library(multinma)
options(mc.cores = parallel::detectCores())
This vignette describes the analysis of 13 trials investigating BCG vaccination vs. no vaccination for prevention of Tuberculosis (TB) (Dias et al. 2011; Berkey et al. 1995). The data are available in this package as bcg_vaccine
:
head(bcg_vaccine)
#> studyn trtn trtc latitude r n
#> 1 1 1 Unvaccinated 44 11 139
#> 2 1 2 Vaccinated 44 4 123
#> 3 2 1 Unvaccinated 55 29 303
#> 4 2 2 Vaccinated 55 6 306
#> 5 3 1 Unvaccinated 42 11 220
#> 6 3 2 Vaccinated 42 3 231
Dias et al. (2011) used these data to demonstrate meta-regression models adjusting for the continuous covariate latitude
, the absolute degrees latitude at which the study was conducted, which we recreate here.
We have data giving the number diagnosed with TB during trial follow-up (r
) out of the total (n
) in each arm, so we use the function set_agd_arm()
to set up the network. We set “unvaccinated” as the network reference treatment.
<- set_agd_arm(bcg_vaccine,
bcg_net study = studyn,
trt = trtc,
r = r,
n = n,
trt_ref = "Unvaccinated")
bcg_net#> A network with 13 AgD studies (arm-based).
#>
#> ------------------------------------------------------- AgD studies (arm-based) ----
#> Study Treatment arms
#> 1 2: Unvaccinated | Vaccinated
#> 2 2: Unvaccinated | Vaccinated
#> 3 2: Unvaccinated | Vaccinated
#> 4 2: Unvaccinated | Vaccinated
#> 5 2: Unvaccinated | Vaccinated
#> 6 2: Unvaccinated | Vaccinated
#> 7 2: Unvaccinated | Vaccinated
#> 8 2: Unvaccinated | Vaccinated
#> 9 2: Unvaccinated | Vaccinated
#> 10 2: Unvaccinated | Vaccinated
#> ... plus 3 more studies
#>
#> Outcome type: count
#> ------------------------------------------------------------------------------------
#> Total number of treatments: 2
#> Total number of studies: 13
#> Reference treatment is: Unvaccinated
#> Network is connected
The latitude
variable in the bcg_vaccine
data frame will automatically be available to use in a meta-regression model.
We fit random effects (RE) models, firstly without any covariates, and then with a meta-regression on the continuous covariate latitude
.
We start by fitting a standard RE model without any covariates. We use \(\mathrm{N}(0, 100^2)\) prior distributions for the treatment effect \(d_\mathrm{Vaccine}\) and study-specific intercepts \(\mu_j\), and a \(\textrm{half-N}(0, 5^2)\) prior distribution for the heterogeneity standard deviation \(\tau\). We can examine the range of parameter values implied by these prior distributions with the summary()
method:
summary(normal(scale = 100))
#> A Normal prior distribution: location = 0, scale = 100.
#> 50% of the prior density lies between -67.45 and 67.45.
#> 95% of the prior density lies between -196 and 196.
summary(half_normal(scale = 5))
#> A half-Normal prior distribution: location = 0, scale = 5.
#> 50% of the prior density lies between 0 and 3.37.
#> 95% of the prior density lies between 0 and 9.8.
The model is fitted with the nma()
function, with a random effects model specified by trt_effects = "random"
.
<- nma(bcg_net,
bcg_fit_unadj trt_effects = "random",
prior_intercept = normal(scale = 100),
prior_trt = normal(scale = 100),
prior_het = half_normal(scale = 5))
Basic parameter summaries are given by the print()
method:
bcg_fit_unadj#> A random effects NMA with a binomial likelihood (logit link).
#> Inference for Stan model: binomial_1par.
#> 4 chains, each with iter=2000; warmup=1000; thin=1;
#> post-warmup draws per chain=1000, total post-warmup draws=4000.
#>
#> mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
#> d[Vaccinated] -0.75 0.01 0.22 -1.19 -0.89 -0.75 -0.61 -0.32 1170 1.00
#> lp__ -13453.72 0.15 4.56 -13464.08 -13456.35 -13453.34 -13450.61 -13445.85 886 1.01
#> tau 0.69 0.01 0.20 0.39 0.55 0.66 0.80 1.19 1502 1.00
#>
#> Samples were drawn using NUTS(diag_e) at Thu Feb 24 09:08:24 2022.
