meshed: Bayesian Regression with Meshed Gaussian Processes

Fits Bayesian spatial or spatiotemporal multivariate regression models based on latent Meshed Gaussian Processes (MGP) as described in Peruzzi, Banerjee, Finley (2020) <doi:10.1080/01621459.2020.1833889>, Peruzzi, Banerjee, Dunson, and Finley (2021) <arXiv:2101.03579>, Peruzzi and Dunson (2022) <arXiv:2201.10080>. Funded by ERC grant 856506 and NIH grant R01ES028804.

Version: 0.2.1
Imports: Rcpp (≥ 1.0.5), stats, dplyr, glue, rlang, magrittr
LinkingTo: Rcpp, RcppArmadillo
Suggests: ggplot2, abind, rmarkdown, knitr, tidyr
Published: 2022-01-28
Author: Michele Peruzzi
Maintainer: Michele Peruzzi <michele.peruzzi at duke.edu>
License: GPL (≥ 3)
NeedsCompilation: yes
Materials: README NEWS
CRAN checks: meshed results

Documentation:

Reference manual: meshed.pdf
Vignettes: MGPs for multivariate data at irregularly spaced locations
MGPs for univariate spatial gridded data
MGPs for univariate data at irregularly spaced locations
MGPs for univariate spatial non-Gaussian data

Downloads:

Package source: meshed_0.2.1.tar.gz
Windows binaries: r-devel: meshed_0.2.1.zip, r-release: meshed_0.2.1.zip, r-oldrel: meshed_0.2.1.zip
macOS binaries: r-release (arm64): meshed_0.2.1.tgz, r-oldrel (arm64): meshed_0.2.1.tgz, r-release (x86_64): meshed_0.2.1.tgz, r-oldrel (x86_64): meshed_0.2.1.tgz
Old sources: meshed archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=meshed to link to this page.