Package ‘mpathsenser’

June 1, 2022
Title Process and Analyse Data from m-Path Sense
Version 1.0.3

Description Overcomes one of the major challenges in mobile (passive) sensing, namely
being able to pre-process the raw data that comes from a mobile sensing app,
specifically ““m-Path Sense" <https://m-path.io>. The main task of 'mpathsenser’ is
therefore to read ““m-Path Sense" JSON files into a database and provide several
convenience functions to aid in data processing.

Depends R (>=4.0.0)

License GPL (>= 3)

URL https://gitlab.kuleuven.be/ppw-okpiv/researchers/u@134047/mpathsenser/

BugReports https:
//gitlab.kuleuven.be/ppw-okpiv/researchers/u@134047/mpathsenser/-/issues

Encoding UTF-8

RoxygenNote 7.2.0

Imports DBI, dbplyr, dplyr, furrr, future, jsonlite, lubridate,
magrittr, purrr, rjson, RSQLite, stats, tibble, tidyr

Suggests curl, dbx, ggplot2, httr, Ime4, ImerTest, progressr, rlang,
rvest, sodium, testthat (>= 3.0.0), vroom

Config/testthat/edition 3

Config/Needs/website tidyverse/tidytemplate

NeedsCompilation no

Author Koen Niemeijer [aut, cre] (<https://orcid.org/0000-0002-0816-534X>)
Maintainer Koen Niemeijer <koen.niemeijer@kuleuven.be>

Repository CRAN

Date/Publication 2022-06-01 09:50:02 UTC

https://m-path.io
https://gitlab.kuleuven.be/ppw-okpiv/researchers/u0134047/mpathsenser/
https://gitlab.kuleuven.be/ppw-okpiv/researchers/u0134047/mpathsenser/-/issues
https://gitlab.kuleuven.be/ppw-okpiv/researchers/u0134047/mpathsenser/-/issues
https://orcid.org/0000-0002-0816-534X

2

R topics documented:

R topics documented:

Index

APP_CALEZOTY + v v v v o e 3
CCOPY o v v e e e e e e e e e e e e e e e e 3
close_db 4
copy_db . . e 5
COVETALE .« . v v v vt i e e et e e e e e e e e e e e e e 5
create_db L e 7
decrypt_gps e e e e 8
device Info L e 8
first_date e 9
fiIX_JSONS o o e e e 9
freq . . . e e e 10
gEOCOAE_TEV i i e e e e e e 11
GEeL_ACHIVILY L e e e e e e e 12
GELAPP_USAZE e e e e e e e e 13
get_data e 14
get_installed_apps 15
GEELNIOWS .« v v v v v e e e e e e e e e e e e e e 15
Get_participants e e e e 16
get_processed_files L 17
get_studies e e e e 17
haversine e e e 18
identify_gaps e 18
IMPOrt L e e 20
index_db . . .o 21
last_date e 22
link . .. 22
k2 . . . e 23
MOVINZ_AVETAZE . . .« « v v v v v v e e e e e e e e e e e e e e e e 24
MPathSENSer e e e e e e e e 25
N_SCTEEN_OM & v v o v v v v e 26
n_screen_unlockso 27
open_dbo e 28
screen_duration e e, 28
SEMSOTS o v v v v v e 29
SEP_COUNL o v it e e e e e e e e e e e 30
TeSE_JSONS o i e e e 30
unzip_data e e e e e e 31

33

ccopy 3

app_category Find the category of an app on the Google Play Store

Description
This function scrapes the Google Play Store by using name as the search term. From there it selects
the first result in the list and its corresponding category and package name.

Usage

app_category(name, num = 1, rate_limit = 5)

Arguments
name The name of the app to search for.
num Which result should be selected in the list of search results. Defaults to one.
rate_limit The time interval to keep between queries, in seconds. If the rate limit is too
low, the Google Play Store may reject further requests or even ban your entirely.
Value

A list containing the following fields:

package the package name that was selected from the Google Play search
genre the corresponding genre of this package

Warning

Do not abuse this function or you will be banned by the Google Play Store. The minimum delay
between requests seems to be around 5 seconds, but this is untested. Also make sure not to do batch
lookups, as many subsequent requests will get you blocked as well.

Examples

app_category('whatsapp')

Example of a generic app name where we can't find a specific app
app_category('weather') # Weather forecast channel

Get OnePlus weather
app_category('net.oneplus.weather')

ccopy Copy mpathsenser zip files to a new location

4 close_db

Description

Copy zip files from a source destination to an origin destination where they do not yet exist. That
is, it only updates the origin folder from the source folder.

Usage

ccopy(from, to = getwd(), recursive = TRUE)

Arguments

from A path to copy files from.

to A path to copy files to.

recursive Should files from subdirectories be copied?
Value

A message indicating how many files were copied.

