Facilitates locally induced Gaussian process inference and prediction at a large set of predictive
locations by: building local neighborhoods, shifting an inducing point template, optimizing hyper-
parameters, and calculating GP predictive equations.

Usage

1iGP(XX, X = NULL, Y = NULL, Xm.t, N, g = 1e-6, theta = NULL,
nu = NULL, num_thread = 1, epsK = sqrt(.Machine$double.eps), epsQ = le-5,
tol = .01, reps = FALSE, Xni.return = FALSE)

Arguments
XX amatrix of out-of-sample predictive locations with ncol (XX) = ncol(X)
X amatrix containing the full (large) design matrix of all input locations. If reps
is a list, this entry is not used.
Y a vector of all responses/dependent values with length(Y)=nrow(X). If reps is
a list, this entry is not used.
Xm.t amatrix containing the M inducing points template with ncol (Xm. t) = ncol (X).

See ’Note’ for more.

liGP

theta

nu

num_thread

epsK

epsQ

tol

reps

Xni.return

19

the positive integer number of nearest neighbor (NN) locations used to build a
local neighborhood; N should be greater than M. See *Note’ for more.

an initial setting or fixed value for the nugget parameter. In order to optimize g,
a list can be provided that includes:

e start — starting value to initialize the nugget

* min — minimum value in the allowable range for the nugget

* max — maximum value in the allowable range for the nugget

* ab — shape and rate parameters specifying a Gamma prior for the nugget

If ab is not provided, a prior is not placed with the likelihood for optimization.
If min and max aren’t provided, the nugget is not optimized. A NULL value
generates a list based on garg in the laGP package. If a single positive scalar
is provided, the nugget is fixed for all predictions. Alternatively, a vector of
nuggets whose length equals nrow(XX) can be provided to fix distinct nuggets
for each prediction.

an initial setting or fixed value for the lengthscale parameter. A (default) NULL
value generates an initial setting based on darg in the laGP package. Similarly,
a list can be provided that includes:

* start — starting value to initialize the lengthscale

* min — minimum value in the allowable range for the lengthscale

* max — maximum value in the allowable range for the lengthscale

* ab — shape and rate parameters specifying a Gamma prior for the length-
scale

If ab is not provided, a prior is not placed with the likelihood for optimization. If
min and max aren’t provided, the lengthscale is not optimized. If a single positive
scalar is provided, the lengthscale is fixed for all predictions. Alternatively, a
vector of lengthscales whose length equals nrow(XX) can be provided to fix
distinct lengthscales for each prediction.

a positive number used to set the scale parameter; default (NULL) calculates the
maximum likelihood estimator

a scalar positive integer indicating the number of threads to use for parallel pro-
cessing

a small positive number added to the diagonal of the correlation matrix of
inducing points for numerically stability for inversion. It is automatically in-
creased if neccessary for each prediction.

a small positive number added to the diagonal of the Q matrix (see Cole (2021))
of inducing points for numerically stability for inversion. It is automatically
increased if neccessary for each prediction.

a positive number to serve as the tolerance level for covergence of the log-
likelihood when optimizing the hyperparameter(s) theta, g

a notification of replicate design locations in the data set. If TRUE, the unique
design locations are used for the calculations along with the average response for
each unique design location. Alternatively, reps can be a list from find_reps
in the hetGP package. In this case, X and Y are not used.

A scalar logical indicating whether or not a vector of indices into X (or X@ if a
reps list is supplied), specifying the chosen sub-design, should be returned on
output.

20 liGP

Details
When num_threads > 1, the predictions are performed in parallel using foreach with clusters cre-
ated by parallel.

Value

The output is a 1ist with the following components:

mean a vector of predictive means of length nrow (XX)

var a vector of predictive variances of length nrow(XX)

nu a vector of values of the scale parameter of length nrow(XX)

g a full version of the g argument

theta a full version of the theta argument

Xm.t the input for Xm. t

eps a matrix of epsK and epsQ (jitter) values used for each prediction, nrow(eps)=nrow(XX)

mle if g and/or theta is optimized, a matrix containing the values found for these
parameters and the number of required iterations, for each predictive location in
XX

Xni when Xni.return = TRUE, this field contains a vector of indices of length N into

X (or X0) indicating the sub-design (neighborhood) chosen. If nrow(XX)>1, a
matrix is returned with each row matched with the corresponding row of XX

time a scalar giving the passage of wall-clock time elapsed for (substantive parts of)
the calculation
Note

When selecting the neighborhood size (N) and number of inducing points in Xm.t, there is no
general rule that works for all problems. However, for lower dimensions (dim<9) the following
values seem to perform well: N = 100 + 10*dim, M = 10*dim

Author(s)

D. Austin Cole <austin.cole8@vt.edu>

References

D.A. Cole, R.B. Christianson, and R.B. Gramacy (2021). Locally Induced Gaussian Processes for
Large-Scale Simulation Experiments Statistics and Computing, 31(3), 1-21; preprint on arXiv:2008.12857;
https://arxiv.org/abs/2008.12857

See Also

darg, garg, find_reps, makeCluster, clusterApply

https://arxiv.org/abs/2008.12857

liGP

Examples

"1D Toy Problem”

Test function from Forrester et al (2008);
library(hetGP); library(lhs)

X <- matrix(seq(@, 1, length=1000))

Y <= f1d(X)

XX <- matrix(seq(@, 1, length=100))

YY <= f1d(XX)

Create inducing point template

lhs_design <- randomLHS(9,1)

n <- 80

Xmt <- scale_ipTemplate(X, n, space_fill_design=1hs_design, method='gnorm')$Xm.t

out <- 1iGP(XX=XX, X=X, Y=Y, Xm=Xmt, N=n, theta=.1)

Plot predicted mean and error
orig_par <- par()
par(mfrow=c(1,2))
plot(X, Y, type='l"', lwd=4, ylim=c(-8, 16),
main="LIGP fit to Test Function')
lines(XX, out$mean, lwd=3, 1lty=2, col=2)
legend('topleft', legend=c('Test Function', 'Predicted mean'),
1ty=1:2, col=1:2, lwd=2)

plot(XX, YY - out$mean, xlab='X', ylab='Error', type = 'l',
main='Predicted Error')
par(orig_par)

##

Generate new data from function with same mean and non-constant noise
fY <- function(x) { f1d(x) + rnorm(length(x), sd=(1.1 + sin(2xpi*x))) 3}
Y2 <= fY(X)

