lvmisc

R build status CRAN status Codecov test coverage

lvmisc is a package with miscellaneous R functions, including basic data computation/manipulation, easy plotting and tools for working with statistical models objects. You can learn more about the methods for working with models in vignette("working_with_models").

Installation

You can install the released version of lvmisc from CRAN with:

install.packages("lvmisc")

And the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("verasls/lvmisc")

Getting started

Some of what you can do with lvmisc.

library(lvmisc)
library(dplyr)

# Compute body mass index (BMI) and categorize it
starwars %>%
  select(name, birth_year, mass, height) %>%
  mutate(
    BMI = bmi(mass, height / 100),
    BMI_category = bmi_cat(BMI)
  )
#> # A tibble: 87 x 6
#>    name               birth_year  mass height   BMI BMI_category    
#>    <chr>                   <dbl> <dbl>  <int> <dbl> <fct>           
#>  1 Luke Skywalker           19      77    172  26.0 Overweight      
#>  2 C-3PO                   112      75    167  26.9 Overweight      
#>  3 R2-D2                    33      32     96  34.7 Obesity class I 
#>  4 Darth Vader              41.9   136    202  33.3 Obesity class I 
#>  5 Leia Organa              19      49    150  21.8 Normal weight   
#>  6 Owen Lars                52     120    178  37.9 Obesity class II
#>  7 Beru Whitesun lars       47      75    165  27.5 Overweight      
#>  8 R5-D4                    NA      32     97  34.0 Obesity class I 
#>  9 Biggs Darklighter        24      84    183  25.1 Overweight      
#> 10 Obi-Wan Kenobi           57      77    182  23.2 Normal weight   
#> # … with 77 more rows

# Divide numerical variables in quantiles
divide_by_quantile(mtcars$wt, 4)
#>  [1] 2 2 1 2 3 3 3 2 2 3 3 4 4 4 4 4 4 1 1 1 1 3 3 4 4 1 1 1 2 2 3 2
#> Levels: 1 2 3 4

# Center and scale variables by group
center_variable(iris$Petal.Width, by = iris$Species, scale = TRUE)
#>   [1] -0.046 -0.046 -0.046 -0.046 -0.046  0.154  0.054 -0.046 -0.046 -0.146
#>  [11] -0.046 -0.046 -0.146 -0.146 -0.046  0.154  0.154  0.054  0.054  0.054
#>  [21] -0.046  0.154 -0.046  0.254 -0.046 -0.046  0.154 -0.046 -0.046 -0.046
#>  [31] -0.046  0.154 -0.146 -0.046 -0.046 -0.046 -0.046 -0.146 -0.046 -0.046
#>  [41]  0.054  0.054 -0.046  0.354  0.154  0.054 -0.046 -0.046 -0.046 -0.046
#>  [51]  0.074  0.174  0.174 -0.026  0.174 -0.026  0.274 -0.326 -0.026  0.074
#>  [61] -0.326  0.174 -0.326  0.074 -0.026  0.074  0.174 -0.326  0.174 -0.226
#>  [71]  0.474 -0.026  0.174 -0.126 -0.026  0.074  0.074  0.374  0.174 -0.326
#>  [81] -0.226 -0.326 -0.126  0.274  0.174  0.274  0.174 -0.026 -0.026 -0.026
#>  [91] -0.126  0.074 -0.126 -0.326 -0.026 -0.126 -0.026 -0.026 -0.226 -0.026
#> [101]  0.474 -0.126  0.074 -0.226  0.174  0.074 -0.326 -0.226 -0.226  0.474
#> [111] -0.026 -0.126  0.074 -0.026  0.374  0.274 -0.226  0.174  0.274 -0.526
#> [121]  0.274 -0.026 -0.026 -0.226  0.074 -0.226 -0.226 -0.226  0.074 -0.426
#> [131] -0.126 -0.026  0.174 -0.526 -0.626  0.274  0.374 -0.226 -0.226  0.074
#> [141]  0.374  0.274 -0.126  0.274  0.474  0.274 -0.126 -0.026  0.274 -0.226

# Quick and easy plotting with {ggplot}
plot_scatter(mtcars, disp, mpg, color = factor(cyl))

# Work with statistical model objects
m <- lm(disp ~ mpg + hp + cyl + mpg:cyl, mtcars)
accuracy(m)
#>      AIC    BIC   R2 R2_adj  MAE   MAPE  RMSE
#> 1 344.64 353.43 0.87   0.85 34.9 15.73% 43.75
plot_model(m)