Package ‘nlmixr’

March 27, 2022

Type Package
Title Nonlinear Mixed Effects Models in Population PK/PD
Depends R (>=4.0)

Imports Rcpp (>=0.12.3), brew, parallel, 1bfgsb3c, dparser, methods,
ggplot2, rex, minga, Matrix, nlgnl (>= 6.0.1-10), fastGHQuad,
RxODE(>= 1.1.5), nlme, magrittr, backports, symengine

Suggests Deriv, Rvmmin, broom.mixed, crayon, knitr, data.table,
devtools, digest, dotwhisker, dplyr, expm, flextable, ggtext,
patchwork, gridExtra, huxtable, lattice, Ibfgs, lotri, madness,
matrixcalc, nloptr, officer, pkgdown, reshape2, rmarkdown,
testthat, tidyr, ucminf, vpc (>= 1.1.0), xgxr, yaml, xpose,
generics, tibble, checkmate, cli, gs, covr, forecast,
latticeExtra

Version 2.0.7

Description Fit and compare nonlinear mixed-effects models in differential
equations with flexible dosing information commonly seen in pharmacokinetics
and pharmacodynamics (Almquist, Leander, and Jirstrand 2015
<doi:10.1007/s10928-015-9409-1>). Differential equation solving is
by compiled C code provided in the 'RxODE' package
(Wang, Hallow, and James 2015 <doi:10.1002/psp4.12052>).

License GPL (>=2)

NeedsCompilation yes

LinkingTo dparser(>= 0.1.8), RxODE(>= 1.0.0-0), RcppEigen (>=
0.3.3.3.0), Ibfgsb3c, Repp, BH, StanHeaders(>= 2.18.0),
ReppArmadillo (>= 0.5.600.2.0)

URL https://github.com/nlmixrdevelopment/nlmixr

LazyData true

RoxygenNote 7.1.1

Biarch true

Maintainer Wenping Wang <wwang8198@gmail.com>

Encoding UTF-8

https://doi.org/10.1007/s10928-015-9409-1
https://doi.org/10.1002/psp4.12052
https://github.com/nlmixrdevelopment/nlmixr

2 R topics documented:

Author Matthew Fidler [aut] (<https://orcid.org/0000-0001-8538-6691>),
Yuan Xiong [aut],
Rik Schoemaker [aut] (<https://orcid.org/0000-0002-7538-3005>),
Justin Wilkins [aut] (<https://orcid.org/0000-0002-7099-9396>),
Wenping Wang [aut, cre],
Robert Leary [ctb],
Mason McComb [aut] (<https://orcid.org/0000-0001-9871-8616>),
Vipul Mann [aut],
Mirjam Trame [ctb],
Teun Post [ctb],
Richard Hooijmaijers [aut],
Hadley Wickham [ctb],
Dirk Eddelbuettel [cph],
Johannes Pfeifer [ctb],
Robert B. Schnabel [ctb],
Elizabeth Eskow [ctb],
Emmanuelle Comets [ctb],
Audrey Lavenu [ctb],
Marc Lavielle [ctb],
David Ardia [cph],
Katharine Mullen [cph],
Ben Goodrich [ctb]

Repository CRAN
Date/Publication 2022-03-27 14:50:06 UTC

R topics documented:

addCovariate e e e e 5
addCovVar e e e e e 6
addCwres e e e e 7
addNpde e 8
addTable e e e 9
asdynmodel 11
as.focel e 12
backwardSearch 13
Bolus_1CPT e e e e e 14
Bolus_ICPTMM e e 15
Bolus_ 2CPT 16
Bolus_2CPTMM e e e e e 18
bootdata e e 19
bootplot 20
bootplot.nlmixrFitCore 20
bootstrapFit e 21
boXCOX . . . o e e e 23
calc.2LL e e e 24
calc.COV . . . e e e 25

calcCov e 25

https://orcid.org/0000-0001-8538-6691
https://orcid.org/0000-0002-7538-3005
https://orcid.org/0000-0002-7099-9396
https://orcid.org/0000-0001-9871-8616

R topics documented: 3

cholSE e e e e e 26
configsaem L. e e e e e 27
covarSearchAuto L 30
dynmodel 32
dynmodel.meme oL e e 34
dynmodelControl 35
foceieta e e e 41
foceitheta e e e 42
foceiControl e 43
foceiFit e 54
forwardSearch e 61
frwd_selection. e e e e e e 62
gauss.quad L e e e 63
getOMEGA 64
gnlmm e e e e 64
0L L e 66
Infusion_1CPT e 67
I .. e e e e 68
initializeCovars e e e e e e e e e e e e e e e e 70
instant.Stan.eXtension e e e e e e e e e 71
IMVEAUSSIAN o e e e e e e 71
lin_cmt e e e e e e e e e e e 72
makeDummies e 73
makeHockeyStick 73
metabolite L e e e e e e 74
model e e e e e 74
nlme_gof L 75
nlme_lin_cmpt e 76
nlme_ode e e e e e 78
NIMIXE e e e e e e e 81
nlmixrAugPred L 93
nlmixrBounds e 94
nlmixrBounds.eta.names 95
nlmixrBounds.focei.upperlower Lo oo 96
nlmixrBoundsParser 96
nlmixrDynmodelConvert 97
nlmixrEst L e 98
nlmixrGill83 e e 99
nlmixrHess e 101
nlmixrLogo 103
nlmixrPred 103
nlmixrSim e e e e e e 104
nlmixrTest e e e e e e 114
nlmixrULdynmodelfun 115
nlmixrULdynmodelfun2 115
nlmixrULfocei.fixed e 116
nlmixrULfocel.inits e e e 116

nlmixrULnlme.specs 117

R topics documented:

nlmixrtULrxode.pred e 117
nlmixrULsaem.ares e e e e e e e e e e 118
nlmixrULsaem.bres 118
nlmixrULsaem.cres e e e e e 119
nlmixrULsaem.distribution e 119
nlmixrULsaem.eta.trans e 120
nlmixrULsaem.fit 120
nlmixrULsaem.fixed e 121
nlmixrULsaem.init e e e 121
nlmixrULsaem.init.omega 122
nlmixrULsaem.init.theta e 122
nlmixrULsaem.log.eta 123
nlmixrULsaem.model 123
nlmixrULsaem.model.omegao 124
nlmixrULsaem.res.mod e e 124
nlmixrULsaem.res.name e e e e 125
nlmixrULsaem.rx1 e 125
nlmixrULsaem.thetaname, 126
nlmixrULtheta.pars e 126
nlmixrValidate 127
nImixrVersion e e e e e e 127
nlmixr_fit e e e e e e e 128
nmDOCX e e e 129
nmLSt e e e e 131
NMSIMPIEX o o o e e e e e e e e 132
OfV . e e e e e 132
Oral_ICPT e e 133
performNorm 134
pheno_sd e e 135
plotdynmeme 136
plotnlmixrFitData L 137
plot.saemFit e e e 137
preCondInv e 138
preconditionFit 138
predictiono 139
print.dyndID e 140
print.gnlmm.fit 141
printnlmixrUL 0 0oL 141
print.saemFit L e e e 142
PUMD . o o o e e e e e e e e 142
TALS . . o o e e e e e e e e e e e e e e e 143
removeCovariate e e e e e e e e 144
removeCovMultiple 144
removeCovVar e e 145
residuals.nlmixrFitData 146
saemLfit e e e e 146
saemControl L e e e 149

SEtCOV . . o o e e e 152

addCovariate 5

SetOfV . . L 153
SATEM . . v v e e e e e e e e e 154
summary.dyn.ID 154
SUMMAry.dynmeme oo e e e e e e e e e e e e e e e 155
summary.saemFit 155
tableControl e e e e e e 156
theo_md e e 157
theo_sd e 158
VarCorr.nlmixrNlme o L 159
VPC o o e e e e e e e e e e e e 160
vpe_nlmixr_nlme L. e e e e 160
vpe_saemFit e e e 161
VPC_UL . o v oot t e e e e 162
Wang2007 164
warfarin e e e e e e 165

Index 166

addCovariate Add covariate expression to a function string
Description

Add covariate expression to a function string

Usage

addCovariate(funstring, varName, covariate, theta, islLog)

Arguments
funstring a string giving the expression that needs to be modified
varName the variable to which the given string corresponds to in the model expression
covariate the covariate expression that needs to be added (at the appropriate place)
theta a list of names of the ’theta’ parameters in the ’fit” object
isLog a boolean signifying the presence of log-transformation in the funstring
Value

returns the modified string with the covariate added to function string

Author(s)
Vipul Mann, Matthew Fidler

addCovVar

addCovVar

Adding covariate to a given variable in an nlmixr model expression

Description

Adding covariate to a given variable in an nlmixr model expression

Usage
addCovVar(
fitobject,
varName,
covariate,
norm = c("median”, "mean”, "autoscale"),
norm_type = c("mul”, "div", "sub", "add”, "autoscale"),
categorical = FALSE,
isHS = FALSE,
initialEst = 9,
initialEstLB = -Inf,
initialEstUB = Inf
)
Arguments
fitobject an nlmixr ’fit” object
varName a string giving the variable name to which covariate needs to be added
covariate a string giving the covariate name; must be present in the data used for ’fit’
norm the kind of normalization to be used while normalizing covariates; must be either
’mean’ or *'median’
norm_type a string defining operator to be used for transforming covariates using norm’;
must be one among 'mul’, ’div’, ’sub’, ’add’
categorical a boolean indicating if the ’covariate’ is categorical
isHS a boolean indicating if *covariate’ is of Hockey-stick kind
initialEst the initial estimate for the covariate parameters to be estimated; default is 0
initialEstLB a lower bound for the covariate parameters to be estimated; default is -Inf
initialEstUB an upper bound for the covariate parameters to be estimated; default is Inf
Value

a list with the updated model expression and data with columns corresponding to normalized co-
varaite(s) appended

Author(s)

Vipul Mann, Matthew Fidler

addCwres 7

addCwres Add CWRES

Description

This returns a new fit object with CWRES attached

Usage

addCwres(fit, updateObject = TRUE, envir = parent.frame(1))

Arguments
fit nlmixr fit without WRES/CWRES
updateObject Boolean indicating if the original fit object should be updated. By default this is
true.
envir Environment that should be checked for object to update. By default this is the
global environment.
Value
fit with CWRES
Author(s)

Matthew L. Fidler

Examples

one.cmt <- function() {
ini({
You may label each parameter with a comment
tka <- 0.45 # Log Ka
tcl <- log(c(@, 2.7, 100)) # Log Cl
This works with interactive models
You may also label the preceding line with label("”label text")
tv <- 3.45; label("log V")
the label("Label name") works with all models

eta.ka ~ 0.6
eta.cl ~ 0.3
eta.v ~ 0.1
add.sd <- 0.7
1)
model ({

ka <- exp(tka + eta.ka)
cl <- exp(tcl + eta.cl)

8 addNpde

v <- exp(tv + eta.v)
linCmt() ~ add(add.sd)

D
}

f <= try(nlmixr(one.cmt, theo_sd, "saem"))
print(f)
even though you may have forgotten to add the cwres, you can add it to the data.frame:
if (linherits(f, "try-error”)) {
f <- try(addCwres(f))
print(f)
3

Note this also adds the FOCEi objective function

addNpde NPDE calculation for nlmixr

Description

NPDE calculation for nlmixr

Usage

addNpde (
object,
updateObject = TRUE,
table = tableControl(),

L

envir = parent.frame(1)

Arguments

object nlmixr fit object
updateObject Boolean indicating if original object should be updated. By default this is TRUE.
table ‘tableControl()* list of options

Other ignored parameters.

envir Environment that should be checked for object to update. By default this is the
global environment.