Estimate lengthscale and nugget in predictions

library(1aGP)

theta_prior <- darg(NULL, X)

g_prior <- garg(list(mle=TRUE), Y2)

out2 <- liGP(XX=XX, X=X, Y=Y2, Xm=Xmt, N=n, theta=theta_prior,
g=g_prior, epskK=1e-5)

Plot predictived mean and confidence intervals
plot(X, Y2, col='grey', cex=.5, pch=16,
main="LIGP fit to heteroskedastic data', ylab='Y")
lines(X, Y, lwd=2)
lines(XX, out2$mean, lwd=2, lty=2, col=2)
lines(XX, out2$mean + 1.96*xsqrt(out2$nu*xout2$var), lwd=1, lty=4, col=2)
lines(XX, out2$mean - 1.96*sqrt(out2$nu*rout2$var), lwd=1, lty=4, col=2)
legend('topleft', legend=c('Noisy data', 'Function mean', 'Predicted mean',
'Predicted 95 percent confidence interval'),
lwd=2, 1lty=c(NA,1,2,3), pch=c(16,NA,NA,NA), col=c('grey',1,2,2))

21

22

View mean and variance errors
par(mfrow=c(1,2))
plot(XX, YY - out2$mean, xlab='X', ylab='Mean Error', type = 'l')
plot (XX, (1.1 + sin(2*pi*XX))*2 - (out2$nuxout2$var),
xlab='X", ylab='Variance Error', type = '1')
par(orig_par)

#H#

Generate new data with replicates

mults <- sample(2:10, nrow(X), replace=TRUE)
X.reps <- X[rep(1:nrow(X), mults),]

Y.reps <- fY(X.reps)

g_prior <- garg(list(mle=TRUE), Y.reps)

Generate rep list from hetGP
rep_list <- find_reps(X.reps, Y.reps)

out3 <- liGP(XX=XX, Xm=Xmt, N=n, theta=theta_prior,
g=g_prior, epsk=le-5, reps = rep_list)

Plot predictived mean and confidence intervals
plot(X.reps, Y.reps, col='grey', cex=.5, pch=16,
main="LIGP fit to data with replicates', xlab='X", ylab='Y")
lines(X, Y, lwd=2)
lines(XX, out3$mean, lwd=2, lty=2, col=2)
lines(XX, out3$mean + 1.96*xsqrt(out3$nu*xout3$var), lwd=1, lty=4, col=2)
lines(XX, out3$mean - 1.96*xsqrt(out3$nu*rout3$var), lwd=1, lty=4, col=2)
legend('topleft', legend=c('Noisy data', 'Function mean', 'Predicted mean',
'Predicted 95 percent confidence interval'),
lwd=2, 1ty=c(NA,1,2,3), pch=c(16,NA,NA,NA), col=c('grey',1,2,2))

a "computer experiment”

Simple 2-d Herbie's Tooth function used in Cole et al (2021);
thanks to Lee, Gramacy, Taddy, and others who have used it before

Build up a design with N=~40K locations
x <- seq(-2, 2, by=0.02)

X <- as.matrix(expand.grid(x, x))

Y <- herbtooth(X)

Build a inducing point template centered at origin
Xm <- matrix(runif(20), ncol=2)
Xmt <- scale_ipTemplate(X=X, N=100, method="chr", space_fill_design = Xm)$Xm.t

Predictive grid with N'=400 locations
xx <- seq(-1.975, 1.975, length=20)

XX <- as.matrix(expand.grid(xx, xx))

YY <- herbtooth(XX)

liGP

liGP

Get the predictive equations, first with fixed lengthscale and nugget
out <- 1iGP(XX=XX, X=X, Y=Y, Xm.t=Xmt, N=100, Xni.return=TRUE)

RMSE

sqrt(mean((out$mean - YY)*2))

View one local neighborhood
xylim <- apply(X[out$Xni[33,]1,]1, 2, range)
plot(X[,11, X[,2], pch=16, col='grey', cex=.5,
xlim=xylim[,1] + c(-.05, .05), ylim=xylim[,2] + c(-.05, .05),
xlab="'X1"', ylab='X2"')
points(X[out$Xni[33,]1,1], X[out$Xni[33,]1,2], pch=16)
points(XX[33,1], XX[33,2], col=3, pch=17, cex=1.5)
points(sweep(Xmt, 2, XX[33,,drop=FALSE], '+'), pch=18, col=2)
legend('topleft', legend=c('Predictive location', 'Data not in neighborhoood"',
'Neighborhood', 'Inducing points'),
pch=c(17, 16, 16, 18), col=c(3, 'grey',1,2), cex=1.3)

#H

Refine with optimizing the lengthscale

theta_list <- darg(NULL, X)

out2 <- L1iGP(XX=XX, X=X, Y=Y, Xm.t=Xmt, N=100, theta=theta_prior)

RMSE
sqrt(mean((out2$mean - YY)*2))

Visualize the results

par(mfrow=c(1,3))

image(xx, xx, matrix(out2$mean, nrow=length(xx)), col=heat.colors(128),
xlab="x1", ylab="x2", main="Predictive Mean")

image(xx, xx, matrix(out2$mean-YY, nrow=length(xx)), col=heat.colors(128),
xlab="x1", ylab="x2", main="Bias")

image(xx, xx, matrix(sqrt(out2$nu*xout$var), nrow=length(xx)),
col=heat.colors(128), xlab="x1", ylab="x2", main="Stand. Dev.")

par(orig_par)

#H#

Predictions from noisy training data with replicates
Xreps <- X[rep(1:nrow(X), 5),1]

Ynoisy <- herbtooth(Xreps) + rnorm(nrow(Xreps), sd=.02)

library(hetGP)
reps_list <- find_reps(Xreps, Ynoisy)

Priors for theta and g
theta_prior <- darg(NULL, Xreps)
g_prior <- garg(list(mle=TRUE), Ynoisy)

Predictions with estimated nugget
out_noisydata <- 1iGP(XX, Xm.t = Xmt, N = 100, g=g_prior, theta=theta_prior,
reps = reps_list)

24 liGP.forloop

RMSE
estimated_noise <- sqgrt(out_noisydata$mle[,1]*out_noisydata$nu)
sqrt(mean((estimated_noise - .02)"2))

Visualize the results

par(mfrow=c(1,3))

image(xx, xx, matrix(out_noisydata$mean, nrow=length(xx)), col=heat.colors(128),
xlab="x1", ylab="x2", main="Predictive Mean")

image(xx, xx, matrix(out_noisydata$mean-YY, nrow=length(xx)), col=heat.colors(128),
xlab="x1", ylab="x2", main="Bias")

image(xx, xx, matrix(sqrt(out_noisydata$nu*out_noisydata$var) - .02, nrow=length(xx)),
col=heat.colors(128), xlab="x1", ylab="x2", main="Stand. Dev. Error")

par(orig_par)

1iGP. forloop Localized Inducing Point Approximate GP Regression For Many Pre-
dictive Locations

Description

Facilitates locally induced Gaussian process inference and prediction at a large set of predictive
locations by: building local neighborhoods, shifting an inducing point template, optimizing hyper-
parameters, and calculating GP predictive equations.