#> For each parameter, n_eff is a crude measure of effective sample size,
#> and Rhat is the potential scale reduction factor on split chains (at
#> convergence, Rhat=1).
By default, summaries of the study-specific intercepts \(\mu_j\) and random effects \(\delta_j\) are hidden, but could be examined by changing the pars
argument:
# Not run
print(bcg_fit_unadj, pars = c("d", "mu", "delta", "tau"))
The prior and posterior distributions can be compared visually using the plot_prior_posterior()
function:
plot_prior_posterior(bcg_fit_unadj, prior = c("trt", "het"))
latitude
We now fit a RE meta-regression model, adjusting for latitude
. We use \(\mathrm{N}(0, 100^2)\) prior distributions for the treatment effect \(d_\mathrm{Vaccine}\), study-specific intercepts \(\mu_j\), and regression coefficient \(\beta\). We use a \(\text{half-N}(0, 5^2)\) prior distribution for the heterogeneity standard deviation \(\tau\). We can examine the range of parameter values implied by these prior distributions with the summary()
method:
summary(normal(scale = 100))
#> A Normal prior distribution: location = 0, scale = 100.
#> 50% of the prior density lies between -67.45 and 67.45.
#> 95% of the prior density lies between -196 and 196.
summary(half_normal(scale = 5))
#> A half-Normal prior distribution: location = 0, scale = 5.
#> 50% of the prior density lies between 0 and 3.37.
#> 95% of the prior density lies between 0 and 9.8.
Again, the model is fitted with the nma()
function. The regression
formula ~ .trt:latitude
means that the interaction of latitude with treatment will be included; the .trt
special variable indicates treatment, and latitude
is in the original data set. We increase adapt_delta
to 0.99 to remove a small number of divergent transition errors (the default for RE models is set to 0.95).
<- nma(bcg_net,
bcg_fit_lat trt_effects = "random",
regression = ~.trt:latitude,
prior_intercept = normal(scale = 100),
prior_trt = normal(scale = 100),
prior_reg = normal(scale = 100),
prior_het = half_normal(scale = 5),
adapt_delta = 0.99)
#> Note: No treatment classes specified in network, any interactions in `regression` formula will be separate (independent) for each treatment.
#> Use set_*() argument `trt_class` and nma() argument `class_interactions` to change this.
Basic parameter summaries are given by the print()
method:
bcg_fit_lat#> A random effects NMA with a binomial likelihood (logit link).
#> Regression model: ~.trt:latitude.
#> Centred covariates at the following overall mean values:
#> latitude
#> 33.46154
#> Inference for Stan model: binomial_1par.
#> 4 chains, each with iter=2000; warmup=1000; thin=1;
#> post-warmup draws per chain=1000, total post-warmup draws=4000.
#>
#> mean se_mean sd 2.5% 25% 50% 75%
#> beta[.trtVaccinated:latitude] -0.03 0.00 0.01 -0.05 -0.04 -0.03 -0.03
#> d[Vaccinated] -0.76 0.00 0.12 -1.04 -0.83 -0.76 -0.69
#> lp__ -13457.20 0.23 5.18 -13468.13 -13460.64 -13456.86 -13453.49
#> tau 0.30 0.01 0.19 0.03 0.16 0.27 0.40
#> 97.5% n_eff Rhat
#> beta[.trtVaccinated:latitude] -0.01 1388 1
#> d[Vaccinated] -0.53 1530 1
#> lp__ -13447.86 520 1
#> tau 0.73 625 1
#>
#> Samples were drawn using NUTS(diag_e) at Thu Feb 24 09:08:43 2022.
#> For each parameter, n_eff is a crude measure of effective sample size,
#> and Rhat is the potential scale reduction factor on split chains (at
#> convergence, Rhat=1).
Note that latitude
has automatically been centered at 33.46, the mean value for the studies in the network.