Value

New nlmixr fit object

addTable

Author(s)
Matthew L. Fidler

Examples

one.cmt <- function() {
ini({
You may label each parameter with a comment
tka <- 0.45 # Log Ka
tcl <- log(c(@, 2.7, 100)) # Log Cl
This works with interactive models
You may also label the preceding line with label(”label text")
tv <- 3.45; label("log V")
the label("Label name") works with all models

eta.ka ~ 0.6
eta.cl ~ 0.3
eta.v ~ 0.1
add.sd <- 0.7
»
model ({

ka <- exp(tka + eta.ka)
cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)
linCmt() ~ add(add.sd)
b))
3

f <- nlmixr(one.cmt, theo_sd, "saem")
even though you may have forgotten to add the NPDE, you can add it to the data.frame:

f <- addNpde(f)

addTable Add table information to nlmixr fit object without tables

Description

Add table information to nlmixr fit object without tables

Usage

addTable(
object,

10 addTable

updateObject = FALSE,
data = object$dataSav,

thetaEtaParameters = .foceiThetaEtaParameters(object),
table = tableControl(),
keep = NULL,
drop = NULL,
envir = parent.frame(1)
)
Arguments
object nlmixr family of objects
updateObject Update the object (default FALSE)
data Saved data from
thetaEtaParameters
Intenral theta/eta parameters
table a ‘tableControl()‘ list of options
keep Character Vector of items to keep
drop Character Vector of items to drop or NULL
envir ENvironment to search for updating
Value

Fit with table information attached

Author(s)
Matthew Fidler

Examples

one.cmt <- function() {
ini({
You may label each parameter with a comment
tka <- 0.45 # Log Ka
tcl <- log(c(@, 2.7, 100)) # Log Cl
This works with interactive models
You may also label the preceding line with label("”label text")
tv <- 3.45; label("log V")
the label("Label name") works with all models

eta.ka ~ 0.6

eta.cl ~ 0.3

eta.v ~ 0.1

add.sd <- 0.7
H

model ({

as.dynmodel

ka <- exp(tka + eta.ka)
cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)
linCmt() ~ add(add.sd)
b))
3

run without tables step
f <= nlmixr(one.cmt, theo_sd, "saem”, control=list(calcTables=FALSE))

print(f)
Now add the tables
f <- addTable(f)

print(f)

as.dynmodel Convert fit to classic dynmodel object

Description

Convert fit to classic dynmodel object

Usage

as.dynmodel (x)

Arguments

X nlmixr object to convert to dynmodel object

Value

dynmodel

Author(s)

Matthew Fidler

12

as.focei

as.focei

Convert fit to FOCEi style fit

Description

Convert fit to FOCE:i style fit

Usage

as.focei(

object,
uif,

pt = proc.time(),

L

data,

calcResid = TRUE,

table =

tableControl(),

IDlabel = NULL

)

S3 method for class 'nlmixrNlme'

as.focei(
object,
uif,

pt = proc.time(),

L

data,

calcResid = TRUE,

nobs2 = 0,

keep =
drop =
table =

tableControl(),

IDlabel = NULL

Arguments
object
uif

pt

data
calcResid
table
IDlabel

Fit object to convert to FOCEi-style fit.
Unified Interface Function

Proc time object

Other Parameters

The data to pass to the FOCEi translation.

A boolean to indicate if the CWRES residuals should be calculated

A list of table options

labels for the ID column; used to change the IDs back to their normal valuesr

backwardSearch 13

nobs?2 Number of observations without EVID=2

keep Columns to keep from either the input dataset. For the input dataset, if any
records are added to the data LOCF (Last Observation Carried forward) impu-
tation is performed.

drop Columns to drop from the output
Value

A FOCE:i fit style object.
Author(s)

Matthew L. Fidler

backwardSearch Backward covariate search

Description

Backward covariate search

Usage
backwardSearch(
covInfo,
fitorig,
fitupdated,
pval = 0.01,
reFitCovars = FALSE,
outputDir,
restart = FALSE
)
Arguments
covInfo a list containing information about each variable-covariate pair
fitorig the original ’fit” object before forward search
fitupdated the updatef ’fit’ object, if any, after the forward search
pval p-value that should be used for selecting covariates in the forward search
reFitCovars if the covariates should be added before performing backward search - useful for
directly performing backward search without forward search; default is FALSE
outputDir the name of the output directory that stores the covariate search result

restart a boolean that controls if the search should be restarted; default is FALSE

14 Bolus_ICPT

Value
returns the updated *fit’ object at the end of the backward search and a table of information for all
the covariates tested

Author(s)
Vipul Mann, Matthew Fidler

Bolus_1CPT Bolus_ICPT — 1 Compartment Model Simulated Data from ACOP
2016

Description

This is a simulated dataset from the ACOP 2016 poster. All Datasets were simulated with the
following methods.

Usage

Bolus_1CPT

Format

A data frame with 7,920 rows and 14 columns

ID Simulated Subject ID

TIME Simulated Time

DV Simulated Dependent Variable
LNDV Simulated log(Dependent Variable)
MDV Missing DV data item
AMT Dosing AMT

EVID NONMEM Event ID
DOSE Dose

V Individual Simulated Volume
CL Individual Clearance

SS Steady State

IT Interdose Interval

SD Single Dose Flag

CMT Compartment

Bolus_1CPTMM 15

Details

Richly sampled profiles were simulated for 4 different dose levels (10, 30, 60 and 120 mg) of 30
subjects each as single dose (over 72h), multiple dose (4 daily doses), single and multiple dose
combined, and steady state dosing, for a range of test models: 1- and 2-compartment disposition,
with and without 1st order absorption, with either linear or Michaelis-Menten (MM) clearance(MM
without steady state dosing). This provided a total of 42 test cases. All inter-individual variabilities
(ITVs) were set at 30 were the same for all models. A similar set of models was previously used to
compare NONMEM and Monolix4. Estimates of population parameters, standard errors for fixed-
effect parameters, and run times were compared both for closed-form solutions and using ODEs.
Additionally, a sparse data estimation situation was investigated where 500 datasets of 600 subjects
each (150 per dose) were generated consisting of 4 random time point samples in 24 hours per
subject, using a first-order absorption, 1-compartment disposition, linear elimination model.

Source
Schoemaker R, Xiong Y, Wilkins J, Laveille C, Wang W. nlmixr: an open-source package for
pharmacometric modelling in R. ACOP 2016

See Also

Other nlmixr datasets: Bolus_1CPTMM, Bolus_2CPTMM, Bolus_2CPT, Infusion_1CPT, Oral_1CPT,
Wang2007, pheno_sd, rats, theo_md, theo_sd, warfarin

Bolus_1CPTMM 1 Compartment Model w/ Michaelis-Menten Elimination

Description

This is a simulated dataset from the ACOP 2016 poster. All Datasets were simulated with the
following methods.

Usage

Bolus_1CPTMM

Format

A data frame with 7,920 rows and 14 columns

ID Simulated Subject ID

TIME Simulated Time

DV Simulated Dependent Variable

LNDV Simulated log(Dependent Variable)
MDYV Missing DV data item

AMT Dosing AMT

16 Bolus_2CPT

EVID NONMEM Event ID
DOSE Dose

V Individual Simulated Volume
VM Individual Vm constant
KM Individual Km constant
SD Single Dose Flag

CMT Compartment

Details

Richly sampled profiles were simulated for 4 different dose levels (10, 30, 60 and 120 mg) of 30
subjects each as single dose (over 72h), multiple dose (4 daily doses), single and multiple dose
combined, and steady state dosing, for a range of test models: 1- and 2-compartment disposition,
with and without 1st order absorption, with either linear or Michaelis-Menten (MM) clearance(MM
without steady state dosing). This provided a total of 42 test cases. All inter-individual variabilities
(IIVs) were set at 30 were the same for all models. A similar set of models was previously used to
compare NONMEM and Monolix4. Estimates of population parameters, standard errors for fixed-
effect parameters, and run times were compared both for closed-form solutions and using ODE:s.
Additionally, a sparse data estimation situation was investigated where 500 datasets of 600 subjects
each (150 per dose) were generated consisting of 4 random time point samples in 24 hours per
subject, using a first-order absorption, 1-compartment disposition, linear elimination model.

Source
Schoemaker R, Xiong Y, Wilkins J, Laveille C, Wang W. nlmixr: an open-source package for
pharmacometric modelling in R. ACOP 2016

See Also

Other nlmixr datasets: Bolus_1CPT, Bolus_2CPTMM, Bolus_2CPT, Infusion_1CPT, Oral_1CPT,
Wang2007, pheno_sd, rats, theo_md, theo_sd, warfarin

Bolus_2CPT 2 Compartment Model

Description

This is a simulated dataset from the ACOP 2016 poster. All Datasets were simulated with the
following methods.