Examples

Not run:
ccopy('K:/data/myproject/"', '~/myproject')

End(Not run)

close_db Close a database connection

Description

This is a convenience function that is simply a wrapper around dbDisconnect.

Usage
close_db(db)

Arguments

db A database connection to an m-Path Sense database.

Value

close_db returns invisibly regardless of whether the database is active, valid, or even exists.

See Also

open_db for opening an mpathsenser database.

copy_db 5

copy_db Copy (a subset of) a database to another database

Description

Copy (a subset of) a database to another database

Usage
copy_db(
from_db,
to_db = NULL,
sensor = "All",
path = getwd(),
db_name = "sense.db”
)
Arguments
from_db A mpathsenser database connection from where the data will be transferred.
to_db A mpathsenser database connection where the data will be transferred to. If
no new_db is specified, a path (and possibly a db_name) must be specified for
create_db to create a new database.
sensor A character vector containing one or multiple sensors. See sensors for a list of
available sensors. Use "All" for all available sensors.
path The path to the database. Use NULL to use the full path name in db_name.
db_name The name of the database.
Value

No return value, called for side effects.

coverage Create a coverage chart of the sampling rate

Description

Only applicable to non-reactive sensors with ’continuous’ sampling

6 coverage

Usage
coverage(
db,
participant_id,
sensor = "All",

frequency = mpathsenser::freq,
relative = TRUE,

offset = "None”,

start_date = NULL,

end_date = NULL,

plot = TRUE

Arguments

db A valid database connection. Schema must be that as it is created by open_db.

participant_id A character string of one participant ID.

sensor A character vector containing one or multiple sensors. See sensors for a list of
available sensors. Use *All’ for all available sensors.

frequency A named numeric vector with sensors as names and the number of expected
samples per hour

relative Show absolute number of measurements or relative to the expected number?
Logical value.

offset Currently not used.

start_date A date (or convertible to a date using as.Date) indicating the earliest date to
show. Leave empty for all data. Must be used with end_date.

end_date A date (or convertible to a date using as.Date) indicating the latest date to
show.Leave empty for all data. Must be used with start_date.

plot Whether to return a ggplot or its underlying data.

Value

A ggplot of the coverage results if plot is TRUE or a tibble containg the hour, type of measure (i.e.
sensor), and (relative) coverage.

Examples

Not run:

fix_json()

unzip()

freq <- c(
Accelerometer = 720, # Once per 5 seconds. Can have multiple measurements.
AirQuality = 1,
AppUsage = 2, # Once every 30 minutes
Bluetooth = 60, # Once per minute. Can have multiple measurements.
Gyroscope = 720, # Once per 5 seconds. Can have multiple measurements.
Light = 360, # Once per 10 seconds

create_db 7

Location = 60, # Once per 60 seconds
Memory = 60, # Once per minute
Noise = 120,
Pedometer = 1,
Weather = 1,
Wifi = 60 # once per minute
)
coverage(
db = db,
participant_id = '12345',
sensor = c('Accelerometer', 'Gyroscope'),
frequency = mpathsenser::freq,
start_date = '2021-01-01"',
end_date = '2021-05-01'
)

End(Not run)

create_db Create a new mpathsenser database

Description

Create a new mpathsenser database

Usage

create_db(path = getwd(), db_name = "sense.db”, overwrite = FALSE)

Arguments
path The path to the database.
db_name The name of the database.
overwrite In case a database with db_name already exists, indicate whether it should be
overwritten or not. Otherwise, this option is ignored.
Value

A database connection using prepared database schemas.

8 device_info

decrypt_gps Decrypt GPS data from a curve25519 public key

Description

By default, the latitude and longitude of the GPS data collected by m-Path Sense will be encrypted
using an asymmetric curve25519 key to provide extra protection for these highly sensitive data.
This function takes the entire location data set and decrypts its longitude and latitude columns using
the provided key.

Usage

decrypt_gps(data, key)

Arguments
data A (lazy) tibble containing the GPS data
key A curve25519 public key

Value

A tibble containing the non-lazy, decrypted GPS data

device_info Get the device info for one or more participants

Description

Get the device info for one or more participants

Usage
device_info(db, participant_id = NULL)

Arguments

db A database connection to an m-Path Sense database.

participant_id A character string identifying a single participant. Use get_participants to
retrieve all participants from the database. Leave empty to get data for all par-
ticipants.

Value

A tibble containing device info for each participant

first_date 9

first_date Extract the date of the first entry

Description

A helper function for extracting the first date of entry of (of one or all participant) of one sensor.
Note that this function is specific to the first date of a sensor. After all, it wouldn’t make sense
to extract the first date for a participant of the accelerometer, while the first device measurement
occurred a day later.