By default, summaries of the study-specific intercepts \(\mu_j\) and study-specific relative effects \(\delta_{jk}\) are hidden, but could be examined by changing the pars
argument:
# Not run
print(bcg_fit_lat, pars = c("d", "beta", "mu", "delta", "tau"))
The prior and posterior distributions can be compared visually using the plot_prior_posterior()
function:
plot_prior_posterior(bcg_fit_lat, prior = c("trt", "reg", "het"))
Model fit can be checked using the dic()
function:
<- dic(bcg_fit_unadj))
(bcg_dic_unadj #> Residual deviance: 26 (on 26 data points)
#> pD: 23.5
#> DIC: 49.6
<- dic(bcg_fit_lat))
(bcg_dic_lat #> Residual deviance: 30.6 (on 26 data points)
#> pD: 21.5
#> DIC: 52
The DIC is very similar between the two models, so we might at first choose the unadjusted model. The posterior mean residual deviance is larger for the model with the covariate, but this model also has a lower effective number of parameters \(p_D\) so is allowing for more shrinkage of the random treatment effects. Moreover, the model with the covariate has a much lower estimated heterogeneity standard deviation:
summary(bcg_fit_unadj, pars = "tau")
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> tau 0.69 0.2 0.39 0.55 0.66 0.8 1.19 1448 2036 1
summary(bcg_fit_lat, pars = "tau")
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> tau 0.3 0.19 0.03 0.16 0.27 0.4 0.73 621 1052 1
Adjusting for latitude is explaining a substantial amount of heterogeneity in the data. The 95% Credible Interval for the regression coefficient also excludes zero:
summary(bcg_fit_lat, pars = "beta")
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> beta[.trtVaccinated:latitude] -0.03 0.01 -0.05 -0.04 -0.03 -0.03 -0.01 1586 1627 1
plot(bcg_fit_lat,
pars = "beta",
ref_line = 0,
stat = "halfeye")
Altogether, we might prefer the model with the adjustment for latitude. When considering covariates in random effects models it is important not to just look at the DIC (Dias et al. 2011). We should also consider any reductions in heterogeneity, and the estimated regression coefficients and their standard error. The DIC is not sensitive to changes in the heterogeneity, as RE models are very flexible and can fit the data well whatever the level of heterogeneity.
We can produce estimates of the relative effect of vaccination at any latitude using the relative_effects()
function. The newdata
argument specifies a data frame containing the values of the covariate latitude
that we are interested in, and the study
argument is used to specify a column of newdata
for an informative label.
<- relative_effects(bcg_fit_lat,
bcg_releff_lat newdata = tibble::tibble(latitude = seq(10, 50, by = 10),
label = paste0(latitude, "\u00B0 latitude")),
study = label)
bcg_releff_lat#> ----------------------------------------------------------- Study: 10° latitude ----
#>
#> Covariate values:
#> latitude
#> 10
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> d[10° latitude: Vaccinated] -0.03 0.23 -0.55 -0.14 0 0.1 0.39 1598 1726 1
#>
#> ----------------------------------------------------------- Study: 20° latitude ----
#>
#> Covariate values:
#> latitude
#> 20
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> d[20° latitude: Vaccinated] -0.34 0.16 -0.71 -0.43 -0.32 -0.25 -0.04 1551 1649 1
#>
#> ----------------------------------------------------------- Study: 30° latitude ----
#>
#> Covariate values:
#> latitude
#> 30
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> d[30° latitude: Vaccinated] -0.65 0.13 -0.94 -0.72 -0.65 -0.58 -0.42 1603 1838 1
#>
#> ----------------------------------------------------------- Study: 40° latitude ----
#>
#> Covariate values:
#> latitude
#> 40
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> d[40° latitude: Vaccinated] -0.97 0.14 -1.26 -1.04 -0.96 -0.88 -0.7 1705 1487 1
#>
#> ----------------------------------------------------------- Study: 50° latitude ----
#>
#> Covariate values:
#> latitude
#> 50
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> d[50° latitude: Vaccinated] -1.28 0.2 -1.68 -1.39 -1.28 -1.18 -0.88 1672 1585 1
The plot()
method may be used to visually compare these estimates:
plot(bcg_releff_lat,
ref_line = 0)
A more sophisticated plot shows the regression line and confidence band for the effect of latitude, overlaid on the observed log odds ratios in each study:
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
library(ggplot2)
# Get data for regression line
<- range(bcg_vaccine$latitude)
lat_range <- tibble(latitude = seq(lat_range[1], lat_range[2], by = 1))
lat_dat
<- relative_effects(bcg_fit_lat,
bcg_lat_reg newdata = lat_dat) %>%
as_tibble() %>%
bind_cols(lat_dat)
# Get study log odds ratios
<- bcg_vaccine %>%
bcg_lor group_by(studyn) %>%
mutate(lor = log(r / (n - r)) - log(first(r) / (first(n) - first(r))),
sample_size = sum(n)) %>%
slice(-1)
# Plot
ggplot(aes(x = latitude), data = bcg_lor) +
geom_hline(yintercept = 0, colour = "grey60") +
geom_ribbon(aes(ymin = `2.5%`, ymax = `97.5%`), data = bcg_lat_reg,
fill = "darkred", alpha = 0.3) +
geom_line(aes(y = mean), data = bcg_lat_reg,
colour = "darkred") +
geom_point(aes(y = lor, size = sample_size), alpha = 0.6) +
coord_cartesian(xlim = c(0, 60)) +
xlab("Degrees Latitude") + ylab("log Odds Ratio") +
scale_size("Sample Size") +
theme_multinma()
In the presence of heterogeneity, it has been argued that decision makers should consider the predictive distribution of relative effects in a new study, instead of the posterior distribution of the mean treatment effects, as this reflects uncertainty due to heterogeneity and may better represent uncertainty about a future roll-out of a treatment (see Dias et al. 2011). We can produce predictive distributions using the predictive_distribution = TRUE
argument to relative_effects()
. Dias et al. (2018, sec. 8.3.2) consider the predictive distributions for this BCG vaccine analysis.