Usage

Bolus_2CPT

Bolus_2CPT 17

Format

A data frame with 7,920 rows and 16 columns

ID Simulated Subject ID

TIME Simulated Time

DV Simulated Dependent Variable

LNDV Simulated log(Dependent Variable)
MDYV Missing DV data item

AMT Dosing AMT

EVID NONMEM Event ID

DOSE Dose

V1 Individual Central Compartment Volume
CL Individual Clearance

Q Individual Between Compartment Clearance
V2 Periperial Volume

SS Steady State Flag

II Interdose interval

SD Single Dose Flag

CMT Compartment Indicator

Details

Richly sampled profiles were simulated for 4 different dose levels (10, 30, 60 and 120 mg) of 30
subjects each as single dose (over 72h), multiple dose (4 daily doses), single and multiple dose
combined, and steady state dosing, for a range of test models: 1- and 2-compartment disposition,
with and without 1st order absorption, with either linear or Michaelis-Menten (MM) clearance(MM
without steady state dosing). This provided a total of 42 test cases. All inter-individual variabilities
(IIVs) were set at 30 were the same for all models. A similar set of models was previously used to
compare NONMEM and Monolix4. Estimates of population parameters, standard errors for fixed-
effect parameters, and run times were compared both for closed-form solutions and using ODEs.
Additionally, a sparse data estimation situation was investigated where 500 datasets of 600 subjects
each (150 per dose) were generated consisting of 4 random time point samples in 24 hours per
subject, using a first-order absorption, 1-compartment disposition, linear elimination model.

Source
Schoemaker R, Xiong Y, Wilkins J, Laveille C, Wang W. nlmixr: an open-source package for
pharmacometric modelling in R. ACOP 2016

See Also

Other nlmixr datasets: Bolus_1CPTMM, Bolus_1CPT, Bolus_2CPTMM, Infusion_1CPT, Oral_1CPT,
Wang2007, pheno_sd, rats, theo_md, theo_sd, warfarin

18 Bolus_2CPTMM

Bolus_2CPTMM 2 Compartment Model with Michaelis-Menten Clearance

Description

This is a simulated dataset from the ACOP 2016 poster. All Datasets were simulated with the
following methods.

Usage
Bolus_2CPTMM

Format
A data frame with 7,920 rows and 15 columns

ID Simulated Subject ID

TIME Simulated Time

DV Simulated Dependent Variable

LNDV Simulated log(Dependent Variable)
MDYV Missing DV data item

AMT Dosing AMT

EVID NONMEM Event ID

DOSE Dose

V Individual Central Compartment Volume
VM Individual Vmax

KM Individual Km

Q Individual Q

V2 Individual Peripheral Compartment Volume
SD Single Dose Flag

CMT Compartment Indicator

Details

Richly sampled profiles were simulated for 4 different dose levels (10, 30, 60 and 120 mg) of 30
subjects each as single dose (over 72h), multiple dose (4 daily doses), single and multiple dose
combined, and steady state dosing, for a range of test models: 1- and 2-compartment disposition,
with and without 1st order absorption, with either linear or Michaelis-Menten (MM) clearance(MM
without steady state dosing). This provided a total of 42 test cases. All inter-individual variabilities
(IIVs) were set at 30 were the same for all models. A similar set of models was previously used to
compare NONMEM and Monolix4. Estimates of population parameters, standard errors for fixed-
effect parameters, and run times were compared both for closed-form solutions and using ODE:s.
Additionally, a sparse data estimation situation was investigated where 500 datasets of 600 subjects
each (150 per dose) were generated consisting of 4 random time point samples in 24 hours per
subject, using a first-order absorption, 1-compartment disposition, linear elimination model.

bootdata 19

Source
Schoemaker R, Xiong Y, Wilkins J, Laveille C, Wang W. nlmixr: an open-source package for
pharmacometric modelling in R. ACOP 2016

See Also

Other nlmixr datasets: Bolus_1CPTMM, Bolus_1CPT, Bolus_2CPT, Infusion_1CPT, Oral_1CPT,
Wang2007, pheno_sd, rats, theo_md, theo_sd, warfarin

bootdata Bootstrap data

Description

Bootstrap data by sampling the same number of subjects from the original dataset by sampling with
replacement.

Usage

bootdata(dat)

Arguments

dat model data to be bootstrapped

Value

Bootstrapped data

Examples

specs <- list(fixed = 1KA + ICL + 1V ~ 1,
random = pdDiag(lKA + 1CL ~ 1),
start = c(lKA = 0.5, 1CL = -3.2, 1V = -1))
set.seed(99)
nboot <- 5
cat("generating”, nboot, "bootstrap samples...\n")
cmat <- matrix(NA, nboot, 3)
for (i in 1:nboot)
{
print(i)
bd <- bootdata(theo_md)
fit <- nlme_lin_cmpt(bd, par_model = specs, ncmt = 1)
cmat[i,] <- fit$coefficients$fixed
3
dimnames(cmat)[[2]] <- names(fit$coefficients$fixed)
print(head(cmat))

20

bootplot.nlmixrFitCore

bootplot Produce trace-plot for fit if applicable

Description

Produce trace-plot for fit if applicable

Usage
bootplot(x, ...)
Arguments
X fit object
other parameters
Value

Fit traceplot or nothing.

Author(s)
Vipul Mann, Matthew L. Fidler

bootplot.nlmixrFitCore
Produce trace-plot for fit if applicable

Description

Produce trace-plot for fit if applicable

Usage
S3 method for class 'nlmixrFitCore'
bootplot(x, ...)
traceplot(x, ...)

S3 method for class 'nlmixrFitCore'

traceplot(x, ...)
Arguments
X fit object

other parameters

bootstrapFit 21

Value

Fit traceplot or nothing.

Author(s)
Rik Schoemaker, Wenping Wang & Matthew L. Fidler

bootstrapFit Bootstrap nlmixr fit

Description

Bootstrap input dataset and rerun the model to get confidence bounds and aggregated parameters

Usage

bootstrapFit(
fit,
nboot = 200,
nSampIndiv,
stratVvar,
stdErrType = c("perc”, "se"),
ci = 0.95,
pvalues = NULL,
restart = FALSE,
plotHist = FALSE,
fitName = as.character(substitute(fit))

)
Arguments

fit the nlmixr fit object

nboot an integer giving the number of bootstrapped models to be fit; default value is
200

nSampIndiv an integer specifying the number of samples in each bootstrapped sample; de-
fault is the number of unique subjects in the original dataset

stratvar Variable in the original dataset to stratify on; This is useful to distinguish be-
tween sparse and full sampling and other features you may wish to keep distinct
in your bootstrap

stdErrType This gives the standard error type for the updated standard errors; The current
possibilities are: "perc” which gives the standard errors by percentiles (default)
or "se" which gives the standard errors by the traditional formula.

ci Confidence interval level to calculate. Default is 0.95 for a 95% confidence

interval

22 bootstrapFit

pvalues a vector of pvalues indicating the probability of each subject to get selected;
default value is NULL implying that probability of each subject is the same

restart A boolean to try to restart an interrupted or incomplete boostrap. By default this
is FALSE

plotHist A boolean indicating if a histogram plot to assess how well the bootstrap is

doing. By default this is turned off (FALSE)

fitName is the fit name that is used for the name of the boostrap files. By default it is the
fit provided though it could be something else.

Value

Nothing, called for the side effects; The original fit is updated with the bootstrap confidence bands

Author(s)
Vipul Mann, Matthew Fidler

Examples

one.cmt <- function() {
ini({
You may label each parameter with a comment
tka <- 0.45 # Log Ka
tcl <- 1 # Log Cl
This works with interactive models
You may also label the preceding line with label("”label text")
tv <- 3.45
label("log V")
the label("Label name"”) works with all models

eta.ka ~ 0.6
eta.cl ~ 0.3
eta.v ~ 0.1
add.sd <- 0.7
b))
model ({

ka <- exp(tka + eta.ka)
cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)
linCmt() ~ add(add.sd)
D)
3

fit <- nlmixr(one.cmt, theo_sd, "focei")
RXODE: : .rxWithWd(tempdir(), { # Run example in temp dir

bootstrapFit(fit, nboot = 5, restart = TRUE) # overwrites any of the existing data or model files
bootstrapFit(fit, nboot = 7) # resumes fitting using the stored data and model files

boxCox 23

Note this resumes because the total number of bootstrap samples is not 50
bootstrapFit(fit, nboot=50)

Note the boostrap standard error and variance/covariance matrix is retained.
If you wish to switch back you can change the covariance matrix by

setCov(fit,"r,s")

And change it back again

setCov(fit, "boot50")

This change will affect any simulations with uncertainty in their parameters
You may also do a chi-square diagnostic plot check for the bootstrap with
bootplot(fit)

b

boxCox Cox Box, Yeo Johnson and inverse transformation

Description

Cox Box, Yeo Johnson and inverse transformation

Usage
boxCox(x, lambda = 1)

iBoxCox(x, lambda = 1)
yeoJohnson(x, lambda = 1)

iYeoJohnson(x, lambda = 1)

Arguments

X data to transform

lambda Cox-box lambda parameter
Value

Cox-Box Transformed Data

24 calc.2LL

Author(s)

Matthew L. Fidler

Examples

boxCox(1:3,1) ## Normal
iBoxCox(boxCox(1:3,1))

boxCox(1:3,0) ## Log-Normal
iBoxCox(boxCox(1:3,0),0)

boxCox(1:3,0.5) ## lambda=0.5
iBoxCox(boxCox(1:3,0.5),0.5)

yeoJohnson(seq(-3,3),1) ## Normal
iYeoJohnson(yeoJohnson(seq(-3,3),1))

yeoJohnson(seq(-3,3),0)
iYeoJohnson(yeoJohnson(seq(-3,3),0),0)

calc.2LL Log-likelihood using Gaussian Quadrature

Description

Estimate the log-likelihood using Gaussian Quadrature (multidimensional grid)

Usage

calc.2LL(fit, nnodes.gq = 8, nsd.gq = 4)

Arguments
fit saemFit fit
nnodes. gq number of nodes to use for the Gaussian quadrature when computing the likeli-
hood with this method (defaults to 1, equivalent to the Laplaclian likelihood)
nsd.gq span (in SD) over which to integrate when computing the likelihood by Gaussian
quadrature. Defaults to 3 (eg 3 times the SD)
Value

log-likelihood calculated by Gaussian Quadrature

calc.COV 25

References

Kuhn E, Lavielle M. Maximum likelihood estimation in nonlinear mixed effects models. Compu-
tational Statistics and Data Analysis 49, 4 (2005), 1020-1038.