Usage

first_date(db, sensor, participant_id = NULL)

Arguments
db A database connection to an m-Path Sense database.
sensor The name of a sensor. See sensors for a list of available sensors.

participant_id A character string identifying a single participant. Use get_participants to
retrieve all participants from the database. Leave empty to get data for all par-
ticipants.

Value

A string in the format Y'Y Y Y-mm-dd’ of the first entry date.

Examples

Not run:
db <- open_db()
first_date(db, 'Accelerometer', '12345')

End(Not run)

fix_jsons Fix the end of JSON files

Description

When copying data directly coming from m-Path Sense, JSON files are sometimes corrupted due
to the app not properly closing them. This function attempts to fix the most common problems
associated with improper file closure by m-Path Sense.

Usage

fix_jsons(path = getwd(), files = NULL, recursive = TRUE, parallel = FALSE)

10 freq

Arguments

path The path name of the JSON files.

files Alternatively, a character list of the input files

recursive Should the listing recurse into directories?

parallel A logical value whether you want to check in parallel. Useful for a lot of files.
Value

A message indicating how many files were fixed.

Progress

You can be updated of the progress by this function by using the progress package. See progressr’s
vignette on how to subscribe to these updates.

Examples

Not run:

future: :plan(future::multisession)
files <- test_jsons()
fix_jsons(files = files)

End(Not run)

freq Measurement frequencies per sensor

Description
A numeric vector containing (an example) of example measurement frequencies per sensor. Such
input is needed for coverage.

Usage
freq

Format

An object of class numeric of length 11.

https://cran.r-project.org/package=progressr/vignettes/progressr-intro.html

geocode_rev

Value

11

This vector contains the following information:

Sensor
Accelerometer
AirQuality
AppUsage
Bluetooth
Gyroscope
Light
Location
Memory
Noise
Weather
Wifi

Frequency (per hour) Full text

720
1

2
12
720
360
60
60
120

60

Once per 5 seconds. Can have multiple instances.
Once per hour.

Once every 30 minutes. Can have multiple instances.
Once every 5 minutes. Can have multiple instances.
Once per 5 seconds. Can have multiple instances.
Once per 10 seconds.

Once every 60 seconds.

Once per minute

Once every 30 seconds. Microhone cannot be used in the background in Android 11
Once per hour.

Once per minute.

geocode_rev

Reverse geocoding with latitude and longitude

Description

This functions allows you to extract information about a place based on the latitude and longitude
from the OpenStreetMaps nominatim API.

Usage

geocode_rev(lat, lon, zoom = 18, email =

Arguments

lat
lon
zoom

email

rate_limit

Value

nn

, rate_limit = 1)

The latitude of the location (in degrees)
The longitude of the location (in degrees)
The desired zoom level from 1-18. The lowest level, 18, is building level.

If you are making large numbers of request please include an appropriate email
address to identify your requests. See Nominatim’s Usage Policy for more de-
tails.

The time interval to keep between queries, in seconds. If the rate limit is too
low, the OpenStreetMaps may reject further requests or even ban your entirely.

A list of information about the location. See Nominatim’s documentation for more details.

https://nominatim.org/release-docs/develop/api/Reverse/#example-with-formatjsonv2

12

Warning

get_activity

Do not abuse this function or you will be banned by OpenStreetMap. The maximum number of
requests is around 1 per second. Also make sure not to do batch lookups, as many subsequent
requests will get you blocked as well.

Examples

Frankfurt Airport
geocode_rev(50.037936, 8.5599631)

get_activity

Get a summary of physical activity (recognition)

Description

Get a summary of physical activity (recognition)

Usage
get_activity(
db,
participant_id = NULL,
confidence = 70,
direction = "forward",
start_date = NULL,
end_date = NULL,
by = c("Total”, "Day", "Hour")
)
Arguments
db A database connection to an m-Path Sense database.

participant_id

confidence

direction

start_date

end_date

by

A character string identifying a single participant. Use get_participants to
retrieve all participants from the database. Leave empty to get data for all par-
ticipants.

The minimum confidence (0-100) that should be assigned to an observation by
Activity Recognition.

The directionality of the duration calculation, i.e. ;1 —tort — t;41.
Optional search window specifying date where to begin search. Must be con-

vertible to date using as.Date. Use first_date to find the date of the first entry for
a participant.

Optional search window specifying date where to end search. Must be convert-
ible to date using as.Date. Use last_date to find the date of the last entry for a
participant.

Either "Total’, "Hour’, or ’Day’ indicating how to summarise the results.

get_app_usage 13

Value

A tibble containing a column ’activity’ and a column ’duration’ for the hourly activity duration.

get_app_usage Get app usage per hour

Description

This function extracts app usage per hour for either one or multiple participants. If multiple days
are selected, the app usage time is averaged.

