mkin

Build Status codecov

The R package mkin provides calculation routines for the analysis of chemical degradation data, including multicompartment kinetics as needed for modelling the formation and decline of transformation products, or if several degradation compartments are involved.

Installation

You can install the latest released version from CRAN from within R:

install.packages("mkin")

Background

In the regulatory evaluation of chemical substances like plant protection products (pesticides), biocides and other chemicals, degradation data play an important role. For the evaluation of pesticide degradation experiments, detailed guidance and helpful tools have been developed as detailed in ‘Credits and historical remarks’ below.

Usage

For a start, have a look at the code examples provided for plot.mkinfit and plot.mmkin, and at the package vignettes FOCUS L and FOCUS D.

Documentation

The HTML documentation of the latest version released to CRAN is available at jrwb.de and github. Documentation of the development version is found in the ‘dev’ subdirectory.

Features

General

Unique in mkin

Performance

GUI

There is a graphical user interface that may be useful. Please refer to its documentation page for installation instructions and a manual.

News

There is a list of changes for the latest CRAN release and one for each github branch, e.g. the main branch.

Credits and historical remarks

mkin would not be possible without the underlying software stack consisting of, among others, R and the package deSolve. In previous version, mkin was also using the functionality of the FME package. Please refer to the package page on CRAN for the full list of imported and suggested R packages. Also, Debian Linux, the vim editor and the Nvim-R plugin have been invaluable in its development.

mkin could not have been written without me being introduced to regulatory fate modelling of pesticides by Adrian Gurney during my time at Harlan Laboratories Ltd (formerly RCC Ltd). mkin greatly profits from and largely follows the work done by the FOCUS Degradation Kinetics Workgroup, as detailed in their guidance document from 2006, slightly updated in 2011 and in 2014.

Also, it was inspired by the first version of KinGUI developed by BayerCropScience, which is based on the MatLab runtime environment.

The companion package kinfit (now deprecated) was started in 2008 and first published on CRAN on 01 May 2010.

The first mkin code was published on 11 May 2010 and the first CRAN version on 18 May 2010.

In 2011, Bayer Crop Science started to distribute an R based successor to KinGUI named KinGUII whose R code is based on mkin, but which added, among other refinements, a closed source graphical user interface (GUI), iteratively reweighted least squares (IRLS) optimisation of the variance for each of the observed variables, and Markov Chain Monte Carlo (MCMC) simulation functionality, similar to what is available e.g. in the FME package.

Somewhat in parallel, Syngenta has sponsored the development of an mkin and KinGUII based GUI application called CAKE, which also adds IRLS and MCMC, is more limited in the model formulation, but puts more weight on usability. CAKE is available for download from the CAKE website, where you can also find a zip archive of the R scripts derived from mkin, published under the GPL license.

Finally, there is KineticEval, which contains a further development of the scripts used for KinGUII, so the different tools will hopefully be able to learn from each other in the future as well.

Thanks to René Lehmann, formerly working at the Umweltbundesamt, for the nice cooperation cooperation on parameter transformations, especially the isometric log-ratio transformation that is now used for formation fractions in case there are more than two transformation targets.

Many inspirations for improvements of mkin resulted from doing kinetic evaluations of degradation data for my clients while working at Harlan Laboratories and at Eurofins Regulatory AG, and now as an independent consultant.

Funding was received from the Umweltbundesamt in the course of the projects

Thanks are due also to Emmanuelle Comets, maintainer of the saemix package, for the nice collaboration on using the SAEM algorithm and its implementation in saemix for the evaluation of chemical degradation data.

References

Ranke J, Wöltjen J, Schmidt J, and Comets E (2021) Taking kinetic evaluations of degradation data to the next level with nonlinear mixed-effects models. Environments 8 (8) 71 doi:10.3390/environments8080071
Ranke J, Meinecke S (2019) Error Models for the Kinetic Evaluation of Chemical Degradation Data Environments 6 (12) 124 doi:10.3390/environments6120124
Ranke J, Wöltjen J, Meinecke S (2018) Comparison of software tools for kinetic evaluation of chemical degradation data Environmental Sciences Europe 30 17 doi:10.1186/s12302-018-0145-1

Development

Contributions are welcome!