Comets E, Lavenu A, Lavielle M. SAEMIX, an R version of the SAEM algorithm. 20th meeting of
the Population Approach Group in Europe, Athens, Greece (2011), Abstr 2173.

calc.cov Covariance matrix by Fisher Information Matrix via linearization

Description

Get the covariance matrix of fixed effect estimates via calculating Fisher Information Matrix by
linearization

Usage

calc.COV(fit@)

Arguments

fito saemFit fit

Value

standard error of fixed effects

References

Comets E, Lavenu A, Lavielle M. SAEMIX, an R version of the SAEM algorithm. 20th meeting of
the Population Approach Group in Europe, Athens, Greece (2011), Abstr 2173.

calcCov Calculate gnlmm variance-covariance matrix of fixed effects

Description

Calculate variance-covariance matrix of fixed effects after a gnlmm() fit

Usage

calcCov(fit, method = 1, trace = FALSE)

26

Arguments
fit a gnlmm fit object
method method for calculating variance-covariance matrix
trace logical whether to trace the iterations

Value

variance-covariance matrix of model parameters

cholSE

cholSE Generalized Cholesky Matrix Decomposition

Description

Performs a (modified) Cholesky factorization of the form

Usage

cholSE(matrix, tol = (.Machine$double.eps)*(1/3))

Arguments

matrix Matrix to be Factorized.

tol Tolerance; Algorithm suggests (.Machine$double.eps) » (1 / 3), default
Details

t(P) %*% A %*% P + E = t(R) %*% R
As detailed in Schnabel/Eskow (1990)

Value

Generalized Cholesky decomposed matrix.

Note

This version does not pivot or return the E matrix

Author(s)

Matthew L. Fidler (translation), Johannes Pfeifer, Robert B. Schnabel and Elizabeth Eskow

configsaem 27

References

matlab source: http://www.dynare.org/dynare-matlab-m2html/matlab/chol_SE.html; Slightly dif-
ferent return values

Robert B. Schnabel and Elizabeth Eskow. 1990. "A New Modified Cholesky Factorization," SIAM
Journal of Scientific Statistical Computing, 11, 6: 1136-58.

Elizabeth Eskow and Robert B. Schnabel 1991. "Algorithm 695 - Software for a New Modified
Cholesky Factorization," ACM Transactions on Mathematical Software, Vol 17, No 3: 306-312

configsaem Configure an SAEM model

Description

Configure an SAEM model by generating an input list to the SAEM model function

Usage

configsaem(
model,
data,
inits,
mcmec = list(niter = c(200, 300), nmc = 3, nu = c(2, 2, 2)),
ODEopt = list(atol = 1e-06, rtol = 1e-04, method = "lsoda"”, transitAbs = FALSE,
maxeval = 1e+05),

distribution = c("normal”, "poisson”, "binomial"),
addProp = c("combined2", "combinedl"),

seed = 99,

fixed = NULL,

DEBUG = @,

tol = 1e-04,

itmax = 100L,

type = c("nelder-mead”, "newuoa"),

lambdaRange = 3,

powRange = 10,
odeRecalcFactor = 10*(0.5),
maxQOdeRecalc = 5L

)
Arguments
model a compiled saem model by gen_saem_user_fn()
data input data
inits initial values
mcme a list of various mcmc options

ODEopt optional ODE solving options

28

distribution

addProp

seed
fixed

DEBUG
tol

itmax

type

lambdaRange

powRange

odeRecalcFactor

maxOdeRecalc

Details

configsaem

one of c("normal","poisson","binomial")

one of "combined1" and "combined2"; These are the two forms of additive+proportional
errors supported by monolix/nonmem:

combinedl: transform(y)=transform(f)+(a+b*f"c)*eps
combined2: transform(y)=transform(f)+(a"2+b" 2*{*(2c))*eps

seed for random number generator

a character vector of fixed effect only parameters (no random effects attached)
to be fixed

Integer determining if debugging is enabled

This is the tolerance for the regression models used for complex residual errors
(ie add+prop etc)

This is the maximum number of iterations for the regression models used for
complex residual errors. The number of iterations is itmax*number of parame-
ters

indicates the type of optimization for the residuals; Can be one of c("nelder-
mead", "newuoa")

This indicates the range that Box-Cox and Yeo-Johnson parameters are con-
strained to be; The default is 3 indicating the range (-3,3)

This indicates the range that powers can take for residual errors; By default this
is 10 indicating the range is c(1/10, 10) or ¢(0.1,10)

The factor to increase the rtol/atol with bad ODE solving.

Maximum number of times to reduce the ODE tolerances and try to resolve the
system if there was a bad ODE solve.

Fit a generalized nonlinear mixed-effect model by he Stochastic Approximation Expectation-Maximization

(SAEM) algorithm

Value

Returns a list neede for the saem fit procedure

Author(s)

Wenping Wang & Matthew Fidler

Examples

In this ODE system we simply specify the ODEs

ode <- "d/dt(depot) =-KA*xdepot;
d/dt(centr) = KAxdepot - KE*centr;"

configsaem

m1 <- RxODE (ode)

In this ode System, we also specify the concentration as C2 = centr/V

ode <- "C2 = centr/V;

d/dt(depot) =-KAxdepot;

d/dt(centr) = KAxdepot - KE*centr;"
m2 = RxODE (ode)

PKpars <- function() {
CL <- exp(1CL)
V <= exp(lV)
KA <- exp(1KA)
KE <-CL / V
}

PRED <- function() centr / V
PRED2 <- function() C2

saem_fit <- gen_saem_user_fn(model = m1, PKpars, pred = PRED)

Can also use PRED2
saem_fit <- gen_saem_user_fn(model=m2, PKpars, pred=PRED2)

You can also use the nlmixr UI to run this model and call the lower level functions

one.compartment <- function() {
ini({

tka <- 0.45 # Log Ka

tcl <- 1 # Log Cl

tv <- 3.45 # Log V

eta.ka ~ 0.6
eta.cl ~ 0.3
eta.v ~ 0.1
add.sd <- 0.7
wt.est <- 0.0
1)
model ({

ka <- exp(tka + eta.ka)
cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v + wt.est x WT)
d/dt(depot) = -ka * depot
d/dt(center) = ka * depot - cl / v * center
cp = center / v
cp ~ add(add.sd)
»
}

fit <- nlmixr(one.compartment, theo_sd, "saem")
fit

29

30 covarSearchAuto

covarSearchAuto Stepwise Covariate Model-selection (SCM) method

Description

Stepwise Covariate Model-selection (SCM) method

Usage

covarSearchAuto(
fit,
varsVec,
covarsVec,
pval = list(fwd = 0.05, bck = 0.01),
covinformation = NULL,
catCovariates = NULL,

searchType = c("scm”, "forward”, "backward"),
restart = FALSE
)
Arguments
fit an nlmixr ’fit” object
varsVec a list of candidate variables to which the covariates could be added
covarsVec a list of candidate covariates that need to be tested
pval a named list with names ’fwd’ and ’bck’ for specifying the p-values for the

forward and backward searches, respectively

covInformation alistcontaining additionl information on the variables-covariates pairs that should
be passed on to addCovMultiple function

catCovariates alist of covariates that should be treated as categorical

searchType one of ’scm’, "forward’ and "backward’ to specify the covariate search method;
default is ’scm’
restart a boolean that controls if the search should be restarted; default is FALSE
Value

A list summarizing the covariate selection steps and output; This list has the "summaryTable" for
the overall summary of the covariate selection as well as "resFwd" for the forward selection method
and "resBck" for the backward selection method.

Author(s)
Vipul Mann, Matthew Fidler

covarSearchAuto 31

Examples

one.cmt <- function() {

ini({
You may label each parameter with a comment
tka <- 0.45 # Log Ka
tcl <- log(c(@, 2.7, 100)) # Log Cl
This works with interactive models
You may also label the preceding line with label(”label text")
tv <- 3.45; label("log V")
the label("Label name") works with all models
eta.ka ~ 0.6
eta.cl ~ 0.3
eta.v ~ 0.1
add.sd <- 0.7

b))

model ({
ka <- exp(tka + eta.ka)
cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)
linCmt() ~ add(add.sd)

b))

3

fit <- nlmixr(one.cmt, theo_sd,"focei")
RXODE: : .rxWithWd(tempdir(), {# with temporary directory

covarSearchAuto(fit, varsVec = c("ka", "cl"),
covarsVec = c("WT", "SEX"), catCovariates = c("SEX"))

B

Note that this didn't include sex, add it to dataset and restart model
d <- theo_sd

d$SEX <-0

d$SEX[d$ID<=6] <-1

fit <- nlmixr(one.cmt, d, "focei")

This would restart if for some reason the search crashed:

RXODE: : .rxWithWd(tempdir(), {# with temporary directory

covarSearchAuto(fit, varsVec = c("ka", "cl"), covarsVec = c("WT", "SEX"),
catCovariates = c("”SEX"), restart = TRUE)

covarSearchAuto(fit, varsVec = c("ka", "cl"), covarsVec = c("WT", "SEX"),
catCovariates = c("SEX"), restart = TRUE,
searchType = "forward")

32 dynmodel

b

dynmodel Fit a non-population dynamic model

Description

Fit a non-population dynamic model

Usage
dynmodel (
system,
model,
inits,
data,
fixPars = NULL,
nlmixrObject = NULL,
control = list(),
)
Arguments
system RxODE object. See RxODE for more details.
model Error model.
inits Initial values of system parameters.
data Dataset to estimate. Needs to be RxODE compatible in EVIDs.
fixPars Fixed system parameters. Default is NULL.

nlmixrObject nlmixr object. See nImixr for more details. Default is NULL.
control Control options for dynmodel dynmodelControl .