Usage

get_app_usage(
db,
participant_id = NULL,
start_date = NULL,
end_date = NULL,
by = c("Total”, "Day", "Hour")

Arguments

db A database connection to an m-Path Sense database.

participant_id A character string identifying a single participant. Use get_participants to
retrieve all participants from the database. Leave empty to get data for all par-
ticipants.

start_date Optional search window specifying date where to begin search. Must be con-
vertible to date using as.Date. Use first_date to find the date of the first entry for
a participant.

end_date Optional search window specifying date where to end search. Must be convert-
ible to date using as.Date. Use last_date to find the date of the last entry for a
participant.
by Either *Total’, ’Hour’, or ’Day’ indicating how to summarise the results.
Value

A data frame containing a column ’app’ and a column "usage’ for the hourly app usage.

14 get_data

get_data Generic helper function from extracting data from an m-Path Sense
database

Description

This is a generic function to help extract data from an m-Path sense database. For some sensors that
require a bit more pre-processing, such as app usage and screen time, more specialised functions
are available (e.g. get_app_usage and screen_duration).

Usage

get_data(db, sensor, participant_id = NULL, start_date = NULL, end_date = NULL)

Arguments
db A database connection to an m-Path Sense database.
sensor The name of a sensor. See sensors for a list of available sensors.

participant_id A character string identifying a single participant. Use get_participants to
retrieve all participants from the database. Leave empty to get data for all par-
ticipants.

start_date Optional search window specifying date where to begin search. Must be con-
vertible to date using as.Date. Use first_date to find the date of the first entry for
a participant.

end_date Optional search window specifying date where to end search. Must be convert-
ible to date using as.Date. Use last_date to find the date of the last entry for a
participant.
Value

A lazy tbl containing the requested data.

Examples

Not run:
Open a database
db <- open_db()

Retrieve some data
get_data(db, 'Accelerometer', '12345'")

Or within a specific window
get_data(db, 'Accelerometer', '12345', '2021-01-01', '2021-01-05")

End(Not run)

get_installed_apps 15

get_installed_apps Get installed apps

Description

Extract installed apps for one or all participants. Contrarily to other get_* functions in this package,
start and end dates are not used since installed apps are assumed to be fixed throughout the study.

Usage

get_installed_apps(db, participant_id = NULL)

Arguments

db A database connection to a mpathsenser database.

participant_id A character string identifying a single participant. Use get_participants to
retrieve all participants from the database. Leave empty to get data for all par-
ticipants.

Value

A tibble containing app names.

get_nrows Get the number of rows sensors in a mpathsenser database

Description

Get the number of rows sensors in a mpathsenser database

Usage

get_nrows(
db,
sensor = "All",
participant_id = NULL,
start_date = NULL,
end_date = NULL

16

Arguments

db

sensor

participant_id

start_date

end_date

Value

get_participants

db A database connection, as created by create_db.

A character vector of one or multiple vectors. Use "All" for all sensors. See
sensors for a list of all available sensors.

A character string identifying a single participant. Use get_participants to
retrieve all participants from the database. Leave empty to get data for all par-
ticipants.

Optional search window specifying date where to begin search. Must be con-
vertible to date using as.Date. Use first_date to find the date of the first entry for
a participant.

Optional search window specifying date where to end search. Must be convert-
ible to date using as.Date. Use last_date to find the date of the last entry for a
participant.

A named vector containing the number of rows for each sensor.

get_participants

Get all participants

Description

Get all participants

Usage

get_participants(db, lazy = FALSE)

Arguments

db
lazy

Value

db A database connection, as created by create_db.

Whether to evaluate lazily using dbplyr.

A data frame containing all participant_id and study_id.

get_processed._files 17

get_processed_files Get all processed files from a database

Description

Get all processed files from a database

Usage

get_processed_files(db)

Arguments

db A database connection, as created by create_db.

Value

A data frame containing the file_name, participant_id, and study_id of the processed files.

get_studies Get all studies

Description

Get all studies

Usage

get_studies(db, lazy = FALSE)

Arguments
db db A database connection, as created by create_db.
lazy Whether to evaluate lazily using dbplyr.

Value

A data frame containing all studies.

18 identify_gaps

haversine Calculate the Great-Circle Distance between two points in kilometers

Description

Calculate the great-circle distance between two points using the Haversine function.

Usage

haversine(lat1, lon1, lat2, lon2, r = 6371)

Arguments
lat1 The latitude of point 1 in degrees.
lon1 The longitude of point 1 in degrees.
lat2 The latitude of point 2 in degrees.
lon2 The longitude of point 2 in degrees.
r The average earth radius.