Usage

1iGP.forloop(XX, X = NULL, Y = NULL, Xm.t, N, g = 1e-6, theta = NULL,
nu = NULL, epsK = sqgrt(.Machine$double.eps), epsQ = Te-5,
tol = .01, reps = FALSE, Xni.return = FALSE)

Arguments

XX amatrix of out-of-sample predictive locations with ncol (XX) = ncol(X)

X amatrix containing the full (large) design matrix of all input locations. If reps
is a list, this entry is not used.

Y a vector of all responses/dependent values with length(Y)=nrow(X). If reps is
a list, this entry is not used.

Xm.t amatrix containing the M inducing points template with ncol (Xm.t) = ncol(X).
See "Note’ for more.

N the positive integer number of nearest neighbor (NN) locations used to build a
local neighborhood; N should be greater than M. See *Note’ for more.

g an initial setting or fixed value for the nugget parameter. In order to optimize g,

a list can be provided that includes:

* start — starting value to initialize the nugget

liGP.forloop

theta

nu

epsK

epsQ

tol

reps

Xni.return

Value

25

* min — minimum value in the allowable range for the nugget
* max — maximum value in the allowable range for the nugget
 ab — shape and rate parameters specifying a Gamma prior for the nugget

If ab is not provided, a prior is not placed with the likelihood for optimization.
If min and max aren’t provided, the nugget is not optimized. A NULL value
generates a list based on garg in the laGP package. If a single positive scalar
is provided, the nugget is fixed for all predictions. Alternatively, a vector of
nuggets whose length equals nrow(XX) can be provided to fix distinct nuggets
for each prediction.

an initial setting or fixed value for the lengthscale parameter. A (default) NULL
value generates an initial setting based on darg in the laGP package. Similarly,
a list can be provided that includes:

* start — starting value to initialize the lengthscale
* min — minimum value in the allowable range for the lengthscale
* max — maximum value in the allowable range for the lengthscale

* ab — shape and rate parameters specifying a Gamma prior for the length-
scale

If ab is not provided, a prior is not placed with the likelihood for optimization. If
min and max aren’t provided, the lengthscale is not optimized. If a single positive
scalar is provided, the lengthscale is fixed for all predictions. Alternatively, a
vector of lengthscales whose length equals nrow(XX) can be provided to fix
distinct lengthscales for each prediction.

a positive number used to set the scale parameter; default (NULL) calculates the
maximum likelihood estimator

a small positive number added to the diagonal of the correlation matrix of
inducing points for numerically stability for inversion. It is automatically in-
creased if neccessary for each prediction.

a small positive number added to the diagonal of the Q matrix (see Cole (2021))
of inducing points for numerically stability for inversion. It is automatically
increased if neccessary for each prediction.

a positive number to serve as the tolerance level for covergence of the log-
likelihood when optimizing the hyperparameter(s) theta, g

a notification of replicate design locations in the data set. If TRUE, the unique
design locations are used for the calculations along with the average response for
each unique design location. Alternatively, reps can be a list from find_reps
in the hetGP package. In this case, X and Y are not used.

A scalar logical indicating whether or not a vector of indices into X (or X@ if a
reps list is supplied), specifying the chosen sub-design, should be returned on
output.

The output is a 1ist with the following components:

mean

a vector of predictive means of length nrow (XX)

26

var

nu

theta
Xm.t
eps

mle

Xni

time

Note

liGP.forloop

a vector of predictive variances of length nrow(XX)

a vector of values of the scale parameter of length nrow(XX)

a full version of the g argument

a full version of the theta argument

the input for Xm. t

a matrix of epsK and epsQ (jitter) values used for each prediction, nrow(eps)=nrow(XX)

if g and/or theta is optimized, a matrix containing the values found for these
parameters and the number of required iterations, for each predictive location in
XX

when Xni.return = TRUE, this field contains a vector of indices of length N into
X (or X@) indicating the sub-design (neighborhood) chosen. If nrow(XX)>1, a
matrix is returned with each row matched with the corresponding row of XX

a scalar giving the passage of wall-clock time elapsed for (substantive parts of)
the calculation

When selecting the neighborhood size (N) and number of inducing points in Xm. t, there is no
general rule that works for all problems. However, for lower dimensions (dim<9) the following
values seem to perform well: N = 100 + 10*dim, M = 10*dim

Author(s)

D. Austin Cole <austin.cole8@vt.edu>

References

D.A. Cole, R.B. Christianson, and R.B. Gramacy (2021). Locally Induced Gaussian Processes for
Large-Scale Simulation Experiments Statistics and Computing, 31(3), 1-21; preprint on arXiv:2008.12857;
https://arxiv.org/abs/2008.12857

See Also

darg, garg, find_reps, makeCluster, clusterApply

Examples

See LIGP examples

https://arxiv.org/abs/2008.12857

liGP_gauss_measure 27

1iGP_gauss_measure Localized Inducing Point Approximate GP Regression For a Gaussian
Measure

Description

Facilitates locally induced Gaussian process inference and prediction across a Gaussian measure
by: building one local neighborhood around the measure, shifting an inducing point template, op-
timizing hyperparameters, calculating GP mean predictions, and estimating the integral through a
discrete set or quadrature.

Usage

1iGP_gauss_measure(xstar, X, Y, Xm.t, N, gauss_sd, measure_bounds = c(-Inf, Inf),
g = 1le-6, epsi = NULL, epsK = 1e-6, epsQ = 1e-5, seq_length = 20)

Arguments
xstar a one-row matrix of the mean of the Gaussian measure.
X amatrix containing the full (large) design matrix of all input locations.
Y a vector of all responses/dependent values with length(Y)=nrow(X).
Xm.t amatrix containing the M inducing points template with ncol (Xmt) = ncol(X).
N the positive integer number of nearest neighbor (NN) locations used to build a
local neighborhood; N should be greater than M
gauss_sd a vector of standard deviations for the Gaussian measure with with 1ength(gauss_sd)=nrow(X).