Other parameters (ignored)

Value

A dynmodel fit object

Author(s)
Wenping Wang, Mason McComb and Matt Fidler

dynmodel

Examples

dynmodel example -----------—--———"————— -
ode <- "
kel = CL/V;
d/dt(X) = -kelxX;
C=X/V;
PRED = C
ode_system <- RxODE(model = ode)
model_error_structure <- cp ~ C + add(0.01) + prop(0.01)
inits <- ¢(CL =1, V = 10)
control <- dynmodelControl(method = "Nelder-Mead")
fit <-
try(dynmodel(
system = ode_system,
model = model_error_structure,
data = Bolus_1CPT,
inits = inits,
control = control

)

nlmixr model example ————=-———————————————-— -
model_onecmt_bolus <- function() {
ini({
CL <- c(@, 5, 10) # Clearance (L/hr)
V <- c(0, 50, 100) # Volume of Distribution
prop.err <- c(0, 0.01, 1)
D)
model ({
kel <- CL / V
d / dt(X) <- -kel % X
cp <-X/V
cp ~ prop(prop.err)
D)
3

note on some platforms this fit is not successful
fit <- try(nlmixr(object = model_onecmt_bolus, data = Bolus_1CPT, est = "dynmodel"))

if (inherits(fit, "nlmixrDynmodel”)) {

as.dynmodel (fit)
3

method = "focei” is slightly more flexible and well tested

fit <- try(nlmixr(object = model_onecmt_bolus, data = Bolus_1CPT, est = "focei”))

33

34 dynmodel. mcmc

dynmodel.mcmc Fit a non-population dynamic model using mcmc

Description

Fit a non-population dynamic model using mcmc

Usage
dynmodel . mcmc (
system,
model,
evTable,
inits,
data,
fixPars = NULL,
nsim = 500,
squared = TRUE,
seed = NULL
)
Arguments
system an RxODE object
model a list of statistical measurement models
evTable an Event Table object
inits initial values of system parameters
data input data
fixPars fixed system parameters
nsim number of memc iterations
squared if parameters be squared during estimation
seed random number seed
Value

A dyn.mcmc object detailing the model fit

Author(s)

Wenping Wang

dynmodelControl 35

Examples

ode <- "

n

dose=200;
pi = 3.1415926535897931;

if (t<=0) {

fIl =0,
} else {

fI = Fxdosexsqrt(MIT/(2.0*pi*CVI2xt*3))xexp(~(t-MIT)*2/(2.0*CVI2*MIT*t));
}

C2 = centr/V2;
C3 = peri/V3;
d/dt(centr) = fI - CLxC2 - QxC2 + Q*C3;
d/dt(peri) = Q*C2 - Qx*C3;

sys1 <- RxODE(model = ode)

#it

dat <- invgaussian

mod <- cp ~ C2 + prop(.1)

inits <- c¢(MIT = 190, CVI2 = .65, F = .92)

fixPars <- c(CL = .0793, V2 = .64, Q = .292, V3 = 9.63)

ev <- eventTable()

ev$add.sampling(c(@, dat$time))

(fit <- dynmodel.mcmc(sys1, mod, ev, inits, dat, fixPars))

dynmodelControl Control Options for dynmodel

Description

Control Options for dynmodel

Usage

dynmodelControl(

ci = 0.95,

nlmixrOutput = FALSE,

digs = 3,

lower = -Inf,

upper = Inf,

method = c("bobyga”", "Nelder-Mead", "lbfgsb3c"”, "L-BFGS-B", "PORT"”, "mma",
"1bfgsbLG", "slsgp”, "Rvmmin"),

36

maxeval = 999,
scaleTo = 1,
scaleObjective = 0,

dynmodelControl

normType = c("rescale2”, "constant”, "mean”, "rescale”, "std", "len"),

scaleType = c("nlmixr”, "norm”, "mult”, "multAdd"),

scaleCmax = 1e+05,
scaleCmin = 1e-05,
scaleC = NULL,
scaleCd = 1e+05,
atol = NULL,

rtol = NULL,
ssAtol = NULL,
ssRtol = NULL,

npt = NULL,

rhobeg = 0.2,
rhoend = NULL,
iprint = 0,

print = 1,

maxfun = NULL,
trace = 0,

factr = NULL,
pgtol = NULL,
abstol = NULL,
reltol = NULL,

1mm = NULL,

maxit = 100000L,
eval.max = NULL,
iter.max = NULL,
abs.tol = NULL,
rel.tol = NULL,
x.tol = NULL,
xf.tol = NULL,
step.min = NULL,
step.max = NULL,
sing.tol = NULL,
scale.init = NULL,
diff.g = NULL,
boundTol = NULL,
epsilon = NULL,
derivSwitchTol = NULL,
sigdig = 4,

covMethod = c("nlmixrHess"”, "optimHess"),
gillK = 1eL,
gillStep = 4,
gillFtol = 0,

gillRtol = sqrt(.Machine$double.eps),

gillKcov = 10L,
gillStepCov = 2,

dynmodelControl

gillFtolCov

37

o,

rxControl = NULL

Arguments

ci
nlmixrOutput
digs

lower

upper

method

maxeval

scaleTo

scaleObjective

normType

Other arguments including scaling factors for each compartment. This includes
S# = numeric will scale a compartment # by a dividing the compartment amount
by the scale factor, like NONMEM.

Confidence level for some tables. By default this is 0.95 or 95% confidence.
Option to change output style to nlmixr output. By default this is FALSE.
Option for the number of significant digits of the output. By default this is 3.
Lower bounds on the parameters used in optimization. By default this is -Inf.
Upper bounds on the parameters used in optimization. By default this is Inf.
The method for solving ODEs. Currently this supports:

e "liblsoda” thread safe Isoda. This supports parallel thread-based solving,

and ignores user Jacobian specification.

* "lsoda” — LSODA solver. Does not support parallel thread-based solving,
but allows user Jacobian specification.

* "dop853" — DOP853 solver. Does not support parallel thread-based solving
nor user Jacobain specification

* "indLin" — Solving through inductive linearization. The RxODE dIl must
be setup specially to use this solving routine.

Maximum number of iterations for Nelder-Mead of simplex search. By default
this is 999.

Scale the initial parameter estimate to this value. By default this is 1. When zero
or below, no scaling is performed.

Scale the initial objective function to this value. By default this is 1.

This is the type of parameter normalization/scaling used to get the scaled initial
values for nlmixr. These are used with scaleType of.

With the exception of rescale?2, these come from Feature Scaling. The rescale?2
The rescaling is the same type described in the OptdesX software manual.

In general, all all scaling formula can be described by:

v_scaled = (v_unscaled-C_1)/C_2

Where

The other data normalization approaches follow the following formula

v_scaled = (v_unscaled-C_1)/C_2;

* rescale? This scales all parameters from (-1 to 1). The relative differences
between the parameters are preserved with this approach and the constants
are:

C_1 = (max(all unscaled values)+min(all unscaled values))/2
C_2 = (max(all unscaled values) - min(all unscaled values))/2

https://en.wikipedia.org/wiki/Feature_scaling
http://apmonitor.com/me575/uploads/Main/optimization_book.pdf

38

scaleType

scaleCmax
scaleCmin

scaleC

dynmodelControl

rescale or min-max normalization. This rescales all parameters from (0
to 1). As in the rescale?2 the relative differences are preserved. In this
approach:

C_1 = min(all unscaled values)

C_2 = max(all unscaled values) - min(all unscaled values)

mean or mean normalization. This rescales to center the parameters around
the mean but the parameters are from O to 1. In this approach:

C_1 = mean(all unscaled values)

C_2 = max(all unscaled values) - min(all unscaled values)

std or standardization. This standardizes by the mean and standard devia-
tion. In this approach:

C_1 = mean(all unscaled values)

C_2 =sd(all unscaled values)

len or unit length scaling. This scales the parameters to the unit length. For
this approach we use the Euclidean length, that is:

C_1=0

C 2=sqrt(v_1"2 4+ v_2"2 + ... + v_n"\2)

constant which does not perform data normalization. That is

C_1=0

C2=1

The scaling scheme for nlmixr. The supported types are:

nlmixr In this approach the scaling is performed by the following equation:
v_scaled = (v_current - v_init)/scaleC[i] + scaleTo

The scaleTo parameter is specified by the normType, and the scales are
specified by scaleC.

norm This approach uses the simple scaling provided by the normType ar-
gument.

mult This approach does not use the data normalization provided by normType,
but rather uses multiplicative scaling to a constant provided by the scaleTo
argument.

In this case:

v_scaled = v_current/v_init*scaleTo

multAdd This approach changes the scaling based on the parameter being
specified. If a parameter is defined in an exponential block (ie exp(theta)),
then it is scaled on a linearly, that is:

v_scaled = (v_current-v_init) + scaleTo

Otherwise the parameter is scaled multiplicatively.

v_scaled = v_current/v_init*scaleTo

Maximum value of the scaleC to prevent overflow.

Minimum value of the scaleC to prevent underflow.

The scaling constant used with scaleType=nlmixr. When not specified, it is
based on the type of parameter that is estimated. The idea is to keep the deriva-
tives similar on a log scale to have similar gradient sizes. Hence parameters like
log(exp(theta)) would have a scaling factor of 1 and log(theta) would have a scal-
ing factor of ini_value (to scale by 1/value; ie d/dt(log(ini_value)) = 1/ini_value
or scaleC=ini_value)

dynmodelControl 39

 For parameters in an exponential (ie exp(theta)) or parameters specifying
powers, boxCox or yeoJohnson transformations , this is 1.

* For additive, proportional, lognormal error structures, these are given by
0.5*abs(initial_estimate)

* Factorials are scaled by abs(1/digamma(inital_estimate+1))

» parameters in a log scale (ie log(theta)) are transformed by log(abs(initial_estimate))*abs(initial_estir

These parameter scaling coefficients are chose to try to keep similar slopes
among parameters. That is they all follow the slopes approximately on a log-
scale.

While these are chosen in a logical manner, they may not always apply. You can
specify each parameters scaling factor by this parameter if you wish.

scaleCo Number to adjust the scaling factor by if the initial gradient is zero.

atol a numeric absolute tolerance (1e-8 by default) used by the ODE solver to deter-
mine if a good solution has been achieved; This is also used in the solved linear
model to check if prior doses do not add anything to the solution.

rtol a numeric relative tolerance (1e-6 by default) used by the ODE solver to deter-
mine if a good solution has been achieved. This is also used in the solved linear
model to check if prior doses do not add anything to the solution.

ssAtol Steady state atol convergence factor. Can be a vector based on each state.
ssRtol Steady state rtol convergence factor. Can be a vector based on each state.
npt The number of points used to approximate the objective function via a quadratic

approximation for bobyqa. The value of npt must be in the interval [n+2,(n+1)(n+2)/2]
where n is the number of parameters in par. Choices that exceed 2*n+1 are not
recommended. If not defined, it will be set to 2*n + 1

rhobeg Beginning change in parameters for bobyqa algorithm (trust region). By default
this is 0.2 or 20 parameters when the parameters are scaled to 1. rhobeg and
rhoend must be set to the initial and final values of a trust region radius, so both
must be positive with 0 < rhoend < rhobeg. Typically rhobeg should be about
one tenth of the greatest expected change to a variable. Note also that smallest
difference abs(upper-lower) should be greater than or equal to rhobeg*2. If this
is not the case then rhobeg will be adjusted.

rhoend The smallest value of the trust region radius that is allowed. If not defined, then
107 (-sigdig-1) will be used.
iprint Print option for optimization. See bobyqa, 1bfgsb3c, and 1bfgs for more de-

tails. By default this is O.

print Integer representing when the outer step is printed. When this is 0 or do not
print the iterations. 1 is print every function evaluation (default), 5 is print every
5 evaluations.

maxfun The maximum allowed number of function evaluations. If this is exceeded, the
method will terminate. See bobyqa for more details. By default this value is
NULL.

trace Tracing information on the progress of the optimization is produced. See bobyqga,

1bfgsb3c, and 1bfgs for more details. By default this is 0.