Value

A numeric value of the distance between point 1 and 2 in kilometers.

Examples

fra <- c(50.03333, 8.570556) # Frankfurt Airport
ord <- c(41.97861, -87.90472) # Chicago O'Hare International Airport
haversine(fral[1], fra[2], ord[1], ord[2]) # 6971.059 km

identify_gaps Identify gaps in mpathsenser mobile sensing data

Description

Oftentimes in mobile sensing, gaps appear in the data as a result of the participant accidentally
closing the app or the operating system killing the app to save power. This can lead to issues later
on during data analysis when it becomes unclear whether there are no measurements because no
events occurred or because the app quit in that period. For example, if no screen on/off event occur
in a 6-hour period, it can either mean the participant did not turn on their phone in that period or
that the app simply quit and potential events were missed. In the latter case, the 6-hour missing
period has to be compensated by either removing this interval altogether or by subtracting the gap
from the interval itself (see examples).

identify_gaps 19

Usage
identify_gaps(
db,
participant_id = NULL,
min_gap = 60,
sensor = "Accelerometer”
)
Arguments
db A database connection to an m-Path Sense database.

participant_id A character string identifying a single participant. Use get_participants to
retrieve all participants from the database. Leave empty to get data for all par-

ticipants.
min_gap The minimum time (in seconds) passed between two subsequent measurements
for it to be considered a gap..
sensor The name of a sensor. See sensors for a list of available sensors.
Details

While any sensor can be used for identifying gaps, it is best to choose a sensor with a very high,
near-continuous sample rate such as the accelerometer or gyroscope. This function then creates
time between two subsequent measurements and returns the period in which this time was larger
than min_gap.

Note that the from and to columns in the output are character vectors in UTC time.

Value

A tibble containing the time period of the gaps. The strucute of this tibble is as follows:

participant_id the participant_id of where the gap occurred

from the time of the last measurement before the gap
to the time of the first measurement after the gap
gap the time passed between from and to, in seconds
Examples
Not run:

Find the gaps for a participant and convert to datetime

gaps <- identify_gaps(db, '12345', min_gap = 60) %>%
mutate(across(c(to, from), ymd_hms)) %>%
mutate(across(c(to, from), with_tz, 'Europe/Brussels'))

Get some sensor data and calculate a statistic, e.g. the time spent walking
You can also do this with larger intervals, e.g. the time spent walking per hour
walking_time <- get_data(db, 'Activity', '12345') %>%

collect() %>%

mutate(datetime = ymd_hms(paste(date, time))) %>%

mutate(datetime = with_tz(datetime, 'Europe/Brussels')) %>%

20 import

arrange(datetime) %>%
mutate(prev_time = lag(datetime)) %>%
mutate(duration = datetime - prev_time) %>%
filter(type == 'WALKING')

Find out if a gap occurs in the time intervals

walking_time %>%
rowwise() %>%
mutate(gap = any(gaps$from >= prev_time & gaps$to <= datetime))

End(Not run)

import Import mpathsenser files into a database (mpathsenser data scheme)

Description

Import JSON files from m-Path Sense into a structured database. This function is the bread and
butter of this package, as it creates (or rather fills) the database that (almost) all the other functions
use.

Usage

import(
path = getwd(),
db = NULL,
dbname = "sense.db",
overwrite_db = TRUE,
sensors = NULL,
batch_size = 24,
backend = "RSQLite",
recursive = TRUE,
parallel = FALSE

)
Arguments
path The path to the file directory
db Valid database connection.
dbname If no database is provided, a new database dbname is created.

overwrite_db If a database with the same dbname already exists, should it be overwritten?

sensors Select one or multiple sensors as in sensors. Leave NULL to extract all sensor
data.

batch_size The number of files that are to be processed in a single batch.

backend Name of the database backend that is used. Currently, only RSQLite is sup-

ported.

index_db 21

recursive Should the listing recurse into directories?

parallel A value that indicates whether to do reading in and processing in parallel. If this
argument is a number, this indicates the number of workers that will be used.

Details

import is highly customisable in the sense that you can specify which sensors to import (even
though there may be more in the files) and it also allows batching for a speedier writing process. If
parallel is TRUE, it is recommended to batch_size be a scalar multiple of the number of CPUs the
parallel cluster can use. If a single JSON file in the batch causes and error, the batch is terminated
(but not the function) and it is up to the user to fix the file. This means that if batch_size is
large, many files will not be processed. Set batch_size to 1 for sequential file processing (i.e.
one-by-one).

Currently, only SQLite is supported as a backend. Due to its concurrency restriction, the parallel
option is disabled. To get an indication of the progress so far, set one of the handlers using the
progressr package, e.g. progressr: :handlers('progress').