Note: at this time, the Gaussian measure must only have one nonzero standard
deviation (i.e. the Gaussian measure is a slice).

measure_bounds a vector of the bounds of the Gaussian measure for the single dimension with a
nonzero standard deviation. This is only used if epsi is NULL.

g a fixed value for the nugget parameter.

epsi an optional vector of Gaussian noise drawn from gauss_sd used with xstar to
generate a set of predictive locations for estimating the integral. If not provided,
the integrate function is called to perform to estimate the integral.

epsK a small positive number added to the diagonal of the correlation matrix of in-
ducing points for numerically stability for inversion

epsQ a small positive number added to the diagonal of the Q matrix (see Cole (2021))
of inducing points for numerically stability for inversion

seq_length a positive integer used to build sequences of this length in the nondegenerate
dimension for the purpose of building a local neighbhorhood. This sequence is
not used in prediction.

Details

This function is built to deal with the special class of problems where 1iGP is used to predict and
integrate over a degenerate Gaussian measure where only one dimension has a nonzero standard
deviation.

28 1iGP_gauss_measure

Value

the pointwise estimate for the mean prediction over the Gaussian measure

Author(s)

D. Austin Cole <austin.cole8@vt.edu>

References

D.A. Cole, R.B. Christianson, and R.B. Gramacy (2021). Locally Induced Gaussian Processes for
Large-Scale Simulation Experiments Statistics and Computing, 31(3), 1-21; preprint on arXiv:2008.12857,;
https://arxiv.org/abs/2008.12857

See Also

darg, integrate

Examples

a "computer experiment”

Simple 2-d Herbie's Tooth function used in Cole et al (2020);
thanks to Lee, Gramacy, Taddy, and others who have used it before

Build up a design with N=~40K locations
x <- seq(-2, 2, by=0.02)

X <- as.matrix(expand.grid(x, x))

Y <- herbtooth(X)

Build a inducing point template centered at origin
X_m <- matrix(runif(20), ncol=2)
Xmt <- scale_ipTemplate(X, N=100, space_fill_design=X_m, method="gnorm")$Xm.t

predictive center
xx <- matrix(c(.5, .5), ncol=2)

Standard deviation of gaussian measure with random draws
gauss_sd <- c(0, .1)
epsi <- rnorm(30, sd = gauss_sd[2])

Get the predictive equations, first with fixed lengthscale and nugget
out <- 1iGP_gauss_measure(xx, X=X, Y=Y, Xm.t=Xmt, N=100,
gauss_sd=gauss_sd, epsi=epsi)

Refine with using integrate function
out2 <- liGP_gauss_measure(xx, X=X, Y=Y, Xm.t=Xmt, N=100, gauss_sd=gauss_sd)

https://arxiv.org/abs/2008.12857

loiGP

29

loiGP

Locally Optimized Inducing Point Approximate GP Regression For
Many Predictive Locations

Description

Facilitates localized Gaussian process inference and prediction at a large set of predictive locations,
by opimizing a local set of inducing points for each predictive location’s local neighborhood and

then calling giGP.

Usage

10iGP(XX, X = NULL, Y = NULL, M, N, g = le-6, theta = NULL, nu = NULL,
method = c('wimse', 'alc'), integral_bounds = NULL, num_thread = 1,
epsK = sqgrt(.Machine$double.eps), epsQ = 1e-5, tol = .01, reps = FALSE)

Arguments

XX

theta

amatrix of out-of-sample predictive locations with ncol (XX) = ncol (X); 1loiGP
calls giGP for each row of XX, independently

amatrix containing the full (large) design matrix of all input locations. If reps
is a list, this entry is not used.

a vector of all responses/dependent values with length(Y)=nrow(X). If reps is
a list, this entry is not used.

the positive integer number of inducing points placed for each local neighbor-
hood; M should be less than N

the positive integer number of Nearest Neighbor (NN) locations used to build a
local neighborhood

an initial setting or fixed value for the nugget parameter. In order to optimize g,
a list can be provided that includes:

* start — starting value to initialize the nugget

* min — minimum value in the allowable range for the nugget

* max — maximum value in the allowable range for the nugget

* ab — shape and rate parameters specifying a Gamma prior for the nugget
If ab is not provided, a prior is not placed with the likelihood for optimization.
If min and max aren’t provided, the nugget is not optimized. A NULL value gen-
erates an initial setting based on garg in the 1aGP package. If a single positive
scalar is provided, the nugget is fixed for all predictions. Alternatively, a vector

of nuggets whose length equals nrow(XX) can be provided to fix distinct nuggets
for each prediction.

an initial setting or fixed value for the lengthscale parameter. A (default) NULL
value generates an initial setting based on darg in the 1aGP package. Similarly,
a list can be provided that includes:

* start — starting value to initialize the lengthscale

30

nu

method

integral_bounds

num_thread

epsK

epsQ

tol

reps

Details

loiGP

* min — minimum value in the allowable range for the lengthscale
* max — maximum value in the allowable range for the lengthscale

* ab — shape and rate parameters specifying a Gamma prior for the length-
scale

If ab is not provided, a prior is not placed with the likelihood for optimization. If
min and max aren’t provided, the lengthscale is not optimized. If a single positive
scalar is provided, the lengthscale is fixed for all predictions. Alternatively, a
vector of lengthscales whose length equals nrow(XX) can be provided to fix
distinct lengthscales for each prediction.

a positive number used to set the scale parameter; default (NULL) calculates the
maximum likelihood estimator

specifies the method by which the inducing point template is built. In brief,
wIMSE ("wimse", default) minimizes the weighted integrated mean-sqaure er-
ror, and ALC ("alc") minimizes predictive variance at the preditive location.

a 2 by d matrix of the domain bounds of the data (used in the calculation of
wimse); the first row contains minimum values, the second row the maximum
values; only relevant when method="wimse"; if not provided, defaults to the
range of each column of X

a scalar positive integer indicating the number of threads to use for parallel pro-
cessing

a small positive number added to the diagonal of the correlation matrix, of in-
ducing points, K, for numerically stability for inversion. It is automatically in-
creased if neccessary for each prediction.

a small positive number added to the diagonal of the Q matrix (see Cole (2021))
for numerically stability for inversion. It is automatically increased if neccessary
for each prediction.

a positive number to serve as the tolerance level for covergence of the log-
likelihood when optimizing the hyperparameter(s) theta and/or g

a notification of replicate design locations in the data set. If TRUE, the unique
design locations are used for the calculations along with the average response for
each unique design location. Alternatively, reps can be a list from find_reps
in the hetGP package. In this case, X and Y are not used.