40

factr

pgtol

abstol
reltol

Imm

maxit

eval . max
iter.max

abs.tol

rel.tol
x.tol
xf.tol

step.min

step.max

sing.tol

scale.init

diff.g

boundTol
epsilon
derivSwitchTol
sigdig

dynmodelControl

Controls the convergence of the "L-BFGS-B" method. Convergence occurs
when the reduction in the objective is within this factor of the machine toler-
ance. Default is 1e10, which gives a tolerance of about 2e-6, approximately
4 sigdigs. You can check your exact tolerance by multiplying this value by
.Machine$double.eps

is a double precision variable.

On entry pgtol >= 0 is specified by the user. The iteration will stop when:
max(\| projg_i\|i=1,...,n) <= 1lbfgsPgtol

where pg_i is the ith component of the projected gradient.

On exit pgtol is unchanged. This defaults to zero, when the check is suppressed.

Absolute tolerance for nlmixr optimizer
tolerance for nlmixr

An integer giving the number of BFGS updates retained in the "L-BFGS-B"
method, It defaults to 7.

Maximum number of iterations for Ibfgsb3c. See 1bfgsb3c for more details.
By default this is 100000L.

Number of maximum evaluations of the objective function
Maximum number of iterations allowed.

Used in Nelder-Mead optimization and PORT optimization. Absolute tolerance.
Defaults to O so the absolute convergence test is not used. If the objective func-
tion is known to be non-negative, the previous default of 1e-20 would be more
appropriate.

Relative tolerance before nlminb stops.
X tolerance for nlmixr optimizers

Used in Nelder-Mead optimization and PORT optimization. false convergence
tolerance. Defaults to 2.2e-14. See nlminb for more details.

Used in Nelder-Mead optimization and PORT optimization. Minimum step size.
By default this is 1. See nlminb for more details.

Used in Nelder-Mead optimization and PORT optimization. Maximum step
size. By default this is 1. See nIminb for more details.

Used in Nelder-Mead optimization and PORT optimization. Singular conver-
gence tolerance; defaults to rel.tol. See nlminb for more details.

Used in Nelder-Mead optimization and PORT optimization. See nlminb for
more details.

Used in Nelder-Mead optimization and PORT optimization. An estimated bound
on the relative error in the objective function value. See nlminb for more details.

Tolerance for boundary issues.

Precision of estimate for nlqnl optimization.

The tolerance to switch forward to central differences.
Optimization significant digits. This controls:

* The tolerance of the inner and outer optimization is 10*-sigdig

focei.eta

covMethod

gillK

gillStep

gillFtol

gillRtol
gillKcov

gillStepCov

gillFtolCov

rxControl

Value

41

¢ The tolerance of the ODE solvers is @.5*x10*(-sigdig-2); For the sensi-

tivity equations and steady-state solutions the defaultis @.5%10* (-sigdig-1.5)

(sensitivity changes only applicable for liblsoda)
* The tolerance of the boundary check is 5 * 10 * (-sigdig + 1)
* The significant figures that some tables are rounded to.

Method for calculating covariance. In this discussion, R is the Hessian matrix
of the objective function. The S matrix is the sum of individual gradient cross-
product (evaluated at the individual empirical Bayes estimates).

The total number of possible steps to determine the optimal forward/central dif-
ference step size per parameter (by the Gill 1983 method). If 0, no optimal step
size is determined. Otherwise this is the optimal step size determined.

When looking for the optimal forward difference step size, this is This is the
step size to increase the initial estimate by. So each iteration the new step size =
(prior step size)*gillStep

The gillFtol is the gradient error tolerance that is acceptable before issuing a
warning/error about the gradient estimates.

The relative tolerance used for Gill 1983 determination of optimal step size.

The total number of possible steps to determine the optimal forward/central dif-
ference step size per parameter (by the Gill 1983 method) during the covariance
step. If 0, no optimal step size is determined. Otherwise this is the optimal step
size determined.

When looking for the optimal forward difference step size, this is This is the step
size to increase the initial estimate by. So each iteration during the covariance
step is equal to the new step size = (prior step size)*gillStepCov

The gillFtol is the gradient error tolerance that is acceptable before issuing a
warning/error about the gradient estimates during the covariance step.

This uses RxODE family of objects, file, or model specification to solve a ODE
system. See rxControl for more details. By default this is NULL.

dynmodelControl list for options during dynmodel optimization

Author(s)

Mason McComb and Matthew L. Fidler

focei.eta

Get the FOCEI theta or eta specification for model.

Description

Get the FOCE:i theta or eta specification for model.

42

Usage

focei.eta(object, uif, ...)

S3 method for class 'nlmixrNlme'

focei.eta(object, ...)
Arguments
object Fit object
uif User interface function or object

Other parameters

Value

List for the OMGA list in FOCEi

Author(s)
Matthew L. Fidler

focei.theta

focei.theta Get the FOCEI theta specification for the model

Description

Get the FOCE:i theta specification for the model

Usage

focei.theta(object, uif, ...)

S3 method for class 'nlmixrNlme'

focei.theta(object, uif, ...)
Arguments
object Fit object
uif User interface function or object

Other parameters

Value

Parameter estimates for Theta

foceiControl

foceiControl Control Options for FOCEi

Description

Control Options for FOCEi

Usage

foceiControl(
sigdig = 3,
epsilon = NULL,
maxInnerIterations = 1000,
maxOuterIterations = 5000,
nlgninsim = NULL,
method = c(”liblsoda”, "lsoda”, "dop853"),
transitAbs = NULL,
atol = NULL,
rtol = NULL,
atolSens = NULL,
rtolSens = NULL,
ssAtol = NULL,
ssRtol = NULL,
ssAtolSens = NULL,
ssRtolSens = NULL,
minSS = 1L,
maxSS = 1000L,
maxstepsOde = 500000L,

hmin = oL,

hmax = NA_real_,

hini = o,

maxordn = 12L,

maxords = 5L,

cores,

covsInterpolation = c("locf"”, "linear"”, "nocb"”, "midpoint"),
print = 1L,

printNcol = floor((getOption("width") - 23)/12),

scaleTo = 1,

scaleObjective = 0,

normType = c("rescale2”, "mean"”, "rescale", "std"”, "len”, "constant"),
scaleType = c("nlmixr”, "norm”, "mult”, "multAdd"),

scaleCmax = 1e+05,

scaleCmin = 1e-05,

scaleC = NULL,

scaleC@ = 1e+05,

derivEps = rep(20 * sqrt(.Machine$double.eps), 2),

44

derivMethod = c("switch”, "forward”, "central”),
derivSwitchTol = NULL,

covDerivMethod = c("central”, "forward"),
covMethod = c("r,s"”, "r", "s", ""),

hessEps = (.Machine$double.eps)*(1/3),
eventFD = sqrt(.Machine$double.eps),
eventType = c("gill", "central”, "forward"),
centralDerivEps = rep(20 * sqrt(.Machine$double.eps), 2),
lbfgsLmm = 7L,

lbfgsPgtol = 0,

lbfgsFactr = NULL,

eigen = TRUE,

addPosthoc = TRUE,

diagXform = c("sqgrt”, "log"”, "identity"),
sumProd = FALSE,

optExpression = TRUE,

ci =0.95,

useColor = crayon::has_color(),

boundTol = NULL,

calcTables = TRUE,

noAbort = TRUE,

interaction = TRUE,

cholSEtol = (.Machine$double.eps)*(1/3),
cholAccept = 0.001,

resetEtaP = 0.15,

resetThetaP = 0.05,

resetThetaFinalP = 0.15,
diagOmegaBoundUpper = 5,
diagOmegaBoundLower = 100,

cholSEOpt = FALSE,

cholSECov = FALSE,

fo = FALSE,

covTryHarder = FALSE,

outerOpt = c("nlminb"”, "bobyqga”, "1lbfgsb3c”, "L-BFGS-B”, "mma", "lbfgsbLG", "slsqp”,

"Rvmmin"),
innerOpt = c("nlgn1", "BFGS"),
rhobeg = 0.2,
rhoend = NULL,
npt = NULL,
rel.tol = NULL,
x.tol = NULL,
eval.max = 4000,
iter.max = 2000,
abstol = NULL,
reltol = NULL,
resetHessianAndEta = FALSE,
stateTrim = Inf,
gillK = 1oL,

foceiControl

foceiControl 45

gillStep = 4,
gillFtol = 0,
gillRtol = sqrt(.Machine$double.eps),

gillKcov = 10L,
gillStepCov = 2,
gillFtolCov = 0,
rmatNorm = TRUE,

smatNorm = TRUE,
covGillF = TRUE,
optGillF = TRUE,

covSmall = 1e-05,

adjLik = TRUE,

gradTrim = Inf,

maxOdeRecalc = 5,

odeRecalcFactor = 107(0.5),
gradCalcCentralSmall = 1e-04,
gradCalcCentrallLarge = 10000,

etaNudge = gnorm(1 - 0.05/2)/sqrt(3),
etaNudge2 = gnorm(1 - 0.05/2) x sqrt(3/5),

stiff,
nRetries = 3,
seed = 42,

resetThetaCheckPer = 0.1,

etaMat = NULL,

repeatGillMax = 3,

stickyRecalcN = 5,

gradProgressOfvTime = 10,

addProp = c("combined2”, "combinedl"),
singleOde = TRUE,

badSolveObjfAdj = 100

)
Arguments
sigdig Optimization significant digits. This controls:
* The tolerance of the inner and outer optimization is 10*-sigdig
¢ The tolerance of the ODE solvers is @.5%x10*(-sigdig-2); For the sensi-
tivity equations and steady-state solutions the defaultis @.5*10* (-sigdig-1.5)
(sensitivity changes only applicable for liblsoda)
* The tolerance of the boundary check is 5 x 10 * (-sigdig + 1)
* The significant figures that some tables are rounded to.
Ignored parameters
epsilon Precision of estimate for nlqnl optimization.
maxInnerIterations
Number of iterations for nlqnl optimization.
maxOuterIterations

Maximum number of L-BFGS-B optimization for outer problem.

nigninsim

method

transitAbs
atol

rtol

atolSens

rtolSens

ssAtol

ssRtol

ssAtolSens

ssRtolSens

minSS

maxSS
maxstepsOde
hmin

hmax

hini

maxordn

maxords

foceiControl

Number of function evaluations for nlqnl optimization.
The method for solving ODEs. Currently this supports:
e "liblsoda” thread safe Isoda. This supports parallel thread-based solving,
and ignores user Jacobian specification.