Value
A message indicating how many files were imported. Imported database can be reopened using
open_db.

Progress

You can be updated of the progress by this function by using the progress package. See progressr’s
vignette on how to subscribe to these updates.

index_db Create indexes for a mpathsenser database

Description

Create indexes for a mpathsenser database

Usage
index_db(db)

Arguments

db A database connection to an m-Path Sense database.

Value

No return value, called for side effects.

https://cran.r-project.org/package=progressr/vignettes/progressr-intro.html

22 link

last_date Extract the date of the last entry

Description

A helper function for extracting the last date of entry of (of one or all participant) of one sensor.
Note that this function is specific to the last date of a sensor. After all, it wouldn’t make sense to
extract the last date for a participant of the device info, while the last accelerometer measurement
occurred a day later.

Usage

last_date(db, sensor, participant_id = NULL)

Arguments
db A database connection to an m-Path Sense database.
sensor The name of a sensor. See sensors for a list of available sensors.

participant_id A character string identifying a single participant. Use get_participants to
retrieve all participants from the database. Leave empty to get data for all par-
ticipants.

Value

A string in the format *YYY Y-mm-dd’ of the last entry date.

Examples

Not run:
db <- open_db()
first_date(db, 'Accelerometer', '12345'")

End(Not run)

link Match y to the time scale of x

Description

Function for linking mobile sensing and ESM data

Usage
link(x, y, by = NULL, offset)

link2 23

Arguments

X,y A pair of data frames or data frame extensions (e.g. a tibble). Both x and y must
have a column called time.

by If NULL, the default, *_join() will perform a natural join, using all variables
in common across x and y. A message lists the variables so that you can check
they’re correct; suppress the message by supplying by explicitly.
To join by different variables on x and y, use a named vector. For example, by =
c('a'="'b") will match x$a to y$b
To join by multiple variables, use a vector with length > 1. For example, by =

s

c(’a’, ’b’) will match x$a to y$a and x$b to y$b. Use a named vector to match
different variables in x and y. For example, by =c('a' = 'b", 'c' ='d") will
match x$a to y$b and x$c to y$d.

To perform a cross-join, generating all combinations of x and y, use by = character().

offset The time window in which y is to be matched to x. Must be convertible to a
period by as.period.

Details

assumption: both x and y have column ’time’ containing DateTimeClasses

Value

A tibble with the data of x with a new column data with the matched data of y according to of fset.

link2 Link two sensors OR one sensor and an external data frame

Description

This function is specific to mpathsenser databases. It is a wrapper around link but extracts data in
the database for you.

Usage

link2(
db,
sensor_one,
sensor_two = NULL,

offset,
participant_id = NULL,
start_date = NULL,

end_date = NULL,
external = NULL,
reverse = FALSE,
ignore_large = FALSE

24

Arguments

db
sensor_one

sensor_two

offset

participant_id

start_date

end_date

external

reverse

ignore_large

Value

moving_average

A database connection to an m-Path Sense database.
The name of a primary sensor. See sensors for a list of available sensors.

The name of a secondary sensor. See sensors for a list of available sensors.
Cannot be used together with external.

The time window in which y is to be matched to x. Must be convertible to a
period by as.period.

A character string identifying a single participant. Use get_participants to
retrieve all participants from the database. Leave empty to get data for all par-
ticipants.

Optional search window specifying date where to begin search. Must be con-
vertible to date using as.Date. Use first_date to find the date of the first entry for
a participant.

Optional search window specifying date where to end search. Must be convert-
ible to date using as.Date. Use last_date to find the date of the last entry for a
participant.

Optionally, specify an external data frame. Cannot be used at the same time as
a second sensor. This data frame must have a column called time.

Switch sensor_one with either sensor_two or external? Particularly useful
in combination with external.

Safety override to prevent long wait times. Set to TRUE to do this function on
lots of data.

A tibble with the data of sensor_one with a new column data with the matched data of either
sensor_two or external according to of fset. The other way around when reverse = TRUE.

See Also

link

moving_average

Moving average for values in an mpathsenser database

Description

Moving average for values in an mpathsenser database

mpathsenser 25

Usage

moving_average(
db,
sensor,
participant_id,
n,
start_date = NULL,
end_date = NULL

)
Arguments
db A database connection to an m-Path Sense database.
sensor The name of a sensor. See sensors for a list of available sensors.

participant_id A character string identifying a single participant. Use get_participants to re-
trieve all participants from the database.

Unquoted names of columns of the sensor table to average over.
n The number of observations to average over.

start_date Optional search window specifying date where to begin search. Must be con-
vertible to date using as.Date. Use first_date to find the date of the first entry for
a participant.

end_date Optional search window specifying date where to end search. Must be convert-
ible to date using as.Date. Use last_date to find the date of the last entry for a
participant.
Value

A tibble with the same columns as the input, modified to be a moving average.