This function builds a unique inducing point design to accompany the local neighborhood for each
preditive location in XX. It then invokes giGP for each row of XX with X=Xn, Y=Yn from the corre-
sponding local neighborhood and locally optimial inducing point design. For further information,

see giGP.

Value

The output is a 1ist with the following components:

mean

a vector of predictive means of length nrow (XX)

loiGP 31

var a vector of predictive variances of length nrow(XX)

nu a vector of values of the scale parameter of length nrow(XX)

g a full version of the g argument

theta a full version of the theta argument

Xm a list of inducing point designs; each entry in the list is a matrix containing M
locally optimized inducing points; length(Xm)=nrow(XX)

eps a matrix of epsK and epsQ (jitter) values used for each prediction, nrow(eps)=nrow(XX)

mle if g and/or theta is optimized, a matrix containing the values found for these
parameters and the number of required iterations, for each predictive location in
XX

time a scalar giving the passage of wall-clock time elapsed for (substantive parts of)

the calculation

Author(s)

D. Austin Cole <austin.cole8@vt.edu>

References

D.A. Cole, R.B. Christianson, and R.B. Gramacy (2021). Locally Induced Gaussian Processes for
Large-Scale Simulation Experiments Statistics and Computing, 31(3), 1-21; preprint on arXiv:2008.12857;
https://arxiv.org/abs/2008.12857

Examples

library(hetGP); library(lhs)

X <- matrix(seq(@, 1, length=1000))

Y <= f1d(X)

XX <- matrix(seq(.01, .99, length=50))
YY <= £1d(XX)

n <- 50
m<-7
int_bounds <- matrix(c(0,1))

out <- 1oiGP(XX=XX, X=X, Y=Y, M=m, N=n, method='wimse',
integral_bounds=int_bounds)

Plot predicted mean and error

orig_par <- par()

par(mfrow=c(1,2))

plot(X, Y, type='l"', lwd=4, ylim=c(-8, 16))

lines(XX, out$mean, lwd=3, lty=2, col=2)

legend('topleft', legend=c('Test Function', 'Predicted mean'),
1ty=1:2, col=1:2, 1lwd=2)

plot(XX, YY - out$mean, xlab='X', ylab='Error', type = 'l')
par(orig_par)

https://arxiv.org/abs/2008.12857

32 optIPALC

optIP.ALC Sequential Selection of an Inducing Point Design by Optimizing Active
Learning Cohn

Description

Optimizes the ALC surface to sequentially select inducing points for a given predictive location
and local neighborhood. ALC can be based solely on the predictive location or an additional set of
reference locations.

Usage

optIP.ALC(Xc, Xref = NULL, M, Xn, Yn, theta = NULL, g = 1e-4,
ip_bounds = NULL, num_thread = 1, num_multistart = 15,
epsK = sqgrt(.Machine$double.eps), epsQ = 1e-5, tol = .01,
rep_list = NULL, verbose = TRUE)

Arguments

Xc a vector containing the predictive location used as the center of the design/neighborhood

Xref a matrix containing other reference locations used in the predictive variance
sum that is minimized

M the positive integer number of inducing points placed for each local neighbor-
hood; M should be less than N

Xn amatrix of the local neighborhood of N nearest neighbors to Xc

Yn a vector of the corresponding responses to Xn; length(Yn)=nrow(Xn)

theta the lengthscale parameter (positive number) in a Gaussian correlation function;
a (default) NULL value sets the lengthscale at the square of the 10th percentile of
pairwise distances between neighborhood points (see darg in 1aGP package)

g the nugget parameter (positive number) in the covariance

ip_bounds a2 by d matrix containing the range of possible values for inducing points; first
row contains minimum values for each dimension, second row contains maxi-
mum values; if ip_bounds is NULL, defaults to range of the local neighborhood
Xn

num_thread a scalar positive integer indicating the number of threads to use for parallel pro-

cessing for the multistart search: num_thread<=num_multistart

num_multistart a positive integer indicating the number of starting locations used to optimize
the ALC and find the global minimum

epsK a small positive number added to the diagonal of the correlation matrix, of in-
ducing points, K, for numerically stability for inversion

epsQ a small positive number added to the diagonal of the Q matrix (see Cole (2021))
for numerically stability for inversion

tol a positive number to serve as the tolerance level for covergence of ALC when
optimizing the location of the next inducing point

optIPALC 33

rep_list a list from find_reps in the hetGP package that details the replicates in Xn and
their associated Yn
verbose if TRUE, outputs the progress of the number of inducing points optimally placed
Details

The function sequentially places M inducing points around the local neighborhood (Xn) of Xc. The
first inducing point is placed at Xc. The remaining points and placed based on the minimum in the
ALC surface using rbind(Xc, Xref) as a reference set for the predictive variance. Hyperparameters
theta, g are fixed.

Value

The output is a 1ist with the following components.

Xm amatrix of the locally optimal inducing point locations
alc a vector of the ALC progress at each inducing point selection step
time a scalar giving the passage of wall-clock time elapsed for (substantive parts of)

the calculation

Author(s)

D. Austin Cole <austin.cole8@vt.edu>

References

D.A. Cole, R.B. Christianson, and R.B. Gramacy (2021). Locally Induced Gaussian Processes for
Large-Scale Simulation Experiments Statistics and Computing, 31(3), 1-21; preprint on arXiv:2008.12857;
https://arxiv.org/abs/2008.12857

S. Seo, M. Wallat, T. Graepel, and K. Obermayer (2000). Gaussian Process Regression: Active
Data Selection and Test Point Rejection In Mustererkennung 2000, 27-34. New York, NY: Springer-
Verlag.