In the unadjusted analysis, whilst there is substantial evidence that vaccination is effective on average and essentially zero probability of harm based on the mean effect, the predictive distribution for effectiveness in a new study is wide and covers a range of harmful effects:
<- relative_effects(bcg_fit_unadj, predictive_distribution = TRUE))
(bcg_predeff_unadj #> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> delta_new[Vaccinated] -0.76 0.74 -2.23 -1.22 -0.76 -0.31 0.76 3745 3378 1
The predictive probability of a new trial showing a harmful effect is:
mean(as.matrix(bcg_predeff_unadj) > 0)
#> [1] 0.13275
For the analysis adjusting for latitude, the predictive distribution of relative effects now depends on latitude; here we calculate these in increments of 10 degrees from the equator:
<- relative_effects(bcg_fit_lat,
bcg_predeff_lat newdata = tibble::tibble(latitude = seq(0, 50, by = 10),
label = paste0(latitude, "\u00B0 latitude")),
study = label,
predictive_distribution = TRUE)
bcg_predeff_lat#> ------------------------------------------------------------ Study: 0° latitude ----
#>
#> Covariate values:
#> latitude
#> 0
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> delta_new[0° latitude: Vaccinated] 0.29 0.46 -0.77 0.07 0.32 0.52 1.19 2827 2487 1
#>
#> ----------------------------------------------------------- Study: 10° latitude ----
#>
#> Covariate values:
#> latitude
#> 10
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> delta_new[10° latitude: Vaccinated] -0.03 0.42 -0.97 -0.22 0 0.18 0.81 3152 2714 1
#>
#> ----------------------------------------------------------- Study: 20° latitude ----
#>
#> Covariate values:
#> latitude
#> 20
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> delta_new[20° latitude: Vaccinated] -0.34 0.39 -1.18 -0.52 -0.32 -0.16 0.45 3414 2923 1
#>
#> ----------------------------------------------------------- Study: 30° latitude ----
#>
#> Covariate values:
#> latitude
#> 30
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> delta_new[30° latitude: Vaccinated] -0.65 0.38 -1.45 -0.83 -0.63 -0.48 0.11 3500 2947 1
#>
#> ----------------------------------------------------------- Study: 40° latitude ----
#>
#> Covariate values:
#> latitude
#> 40
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> delta_new[40° latitude: Vaccinated] -0.97 0.39 -1.8 -1.15 -0.95 -0.79 -0.16 3290 3060 1
#>
#> ----------------------------------------------------------- Study: 50° latitude ----
#>
#> Covariate values:
#> latitude
#> 50
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> delta_new[50° latitude: Vaccinated] -1.28 0.41 -2.14 -1.48 -1.28 -1.09 -0.43 2934 2595 1
The predictive probabilities of a new trial carried out at a given latitude showing a harmful effect can be calculated as:
colMeans(as.matrix(bcg_predeff_lat) > 0)
#> delta_new[0° latitude: Vaccinated] delta_new[10° latitude: Vaccinated]
#> 0.79400 0.50475
#> delta_new[20° latitude: Vaccinated] delta_new[30° latitude: Vaccinated]
#> 0.12750 0.03825
#> delta_new[40° latitude: Vaccinated] delta_new[50° latitude: Vaccinated]
#> 0.01475 0.00700
So the predictive probability that a new trial carried out at the equator shows a harmful effect is around 80%, whereas at 50 degrees latitude the predictive probability is only 0.7%.