Examples

Not run:
get_moving_average(db, 'Light', '12345', mean_lux, max_lux, n = 5)

End(Not run)

mpathsenser mpathsenser: Process and Analyse Data from m-Path Sense

Description

Overcomes one of the major challenges in mobile (passive) sensing, namely being able to pre-
process the raw data that comes from a mobile sensing app, specifically "m-Path Sense" https:
//m-path.io. The main task of 'mpathsenser’ is therefore to read "m-Path Sense" JSON files into
a database and provide several convenience functions to aid in data processing.

https://m-path.io
https://m-path.io

26 n_screen_on

Author(s)

Maintainer: Koen Niemeijer <koen.niemeijer@kuleuven.be> (ORCID)

Other contributors:

* KU Leuven [copyright holder, funder]

n_screen_on Get number of times screen turned on

Description

Get number of times screen turned on

Usage

n_screen_on(
db,
participant_id,
start_date = NULL,
end_date = NULL,
by = c("Total”, "Hour", "Day")

Arguments

db A database connection to an m-Path Sense database.

participant_id A character string identifying a single participant. Use get_participants to
retrieve all participants from the database. Leave empty to get data for all par-
ticipants.

start_date Optional search window specifying date where to begin search. Must be con-
vertible to date using as.Date. Use first_date to find the date of the first entry for
a participant.

end_date Optional search window specifying date where to end search. Must be convert-
ible to date using as.Date. Use last_date to find the date of the last entry for a
participant.

by Either "Total’, "Hour’, or ’Day’ indicating how to summarise the results. De-

faults to total.

Value

In case grouping is by the total amount, returns a single numeric value. For date and hour grouping
returns a tibble with columns ’date’ or "hour’ and the number of screen on’s °'n’.

https://orcid.org/0000-0002-0816-534X

n_screen_unlocks

27

n_screen_unlocks

Get number of screen unlocks

Description

Get number of screen unlocks

Usage

n_screen_unlocks(

db,

participant_id,

start_date = NULL,

end_date = NULL,

by = c("Total”, "Hour”, "Day")

Arguments

db

participant_id

start_date

end_date

by

Value

A database connection to an m-Path Sense database.

A character string identifying a single participant. Use get_participants to
retrieve all participants from the database. Leave empty to get data for all par-
ticipants.

Optional search window specifying date where to begin search. Must be con-
vertible to date using as.Date. Use first_date to find the date of the first entry for
a participant.

Optional search window specifying date where to end search. Must be convert-
ible to date using as.Date. Use last_date to find the date of the last entry for a
participant.

Either *Total’, "Hour’, or ’Day’ indicating how to summarise the results. De-
faults to total.

In case grouping is by the total amount, returns a single numeric value. For date and hour grouping
returns a tibble with columns ’date’ or hour’ and the number of screen unlocks ’n’.

28 screen_duration

open_db Open an mpathsenser database.

Description

Open an mpathsenser database.

Usage

open_db(path = getwd(), db_name = "sense.db")

Arguments
path The path to the database. Use NULL to use the full path name in db_name.
db_name The name of the database.

Value

A connection to an mpathsenser database.

See Also

close_db for closing a database; copy_db for copying (part of) a database; index_db for indexing
a database; get_data for extracting data from a database.

screen_duration Screen duration by hour or day

Description

Calculate the screen duration time where the screen was unlocked (i.e. not just on).

Usage

screen_duration(
db,
participant_id,
start_date = NULL,
end_date = NULL,
by = c("Hour”, "Day")

sensors

Arguments

db

participant_id

start_date

end_date

by

Value

29

A database connection to an m-Path Sense database.

A character string identifying a single participant. Use get_participants to
retrieve all participants from the database. Leave empty to get data for all par-
ticipants.

Optional search window specifying date where to begin search. Must be con-
vertible to date using as.Date. Use first_date to find the date of the first entry for
a participant.

Optional search window specifying date where to end search. Must be convert-
ible to date using as.Date. Use last_date to find the date of the last entry for a
participant.

Either "Hour’ or *Day’ indicating how to summarise the results. Leave empty to
get raw screen duration per measurement.

A tibble with either hour’ and ’duration’ columns or ’date’ and ’duration’ columns depending on
the by argument. Alternatively, if no by is specified, a remote tibble is returned with the date, time,
and duration since the previous measurement.

sensors

Available Sensors

Description

A list containing all available sensors in this package you can work with. This variable was created
S0 it is easier to use in your own functions, e.g. to loop over sensors.

Usage

sensors

Format

An object of class character of length 25.