Examples

a "computer experiment”

Simple 2-d Herbie's Tooth function used in Cole et al (2020);
thanks to Lee, Gramacy, Taddy, and others who have used it before

Build up a design with N=~40K locations
x <- seq(-2, 2, by=0.02)

X <- as.matrix(expand.grid(x, x))

Y <- herbtooth(X)

library(1laGP)

Build a local neighborhood
Xstar <- matrix(c(.4, -1.1), nrow=1)

https://arxiv.org/abs/2008.12857

34

optIPwIMSE

n <- 100; m <- 10
Xstar_to_X_dists <- distance(Xstar, X)

quant_dists <- quantile(Xstar_to_X_dists, n/nrow(X))
Xn <- X[Xstar_to_X_dists < quant_dists,]

Yn <- Y[Xstar_to_X_dists < quant_dists]

theta <- darg(NULL, Xn)$start

Optimize inducing point locations
Xm.alc <- optIP.ALC(Xstar, Xref=NULL, M=m, Xn=Xn, Yn=Yn, theta=theta)

Define reference locations for ALC sum
Xref <- as.matrix(expand.grid(Xstar[1]+c(-.05, @, .05), Xstar[2]+c(-.05, @, .05)))
Xm.alc_with_Xref <- optIP.ALC(Xstar, Xref=Xref, M=m, Xn=Xn, Yn=Yn, theta=theta)

Plot inducing point design and neighborhood
ranges <- apply(Xn, 2, range)
plot(Xn, pch = 16, cex=.5, col='grey',
xlim=ranges[,1]+c(-.02, .02), ylim=ranges[,2]+c(-.02, .15),
xlab='x1", ylab = 'x2',
main="ALC-optimal Inducing Point Design')
points(Xstar[1], Xstar[2], pch=16)
points(Xm.alc$Xm, pch=2, col=3, lwd=2)
points(Xm.alc_with_Xref$Xm, pch=3, col=4, lwd=2)
legend('topleft', col=c(1,'grey',3,4), pch=c(16,16,2,3), 1ty=NA, lwd=2, ncol=2,
legend=c('Xstar', 'Neighborhood', 'Xm based on Xstar','Xm based on Xref'))

View ALC progress
plot(1:m, Xm.alc$alc, type='l', xlab='Inducing point number',
ylab="ALC',main="ALC optimization progress')

optIP.wIMSE Sequential Selection of an Inducing Point Design by Optimizing

Weighted Integrates Mean-Sqaure Error

Description

Optimizes the weighted integrated mean-square error (WIMSE) surface to sequentially select induc-

ing points for a given predictive location and local neighborhood.

Usage

optIP.wIMSE(Xn, M, theta = NULL, g = 1e-4, w_mean, w_var = NULL,
ip_bounds = NULL, integral_bounds = NULL, num_multistart =
fix_xml = TRUE, epsK = sqrt(.Machine$double.eps), epsQ = Te
mult = NULL, verbose = TRUE)

15,
_5’

optIPwIMSE 35

Arguments

Xn amatrix of the local neighborhood; nrow(Xn)=N

M the positive integer number of inducing points placed for each local neighbor-
hood; M should be less than N

theta the lengthscale parameter (positive number) in a Gaussian correlation function;
a (default) NULL value sets the lengthscale at the square of the 10th percentile of
pairwise distances between neighborhood points (see darg in 1aGP package)

g the nugget parameter (positive number) in the covariance

w_mean a vector of the mean (center) of the Gaussian weight; length(w_mean) should
equal ncol (Xn)

w_var a positive number or vector of positive numbers (length equal to ncol(Xn))
denoting the variance(s) in the Gaussian weight. If NULL (default), theta is
used.

ip_bounds a2 by d matrix containing the range of possible values for inducing points; first

row contains minimum values for each dimension, second row contains maxi-
mum values; if ip_bounds is NULL, defaults to range of the local neighborhood

Xn
integral_bounds

a2 by d matrix containing the domain bounds for the data; first row contains
minimum values for each dimension, second row contains maximum values; if
integral_bounds=NULL, defaults to range of the local neighborhood Xn

num_multistart a positive integer indicating the number of starting locations used to optimize
wIMSE for each inducing point

fix_xm1 an indicator of whether or not the first inducing point should be fixed at w_mean
(TRUE, default) or optimized (FALSE)

epsK a small positive number added to the diagonal of the correlation matrix, of in-
ducing points, K, for numerically stability for inversion

epsQ a small positive number added to the diagonal of the Q matrix (see Cole (2021))
for numerically stability for inversion

mult a vector of length nrow(X) that contains the number of replicates for each design
location in X

verbose if TRUE, outputs the progress of the number of inducing points optimally placed

Details

The function sequentially places M inducing points around the local neighborhood (Xn). Inducing
points are placed based on the minimum in the wIMSE surface integrating over integral_bounds.
Hyperparameters theta, g are fixed.

Value

The output is a 1ist with the following components:

Xm amatrix of the locally optimal inducing point locations
wimse a vector of the wIMSE progress at each inducing point selection step
time a scalar giving the passage of wall-clock time elapsed for (substantive parts of)

the calculation

36 optIPwIMSE

Author(s)

D. Austin Cole <austin.cole8@vt.edu>

References

D.A. Cole, R.B. Christianson, and R.B. Gramacy (2021). Locally Induced Gaussian Processes for
Large-Scale Simulation Experiments Statistics and Computing, 31(3), 1-21; preprint on arXiv:2008.12857;
https://arxiv.org/abs/2008.12857

Examples

a "computer experiment”

Simple 2-d Herbie's Tooth function used in Cole et al (2020);
thanks to Lee, Gramacy, Taddy, and others who have used it before

Build up a design with N=~40K locations
x <- seq(-2, 2, by=0.02)

X <- as.matrix(expand.grid(x, x))

Y <- herbtooth(X)

library(laGP)

Build a local neighborhood

Xstar <- matrix(c(.4, -1.1), nrow=1)

n<- 100; m <- 10

Xstar_to_X_dists <- distance(Xstar, X)

quant_dists <- quantile(Xstar_to_X_dists, n/nrow(X))
Xn <- X[Xstar_to_X_dists < quant_dists,]

Yn <- Y[Xstar_to_X_dists < quant_dists]

theta <- darg(NULL, Xn)$start
integral_bounds <- rbind(c(-2,-2), c(2,2))

Optimize inducing point locations
Xm.wimsel <- optIP.wIMSE(Xn, M=m, Xn=, theta=theta, w_mean=Xstar,
integral_bounds=integral_bounds)

Use a different variance for weight

Xm.wimse2 <- optIP.wIMSE(Xn, M=m, Xn=, theta=theta, w_mean=Xstar,
w_var = c(theta/2, 3xtheta),
integral_bounds=integral_bounds)

