lvmisc
is a package with miscellaneous R functions, including basic data computation/manipulation, easy plotting and tools for working with statistical models objects. You can learn more about the methods for working with models in vignette("working_with_models")
.
You can install the released version of lvmisc from CRAN with:
And the development version from GitHub with:
Some of what you can do with lvmisc.
library(lvmisc)
library(dplyr)
# Compute body mass index (BMI) and categorize it
starwars %>%
select(name, birth_year, mass, height) %>%
mutate(
BMI = bmi(mass, height / 100),
BMI_category = bmi_cat(BMI)
)
#> # A tibble: 87 x 6
#> name birth_year mass height BMI BMI_category
#> <chr> <dbl> <dbl> <int> <dbl> <fct>
#> 1 Luke Skywalker 19 77 172 26.0 Overweight
#> 2 C-3PO 112 75 167 26.9 Overweight
#> 3 R2-D2 33 32 96 34.7 Obesity class I
#> 4 Darth Vader 41.9 136 202 33.3 Obesity class I
#> 5 Leia Organa 19 49 150 21.8 Normal weight
#> 6 Owen Lars 52 120 178 37.9 Obesity class II
#> 7 Beru Whitesun lars 47 75 165 27.5 Overweight
#> 8 R5-D4 NA 32 97 34.0 Obesity class I
#> 9 Biggs Darklighter 24 84 183 25.1 Overweight
#> 10 Obi-Wan Kenobi 57 77 182 23.2 Normal weight
#> # … with 77 more rows
# Divide numerical variables in quantiles
divide_by_quantile(mtcars$wt, 4)
#> [1] 2 2 1 2 3 3 3 2 2 3 3 4 4 4 4 4 4 1 1 1 1 3 3 4 4 1 1 1 2 2 3 2
#> Levels: 1 2 3 4
# Center and scale variables by group
center_variable(iris$Petal.Width, by = iris$Species, scale = TRUE)
#> [1] -0.046 -0.046 -0.046 -0.046 -0.046 0.154 0.054 -0.046 -0.046 -0.146
#> [11] -0.046 -0.046 -0.146 -0.146 -0.046 0.154 0.154 0.054 0.054 0.054
#> [21] -0.046 0.154 -0.046 0.254 -0.046 -0.046 0.154 -0.046 -0.046 -0.046
#> [31] -0.046 0.154 -0.146 -0.046 -0.046 -0.046 -0.046 -0.146 -0.046 -0.046
#> [41] 0.054 0.054 -0.046 0.354 0.154 0.054 -0.046 -0.046 -0.046 -0.046
#> [51] 0.074 0.174 0.174 -0.026 0.174 -0.026 0.274 -0.326 -0.026 0.074
#> [61] -0.326 0.174 -0.326 0.074 -0.026 0.074 0.174 -0.326 0.174 -0.226
#> [71] 0.474 -0.026 0.174 -0.126 -0.026 0.074 0.074 0.374 0.174 -0.326
#> [81] -0.226 -0.326 -0.126 0.274 0.174 0.274 0.174 -0.026 -0.026 -0.026
#> [91] -0.126 0.074 -0.126 -0.326 -0.026 -0.126 -0.026 -0.026 -0.226 -0.026
#> [101] 0.474 -0.126 0.074 -0.226 0.174 0.074 -0.326 -0.226 -0.226 0.474
#> [111] -0.026 -0.126 0.074 -0.026 0.374 0.274 -0.226 0.174 0.274 -0.526
#> [121] 0.274 -0.026 -0.026 -0.226 0.074 -0.226 -0.226 -0.226 0.074 -0.426
#> [131] -0.126 -0.026 0.174 -0.526 -0.626 0.274 0.374 -0.226 -0.226 0.074
#> [141] 0.374 0.274 -0.126 0.274 0.474 0.274 -0.126 -0.026 0.274 -0.226
# Quick and easy plotting with {ggplot}
plot_scatter(mtcars, disp, mpg, color = factor(cyl))