Value

A character vector containing all sensor names supported by mpathsenser.

Examples

sensors

30

test_jsons

step_count

Get step count

Description

Extracts the number of steps per hour as sensed by the underlying operating system.

Usage

step_count(db, participant_id = NULL, start_date = NULL, end_date = NULL)

Arguments

db

participant_id

start_date

end_date

Value

A database connection to an m-Path Sense database.

A character string identifying a single participant. Use get_participants to
retrieve all participants from the database. Leave empty to get data for all par-
ticipants.

Optional search window specifying date where to begin search. Must be con-
vertible to date using as.Date. Use first_date to find the date of the first entry for
a participant.

Optional search window specifying date where to end search. Must be convert-
ible to date using as.Date. Use last_date to find the date of the last entry for a
participant.

A tibble with the *date’, "hour’, and the number of ’steps’.

test_jsons

Test JSON files for being in the correct format.

Description

Test JSON files for being in the correct format.

Usage

test_jsons(

path = getwd(),
files = NULL,

db = NULL,
recursive = TRUE,
parallel = FALSE

unzip_data 31

Arguments
path The path name of the JSON files.
files Alternatively, a character list of the input files.
db A mpathsenser database connection (optional). If provided, will be used to
check which files are already in the database and check only those JSON files
which are not.
recursive Should the listing recurse into directories?
parallel A logical value whether you want to check in parallel. Useful when there are
a lot of files. If you have already used plan, you can leave this parameter to
FALSE.
Value

A message indicating whether there were any issues and a character vector of the file names that
need to be fixed. If there were no issues, no result is returned.
Progress

You can be updated of the progress by this function by using the progress package. See progressr’s
vignette on how to subscribe to these updates.

unzip_data Unzip m-Path Sense output

Description

Similar to unzip, but makes it easier to unzip all files in a given path with one function call.

Usage

unzip_data(
path = getwd(),
overwrite = FALSE,
recursive = TRUE,
parallel = FALSE

)
Arguments
path The path to the directory containing the zip files.
overwrite Logical value whether you want to overwrite already existing zip files.
recursive Logical value indicating whether to unzip files in subdirectories as well. These
files will then be unzipped in their respective subdirectory.
parallel A logical value whether you want to check in parallel. Useful when there are a

lot of files. If you have already used future: :plan, you can leave this parame-
ter to FALSE.

https://cran.r-project.org/package=progressr/vignettes/progressr-intro.html

32 unzip_data

Value

A message indicating how many files were unzipped.

Progress

You can be updated of the progress by this function by using the progress package. See progressr’s
vignette on how to subscribe to these updates.

https://cran.r-project.org/package=progressr/vignettes/progressr-intro.html

Index

x datasets
freq, 10
sensors, 29

app_category, 3
as.Date, 6, 12-14, 16, 24-27, 29, 30
as.period, 23, 24

ccopy, 3
close_db, 4, 28
copy_db, 5, 28

coverage, 5, 10
create_db, 5,7, 16, 17

DateTimeClasses, 23
dbDisconnect, 4
dbplyr, 16, 17
decrypt_gps, 8
device_info, 8

first_date, 9, 12-14, 16, 24-27, 29, 30

fix_jsons, 9
freq, 10

geocode_rev, 11
get_activity, 12
get_app_usage, 13, 14
get_data, 14, 28
get_installed_apps, 15
get_nrows, 15

get_participants, 8, 9, 12-16, 16, 19, 22,

24,26, 27, 29, 30
get_processed_files, 17
get_studies, 17

handlers, 21
haversine, 18

identify_gaps, 18
import, 20
index_db, 21, 28

last_date, 12-14, 16, 22, 24-27, 29, 30
link, 22, 23, 24
link2, 23

moving_average, 24
mpathsenser, 25

n_screen_on, 26
n_screen_unlocks, 27

open_db, 4, 6, 21, 28

plan, 31
progress, 10, 21, 31, 32

screen_duration, /4, 28
sensors, 5, 6, 9, 14, 16, 19, 20, 22, 24, 25, 29
step_count, 30

tbl, 14
test_jsons, 30

unzip, 31/
unzip_data, 31

	app_category
	ccopy
	close_db
	copy_db
	coverage
	create_db
	decrypt_gps
	device_info
	first_date
	fix_jsons
	freq
	geocode_rev
	get_activity
	get_app_usage
	get_data
	get_installed_apps
	get_nrows
	get_participants
	get_processed_files
	get_studies
	haversine
	identify_gaps
	import
	index_db
	last_date
	link
	link2
	moving_average
	mpathsenser
	n_screen_on
	n_screen_unlocks
	open_db
	screen_duration
	sensors
	step_count
	test_jsons
	unzip_data
	Index