Plot inducing point design and neighborhood

ranges <- apply(Xn, 2, range)

plot(Xn, pch = 16, cex=.5, col='grey"',
xlim=ranges[,1]+c(-.02, .02), ylim=ranges[,2]+c(-.02, .15),
xlab='x1", ylab = 'x2',
main='ALC-optimal Inducing Point Design')

points(Xstar[1], Xstar[2], pch=16)

points(Xm.wimse1$Xm, pch=2, col=3, lwd=2)

https://arxiv.org/abs/2008.12857

gnormscale 37

points(Xm.wimse2$Xm, pch=3, col=4, lwd=2)
legend('topleft', legend=c('Xstar', 'Neighborhood', 'Xm with w_var=theta',
'Xm with nonisotropic weight'),
col=c(1,'grey',3,4), pch=c(16,16,2,3), lty=NA, lwd=2, ncol=2)

View wIMSE progress
plot(1:m, log(Xm.wimsel$wimse), type='l', xlab='inducing point number',
ylab="'log wIMSE',main='wIMSE optimization progress')

gnormscale Scaling of Inducing Point Design based on Inverse Gaussian CDF

Description

Scales a set of proposed inducing point locations in [0,1]"d to center around a reference location,
returning the scaled design

Usage

gnormscale(X, mean, sd)

Arguments
X amatrix or containing a proposed inducing point design in [0,1]*d
mean a vector representing the reference location to act as the center of the scaling;
length(mean) = ncol(X)
sd a scalar or vector determining the standard deviation for each dimension of the
Gaussian CDF
Details

This function scales a set of proposed inducing points in [0,1]*d to be centered and concentrated
around a reference location. The proposed inducing points are interpreted as quantiles of one-
dimensional Gaussian distributions centered at the reference location with the standard deviation
provided by the user. For each dimension gnorm is invoked to rescale the inducing points.

Value

amatrix of the scaled set of inducing points

Author(s)

D. Austin Cole <austin.cole8@vt.edu>

38 scale_gauss_measure_ipTemplate

References

D.A. Cole, R.B. Christianson, and R.B. Gramacy (2021). Locally Induced Gaussian Processes for
Large-Scale Simulation Experiments Statistics and Computing, 31(3), 1-21; preprint on arXiv:2008.12857;
https://arxiv.org/abs/2008.12857

See Also

gnorm

Examples

Generate data and define xmean
X <- matrix(runif(30), ncol=2)
xmean <- c(0.3, 0.4) # doesn't need to be in [0,1]"2

Scale centered at xmean with different standard deviations
X_scaledl <- gnormscale(X, mean=xmean, sd=.1)
X_scaled2 <- gnormscale(X, mean=xmean, sd=c(.05,.15))

View scaled X

plot(X, xlab='X1', ylab='X2")

points(xmean[1], xmean[2], pch=16)

points(X_scaledl, pch=2, col=3, lwd=2)

points(X_scaled2, pch=3, col=4, lwd=2)

legend('topright',legend = c('Original X', 'xmean', 'Xscaledl', 'Xscaled2'),
pch = ¢(1,16,2,3), col= c(1,1,3,4), lwd=2, 1ty=NA)

scale_gauss_measure_ipTemplate

Inducing points design scaling for a Gaussian measure local neigh-
borhood template

Description

Scales a design of inducing points around a Gaussian measure whose mean is the center of the
design matrix and its local neighborhood. The output is an inducing points design centered at the
origin that can be used as a template for predictions anywhere in the design space (with a local
neighborhood of the same size). Method include scaling by a circumscribed hyperrectangle (chr)
and an inverse Gaussian CDF (gnorm).

Usage

scale_gauss_measure_ipTemplate(X, N, gauss_sd, space_fill_design,
method = c('gnorm', 'chr'), seq_length=20)

https://arxiv.org/abs/2008.12857

scale_gauss_measure_ipTemplate 39

Arguments
X amatrix containing the full (large) design matrix of input locations
N the positive integer number of Nearest Neighbor (NN) locations used to build a
local neighborhood
gauss_sd a vector of standard deviations for the Gaussian measure with with 1ength(gauss_sd)=nrow(X).

Note: at this time, the Gaussian measure must only have one nonzero standard
deviation (i.e. the Gaussian measure is a slice).

space_fill_design
amatrixin[0,1]7d with Mrows and number of columns = ncol (X) that is scaled
and centered to create the inducing points template

method the method by which the inducing point template is scaled. In brief, cHR
("chr") scales space_fill_design to circumscribe the neighborhood and qNorm
("gnorm™) scales space_fill_design by the inverse Gaussian CDF.

seg_length an integer that defines the sequence length used to represent the gaussian mea-
sure when building the neighbhorhood.

Details

This function is built to deal with the special class of problems where 1iGP is used to predict and
integrate over a degenerate Gaussian measure where only one dimension has a nonzero standard de-
viation. Separate subroutines are called for different methods. When method=gnorm, gnormscale
is called. The mean of the Gaussian distribution is the median of the design matrix. The standard
deviation of the Gaussian distribution is one-third of the maximum distance from the median of the
design matrix to the neighborhood points for each dimension.

For each inducing point design, the origin (i.e. predictive location) is appended to the scaled induc-
ing point design. Thus, the resulting design contains M+1 inducing points.

Value

The output is a 1ist with the following components.

Xm. t amatrix of M+1 inducing points centered at the origin

Xn amatrix of the local neighborhood at the center of the design

Xc a matrix of the center of the design used to build the local neighborhood and
inducing point template

gauss_sd the gauss_sd used to generate the local neighborhood

time a scalar giving the passage of wall-clock time elapsed for (substantive parts of)

the calculation

Author(s)

D. Austin Cole <austin.cole8@vt.edu>

References

D.A. Cole, R.B. Christianson, and R.B. Gramacy (2021). Locally Induced Gaussian Processes for
Large-Scale Simulation Experiments Statistics and Computing, 31(3), 1-21; preprint on arXiv:2008.12857;
https://arxiv.org/abs/2008.12857

https://arxiv.org/abs/2008.12857

40 scale_ipTemplate

See Also

gnormscale

Examples

Build up a design with N=~40K locations

x <- seq(-2, 2, by=0.02)

X <- as.matrix(expand.grid(x, x))

X_center <- apply(X, 2, median)

Create inducing point template, first with
circumscribed hyperrectangle (cHR) scaling
M=10

