Efficient, object-oriented programming on the
building blocks of machine learning. Provides 'R6' objects for tasks,
learners, resamplings, and measures. The package is geared towards
scalability and larger datasets by supporting parallelization and
out-of-memory data-backends like databases. While 'mlr3' focuses on
the core computational operations, add-on packages provide additional
functionality.
Version: |
0.14.0 |
Depends: |
R (≥ 3.1.0) |
Imports: |
R6 (≥ 2.4.1), backports, checkmate (≥ 2.0.0), data.table (≥
1.14.2), evaluate, future, future.apply (≥ 1.5.0), lgr (≥
0.3.4), mlbench, mlr3measures (≥ 0.4.1), mlr3misc (≥ 0.10.0), parallelly, palmerpenguins, paradox (≥ 0.10.0), uuid |
Suggests: |
Matrix, callr, codetools, datasets, distr6, future.callr, mlr3data, progressr, remotes, rpart, testthat (≥ 3.1.0) |
Published: |
2022-08-11 |
Author: |
Michel Lang [cre,
aut],
Bernd Bischl
[aut],
Jakob Richter
[aut],
Patrick Schratz
[aut],
Giuseppe Casalicchio
[ctb],
Stefan Coors
[ctb],
Quay Au [ctb],
Martin Binder [aut],
Marc Becker [ctb] |
Maintainer: |
Michel Lang <michellang at gmail.com> |
BugReports: |
https://github.com/mlr-org/mlr3/issues |
License: |
LGPL-3 |
URL: |
https://mlr3.mlr-org.com, https://github.com/mlr-org/mlr3 |
NeedsCompilation: |
no |
Citation: |
mlr3 citation info |
Materials: |
README NEWS |
In views: |
MachineLearning |
CRAN checks: |
mlr3 results |