* "lsoda"” — LSODA solver. Does not support parallel thread-based solving,
but allows user Jacobian specification.

* "dop853" —DOP853 solver. Does not support parallel thread-based solving
nor user Jacobain specification

e "indLin" — Solving through inductive linearization. The RxODE dII must
be setup specially to use this solving routine.

boolean indicating if this is a transit compartment absorption

a numeric absolute tolerance (1e-8 by default) used by the ODE solver to deter-
mine if a good solution has been achieved; This is also used in the solved linear
model to check if prior doses do not add anything to the solution.

a numeric relative tolerance (1e-6 by default) used by the ODE solver to deter-
mine if a good solution has been achieved. This is also used in the solved linear
model to check if prior doses do not add anything to the solution.

Sensitivity atol, can be different than atol with liblsoda. This allows a less accu-
rate solve for gradients (if desired)

Sensitivity rtol, can be different than rtol with liblsoda. This allows a less accu-
rate solve for gradients (if desired)

Steady state absolute tolerance (atol) for calculating if steady-state has been
archived.

Steady state relative tolerance (rtol) for calculating if steady-state has been achieved.

Sensitivity absolute tolerance (atol) for calculating if steady state has been achieved
for sensitivity compartments.

Sensitivity relative tolerance (rtol) for calculating if steady state has been achieved
for sensitivity compartments.

Minimum number of iterations for a steady-state dose
Maximum number of iterations for a steady-state dose
Maximum number of steps for ODE solver.

The minimum absolute step size allowed. The default value is 0.

The maximum absolute step size allowed. When hmax=NA (default), uses the
average difference + hmaxSd*sd in times and sampling events. The hmaxSd is a
user specified parameter and which defaults to zero. When hmax=NULL RxODE
uses the maximum difference in times in your sampling and events. The value 0
is equivalent to infinite maximum absolute step size.

The step size to be attempted on the first step. The default value is determined
by the solver (when hini = 0)

The maximum order to be allowed for the nonstiff (Adams) method. The default
is 12. It can be between 1 and 12.

The maximum order to be allowed for the stiff (BDF) method. The default value
is 5. This can be between 1 and 5.

foceiControl

cores

47

Number of cores used in parallel ODE solving. This is equivalent to calling
setRxThreads()

covsInterpolation

print

printNcol

scaleTo

scaleObjective

normType

specifies the interpolation method for time-varying covariates. When solving
ODE:s it often samples times outside the sampling time specified in events.
When this happens, the time varying covariates are interpolated. Currently this
can be:

* "linear” interpolation, which interpolates the covariate by solving the line
between the observed covariates and extrapolating the new covariate value.

e "constant"” — Last observation carried forward (the default).

e "NOCB" — Next Observation Carried Backward. This is the same method
that NONMEM uses.

* "midpoint” Last observation carried forward to midpoint; Next observa-
tion carried backward to midpoint.

Integer representing when the outer step is printed. When this is 0 or do not
print the iterations. 1 is print every function evaluation (default), 5 is print every
5 evaluations.

Number of columns to printout before wrapping parameter estimates/gradient

Scale the initial parameter estimate to this value. By default this is 1. When zero
or below, no scaling is performed.

Scale the initial objective function to this value. By default this is 1.

This is the type of parameter normalization/scaling used to get the scaled initial
values for nlmixr. These are used with scaleType of.

With the exception of rescale?, these come from Feature Scaling. The rescale?2
The rescaling is the same type described in the OptdesX software manual.

In general, all all scaling formula can be described by:

v_scaled = (v_unscaled-C_1)/C_2

Where

The other data normalization approaches follow the following formula
v_scaled = (v_unscaled-C_1)/C_2;

* rescale?2 This scales all parameters from (-1 to 1). The relative differences
between the parameters are preserved with this approach and the constants
are:

C_1 = (max(all unscaled values)+min(all unscaled values))/2
C_2 = (max(all unscaled values) - min(all unscaled values))/2

* rescale or min-max normalization. This rescales all parameters from (0
to 1). As in the rescale?2 the relative differences are preserved. In this
approach:

C_1 = min(all unscaled values)
C_2 = max(all unscaled values) - min(all unscaled values)

* mean or mean normalization. This rescales to center the parameters around
the mean but the parameters are from O to 1. In this approach:
C_1 = mean(all unscaled values)
C_2 = max(all unscaled values) - min(all unscaled values)

https://en.wikipedia.org/wiki/Feature_scaling
http://apmonitor.com/me575/uploads/Main/optimization_book.pdf

foceiControl

* std or standardization. This standardizes by the mean and standard devia-
tion. In this approach:
C_1 = mean(all unscaled values)
C_2 = sd(all unscaled values)

* len or unit length scaling. This scales the parameters to the unit length. For
this approach we use the Euclidean length, that is:
C_1=0
C_2=sqrt(v_1"2 +v_2"2 + ... + v_n"2)

* constant which does not perform data normalization. That is

C_1=0
Cc2=1
scaleType The scaling scheme for nlmixr. The supported types are:

* nlmixr In this approach the scaling is performed by the following equation:
v_scaled = (v_current - v_init)/scaleC[i] + scaleTo
The scaleTo parameter is specified by the normType, and the scales are
specified by scaleC.

* norm This approach uses the simple scaling provided by the normType ar-
gument.

* mult This approach does not use the data normalization provided by normType,
but rather uses multiplicative scaling to a constant provided by the scaleTo
argument.

In this case:
v_scaled = v_current/v_init*scaleTo

* multAdd This approach changes the scaling based on the parameter being
specified. If a parameter is defined in an exponential block (ie exp(theta)),
then it is scaled on a linearly, that is:
v_scaled = (v_current-v_init) + scaleTo
Otherwise the parameter is scaled multiplicatively.
v_scaled = v_current/v_init*scaleTo

scaleCmax Maximum value of the scaleC to prevent overflow.
scaleCmin Minimum value of the scaleC to prevent underflow.
scaleC The scaling constant used with scaleType=nlmixr. When not specified, it is

based on the type of parameter that is estimated. The idea is to keep the deriva-
tives similar on a log scale to have similar gradient sizes. Hence parameters like
log(exp(theta)) would have a scaling factor of 1 and log(theta) would have a scal-
ing factor of ini_value (to scale by 1/value; ie d/dt(log(ini_value)) = 1/ini_value
or scaleC=ini_value)

* For parameters in an exponential (ie exp(theta)) or parameters specifying

powers, boxCox or yeoJohnson transformations , this is 1.

* For additive, proportional, lognormal error structures, these are given by

0.5*abs(initial_estimate)

* Factorials are scaled by abs(1/digamma(inital_estimate+1))

» parameters in a log scale (ie log(theta)) are transformed by log(abs(initial_estimate))*abs(initial_estir
These parameter scaling coefficients are chose to try to keep similar slopes
among parameters. That is they all follow the slopes approximately on a log-
scale.

foceiControl 49

While these are chosen in a logical manner, they may not always apply. You can
specify each parameters scaling factor by this parameter if you wish.

scaleCo Number to adjust the scaling factor by if the initial gradient is zero.

derivEps Forward difference tolerances, which is a vector of relative difference and abso-
lute difference. The central/forward difference step size h is calculated as:
h =abs(x)*derivEps[1] + derivEps[2]

derivMethod indicates the method for calculating derivatives of the outer problem. Cur-
rently supports "switch", "central" and "forward" difference methods. Switch
starts with forward differences. This will switch to central differences when

abs(delta(OFV)) <= derivSwitchTol and switch back to forward differences when
abs(delta(OFV)) > derivSwitchTol.

derivSwitchTol The tolerance to switch forward to central differences.

covDerivMethod indicates the method for calculating the derivatives while calculating the covari-
ance components (Hessian and S).

covMethod Method for calculating covariance. In this discussion, R is the Hessian matrix
of the objective function. The S matrix is the sum of individual gradient cross-
product (evaluated at the individual empirical Bayes estimates).

¢ "r,s" Uses the sandwich matrix to calculate the covariance, that is: solve(R)
%*% S %*% solve(R)

e "r" Uses the Hessian matrix to calculate the covariance as 2 %*% solve(R)

* "s" Uses the cross-product matrix to calculate the covariance as 4 %*% solve(S)

* "" Does not calculate the covariance step.

hessEps is a double value representing the epsilon for the Hessian calculation.

eventFD Finite difference step for forward or central difference estimation of event-based
gradients

eventType Event gradient type for dosing events; Can be "gill", "central" or "forward"

centralDerivEps

Central difference tolerances. This is a numeric vector of relative difference and
absolute difference. The central/forward difference step size h is calculated as:

h = abs(x)*derivEps[1] + derivEps[2]
lbfgsLmm An integer giving the number of BFGS updates retained in the "L-BFGS-B"
method, It defaults to 7.
lbfgsPgtol is a double precision variable.
On entry pgtol >= 0 is specified by the user. The iteration will stop when:
max(\| projg_i\|i=1,...,n) <=1lbfgsPgtol
where pg_1i is the ith component of the projected gradient.
On exit pgtol is unchanged. This defaults to zero, when the check is suppressed.
lbfgsFactr Controls the convergence of the "L-BFGS-B" method. Convergence occurs
when the reduction in the objective is within this factor of the machine toler-
ance. Default is 1e10, which gives a tolerance of about 2e-6, approximately

4 sigdigs. You can check your exact tolerance by multiplying this value by
.Machine$double.eps