Xm <- matrix(runif(2*M), ncol=2)

Create template with Inverse Gaussian CDF scaling

gnorm_temp <- scale_ipTemplate(X, N=100, space_fill_design=Xm, method="qgnorm")
Xm.t_gnorm <- gnorm_temp$Xm.t

Xn <- gnorm_temp$Xn

Create template with Inverse Gaussian CDF scaling

gauss_sd <- c¢(0, .05)

gnorm_temp_gauss <- scale_gauss_measure_ipTemplate(X, N=100, gauss_sd=gauss_sd,
space_fill_design=Xm,
method="gnorm")

Xm.t_gnorm_gauss <- gnorm_temp_gauss$Xm.t

Xn_gauss <- gnorm_temp_gauss$Xn

View different scaled template designs
ylim <- range(Xn_gauss[,2]) + c(-.03, .05)
plot(Xn, pch=16, cex=.5, col='grey',
xlab = 'x1', ylab = 'x2', ylim = ylim,
main='Locally optimized IP template based on Gaussian measure')
points(Xn_gauss, cex=.7)
points(X_center[1], X_center[2], pch=16, cex=1.5)
points(Xm.t_gnorm, pch=2, lwd=2, col=3)
points(Xm.t_gnorm_gauss, pch=6, lwd=2, col=2)
legend('topleft', pch = c(16, 1, 2, 3), col = c('grey', 1, 3, 2),
legend=c('Local neighborhood (gNorm)',
'Local neighborhood (Gauss measure)',
'gnorm ip design',
'Gaussian measure ip design'))

scale_ipTemplate Inducing points design scaling for a local neighborhood template

scale_ipTemplate 41

Description

Scales a design of inducing points around the center of the design matrix and its local neighborhood.
The output is an inducing points design centered at the origin that can be used as a template for
predictions anywhere in the design space (with a local neighborhood of the same size). Method
include scaling by a circumscribed hyperrectangle (chr) and an inverse Gaussian CDF (gnorm).

Usage

scale_ipTemplate(X, N, space_fill_design, method = c('gnorm', 'chr'))

Arguments
X amatrix containing the full (large) design matrix of input locations
N the positive integer number of Nearest Neighbor (NN) locations used to build a

local neighborhood

space_fill_design
amatrixin [0,1]"d with M rows and number of columns = ncol (X) that is scaled
and centered to create the inducing points template

method the method by which the inducing point template is scaled. In brief, cHR
("chr") scales space_fill_design to circumscribe the neighborhood and gNorm
("gnorm™) scales space_fill_design by the inverse Gaussian CDF.

Details

This function calls separate subroutines for certain methods. When method=gnorm, gnormscale
is called. The mean of the Gaussian distribution is the median of the design matrix. The standard
deviation of the Gaussian distribution is one-third of the maximum distance from the median of the
design matrix to the neighborhood points for each dimension.

For each inducing point design, the origin (i.e. predictive location) is appended to the scaled induc-
ing point design. Thus, the resulting design contains M+1 inducing points.

Value

The output is a 1ist with the following components:

Xm.t amatrix of M+1 inducing points centered at the origin
Xn amatrix of the local neighborhood at the center of the design
time a scalar giving the passage of wall-clock time elapsed for (substantive parts of)

the calculation

Author(s)

D. Austin Cole <austin.cole8@vt.edu>

References

D.A. Cole, R.B. Christianson, and R.B. Gramacy (2021). Locally Induced Gaussian Processes for
Large-Scale Simulation Experiments Statistics and Computing, 31(3), 1-21; preprint on arXiv:2008.12857;
https://arxiv.org/abs/2008.12857

https://arxiv.org/abs/2008.12857

42 scale_ipTemplate

See Also

gnormscale

Examples

Build up a design with N=~40K locations
x <- seq(-2, 2, by=0.02)
X <- as.matrix(expand.grid(x, x))

Create inducing point template, first with

circumscribed hyperrectangle (cHR) scaling

M=10

Xm <- matrix(runif(2*M), ncol=2)

chr_temp <- scale_ipTemplate(X, N=100@, space_fill_design=Xm, method="chr")
Xm.t_chr <- chr_temp$Xm.t

Xn <- chr_temp$Xn

Now create template with Inverse Gaussian CDF scaling
gnorm_temp <- scale_ipTemplate(X, N=100, space_fill_design=Xm, method="qgnorm")
Xm.t_gnorm <- gnorm_temp$Xm.t

View different scaled template designs
X_center <- apply(X, 2, median)
ranges <- apply(Xn, 2, range)
plot(Xn[,1]1, Xn[,2], pch=16, cex=.5, col='grey',
xlim=ranges[,1], ylim=ranges[,2]+c(0,.1),
xlab = 'x1', ylab = 'x2', main='Scaled Inducing Point templates')
points(X_center[1],X_center[2], pch=16)
points(Xm.t_chr, col=3, pch=2, lwd=2)
points(Xm.t_gnorm, col=4, pch=3, lwd=2)
legend('topleft', pch=c(16,16,2,3), 1lty=NA, lwd=2, col=c(1, 'grey',3,4), ncol=2,
legend=c('Xcenter', 'Neighborhood', 'cHR IP template', 'gNorm IP template'))

Index

borehole, 2
build_gauss_measure_ipTemplate, 3
build_ipTemplate, 6
build_neighborhood, 9

calc_IMSE, 11
calc_wIMSE, 12
clusterApply, 20, 26

darg, 3,6, 11, 13,20, 26, 28, 32, 35
find_reps, 20, 26

garg, 20, 26
giGP, 14, 29, 30

herbtooth, 17
integrate, 28

1aGP, 3,6, 11, 13, 32,35
1iGP, 18
1iGP.forloop, 24
1iGP_gauss_measure, 27
loiGP, 29

makeCluster, 20, 26

optIP.ALC, 7,32
optIP.wIMSE, 4, 5, 7,34

gnorm, 37, 38
gnormscale, 37, 3942

scale_gauss_measure_ipTemplate, 38
scale_ipTemplate, 40

43

	borehole
	build_gauss_measure_ipTemplate
	build_ipTemplate
	build_neighborhood
	calc_IMSE
	calc_wIMSE
	giGP
	herbtooth
	liGP
	liGP.forloop
	liGP_gauss_measure
	loiGP
	optIP.ALC
	optIP.wIMSE
	qnormscale
	scale_gauss_measure_ipTemplate
	scale_ipTemplate
	Index