50

foceiControl

eigen A boolean indicating if eigenvectors are calculated to include a condition num-
ber calculation.
addPosthoc Boolean indicating if posthoc parameters are added to the table output.
diagXform This is the transformation used on the diagonal of the chol(solve(omega)).
This matrix and values are the parameters estimated in FOCEi. The possibilities
are:
* sqgrt Estimates the sqrt of the diagonal elements of chol(solve(omega)).
This is the default method.
* log Estimates the log of the diagonal elements of chol(solve(omega))
e identity Estimates the diagonal elements without any transformations
sumProd Is a boolean indicating if the model should change multiplication to high pre-
cision multiplication and sums to high precision sums using the PreciseSums
package. By default this is FALSE.
optExpression Optimize the RxODE expression to speed up calculation. By default this is
turned on.
ci Confidence level for some tables. By default this is 0.95 or 95% confidence.
useColor Boolean indicating if focei can use ASCII color codes
boundTol Tolerance for boundary issues.
calcTables This boolean is to determine if the foceiFit will calculate tables. By default this
is TRUE
noAbort Boolean to indicate if you should abort the FOCEi evaluation if it runs into
troubles. (default TRUE)
interaction Boolean indicate FOCEi should be used (TRUE) instead of FOCE (FALSE)
cholSEtol tolerance for Generalized Cholesky Decomposition. Defaults to suggested (.Ma-
chine$double.eps)(1/3)
cholAccept Tolerance to accept a Generalized Cholesky Decomposition for a R or S matrix.
resetEtaP represents the p-value for reseting the individual ETA to 0 during optimization
(instead of the saved value). The two test statistics used in the z-test are either
chol(omega™-1) %*% eta or eta/sd(allEtas). A p-value of 0 indicates the ETAs
never reset. A p-value of 1 indicates the ETAs always reset.
resetThetaP represents the p-value for reseting the population mu-referenced THETA param-
eters based on ETA drift during optimization, and resetting the optimization. A
p-value of O indicates the THETASs never reset. A p-value of 1 indicates the
THETASs always reset and is not allowed. The theta reset is checked at the begin-
ning and when nearing a local minima. The percent change in objective function
where a theta reset check is initiated is controlled in resetThetaCheckPer.
resetThetaFinalP
represents the p-value for reseting the population mu-referenced THETA param-
eters based on ETA drift during optimization, and resetting the optimization one
final time.
diagOmegaBoundUpper

This represents the upper bound of the diagonal omega matrix. The upper bound
is given by diag(omega)*diagOmegaBoundUpper. If diagOmegaBoundUpper is
1, there is no upper bound on Omega.

foceiControl 51

diagOmegaBoundLower
This represents the lower bound of the diagonal omega matrix. The lower bound
is given by diag(omega)/diagOmegaBoundUpper. If diagOmegaBoundLower is
1, there is no lower bound on Omega.

cholSEOpt Boolean indicating if the generalized Cholesky should be used while optimizing.

cholSECov Boolean indicating if the generalized Cholesky should be used while calculating
the Covariance Matrix.

fo is a boolean indicating if this is a FO approximation routine.

covTryHarder If the R matrix is non-positive definite and cannot be corrected to be non-positive
definite try estimating the Hessian on the unscaled parameter space.

outerOpt optimization method for the outer problem
innerOpt optimization method for the inner problem (not implemented yet.)
rhobeg Beginning change in parameters for bobyqa algorithm (trust region). By default

this is 0.2 or 20 parameters when the parameters are scaled to 1. rhobeg and
rhoend must be set to the initial and final values of a trust region radius, so both
must be positive with 0 < rhoend < rhobeg. Typically rhobeg should be about
one tenth of the greatest expected change to a variable. Note also that smallest
difference abs(upper-lower) should be greater than or equal to rhobeg*2. If this
is not the case then rhobeg will be adjusted.

rhoend The smallest value of the trust region radius that is allowed. If not defined, then
107 (-sigdig-1) will be used.
npt The number of points used to approximate the objective function via a quadratic

approximation for bobyqa. The value of npt must be in the interval [n+2,(n+1)(n+2)/2]
where n is the number of parameters in par. Choices that exceed 2*n+1 are not
recommended. If not defined, it will be set to 2*n + 1

rel.tol Relative tolerance before nlminb stops.

x.tol X tolerance for nlmixr optimizers

eval.max Number of maximum evaluations of the objective function
iter.max Maximum number of iterations allowed.

abstol Absolute tolerance for nlmixr optimizer

reltol tolerance for nlmixr

resetHessianAndEta

is a boolean representing if the individual Hessian is reset when ETAs are reset
using the option resetEtaP.

stateTrim Trim state amounts/concentrations to this value.

gillK The total number of possible steps to determine the optimal forward/central dif-
ference step size per parameter (by the Gill 1983 method). If 0, no optimal step
size is determined. Otherwise this is the optimal step size determined.

gillStep When looking for the optimal forward difference step size, this is This is the
step size to increase the initial estimate by. So each iteration the new step size =
(prior step size)*gillStep

gillFtol The gillFtol is the gradient error tolerance that is acceptable before issuing a
warning/error about the gradient estimates.

52

gillRtol
gillKcov

gillStepCov

gillFtolCov

rmatNorm

smatNorm

covGillF

optGillF

covSmall

adjLik

gradTrim

maxOdeRecalc

odeRecalcFactor

foceiControl

The relative tolerance used for Gill 1983 determination of optimal step size.

The total number of possible steps to determine the optimal forward/central dif-
ference step size per parameter (by the Gill 1983 method) during the covariance
step. If 0, no optimal step size is determined. Otherwise this is the optimal step
size determined.

When looking for the optimal forward difference step size, this is This is the step
size to increase the initial estimate by. So each iteration during the covariance
step is equal to the new step size = (prior step size)*gillStepCov

The gillFtol is the gradient error tolerance that is acceptable before issuing a
warning/error about the gradient estimates during the covariance step.

A parameter to normalize gradient step size by the parameter value during the
calculation of the R matrix

A parameter to normalize gradient step size by the parameter value during the
calculation of the S matrix

Use the Gill calculated optimal Forward difference step size for the instead of
the central difference step size during the central difference gradient calculation.

Use the Gill calculated optimal Forward difference step size for the instead of
the central difference step size during the central differences for optimization.

The covSmall is the small number to compare covariance numbers before reject-
ing an estimate of the covariance as the final estimate (when comparing sand-
wich vs R/S matrix estimates of the covariance). This number controls how
small the variance is before the covariance matrix is rejected.

In nlmixr, the objective function matches NONMEM’s objective function, which
removes a 2*pi constant from the likelihood calculation. If this is TRUE, the
likelihood function is adjusted by this 2*pi factor. When adjusted this number
more closely matches the likelihood approximations of nlme, and SAS approx-
imations. Regardless of if this is turned on or off the objective function matches
NONMEM'’s objective function.

The parameter to adjust the gradient to if the Igradientl is very large.

Maximum number of times to reduce the ODE tolerances and try to resolve the
system if there was a bad ODE solve.

The factor to increase the rtol/atol with bad ODE solving.

gradCalcCentralSmall

A small number that represents the value where Igradl < gradCalcCentralSmall
where forward differences switch to central differences.

gradCalcCentrallLarge

etaNudge

A large number that represents the value where Igradl > gradCalcCentralLarge
where forward differences switch to central differences.

By default initial ETA estimates start at zero; Sometimes this doesn’t optimize
appropriately. If this value is non-zero, when the nlgnl optimization didn’t
perform appropriately, reset the Hessian, and nudge the ETA up by this value; If
the ETA still doesn’t move, nudge the ETA down by this value. By default this
value is qnorm(1-0.05/2)*1/sqrt(3), the first of the Gauss Quadrature numbers

foceiControl

etaNudge2

stiff

nRetries

seed

53

times by the 0.95% normal region. If this is not successful try the second eta
nudge number (below). If +-etaNudge?2 is not successful, then assign to zero
and do not optimize any longer

This is the second eta nudge. By default it is gnorm(1-0.05/2)*sqrt(3/5), which
is the n=3 quadrature point (excluding zero) times by the 0.95% normal region

a logical (TRUE by default) indicating whether the ODE system is stiff or not.

For stiff ODE systems (‘stiff = TRUE‘), ‘RxODE‘ uses the

LSODA (Livermore Solver for Ordinary Differential Equations)
Fortran package, which implements an automatic method switching
for stiff and non-stiff problems along the integration
interval, authored by Hindmarsh and Petzold (2003).

For non-stiff systems (‘stiff = FALSE‘), ‘RxODE‘ uses
DOP853, an explicit Runge-Kutta method of order 8(5, 3) of
Dormand and Prince as implemented in C by Hairer and Wanner
(1993).

If stiff is not specified, the ‘method‘ argument is used instead.

If FOCEi doesn’t fit with the current parameter estimates, randomly sample new
parameter estimates and restart the problem. This is similar to ’PsN” resampling.

seed for random number generator

resetThetaCheckPer

etaMat

repeatGillMax

stickyRecalcN

represents objective function % percentage below which resetThetaP is checked.
Eta matrix for initial estimates or final estimates of the ETAs.

If the tolerances were reduced when calculating the initial Gill differences, the
Gill difference is repeated up to a maximum number of times defined by this
parameter.

The number of bad ODE solves before reducing the atol/rtol for the rest of the
problem.

gradProgressOfvTime

addProp

singleOde

badSolveObjfAdj

This is the time for a single objective function evaluation (in seconds) to start
progress bars on gradient evaluations

one of "combined1" and "combined2"; These are the two forms of additive+proportional
errors supported by monolix/nonmem:

combined!: transform(y)=transform(f)+(a+b*f"c)*eps

combined2: transform(y)=transform(f)+(a"2+b" 2*{(2c))*eps

This option allows a single ode model to include the PK parameter information
instead of splitting it into a function and a RxODE model

The objective function adjustment when the ODE system cannot be solved. It is
based on each individual bad solve.

54 foceiFit

Details

Note this uses the R’s L-BFGS-B in optim for the outer problem and the BFGS n1gn1 with that
allows restoring the prior individual Hessian (for faster optimization speed).

However the inner problem is not scaled. Since most eta estimates start near zero, scaling for these
parameters do not make sense.

This process of scaling can fix some ill conditioning for the unscaled problem. The covariance step
is performed on the unscaled problem, so the condition number of that matrix may not be reflective
of the scaled problem’s condition-number.

Value

The control object that changes the options for the FOCEi family of estimation methods

Author(s)
Matthew L. Fidler

See Also
optim
nigni

rxSolve

foceiFit FOCEi fit

Description

FOCE: fit

Usage

foceiFit(data, ...)
focei.fit(data, ...)

S3 method for class 'data.frame'
foceiFit(data, ...)

S3 method for class 'data.frame@'
foceiFit(

data,

inits,

PKpars,

model = NULL,

pred = NULL,

foceiFit 55

err = NULL,

lower = -Inf,
upper = Inf,
fixed = NULL,

skipCov = NULL,

control = foceiControl(),
thetaNames = NULL,
etaNames = NULL,

etaMat = NULL,

’

env = NULL,

keep = NULL,
drop = NULL
)
Arguments

data Data to fit; Needs to be RXODE compatible and have DV, AMT, EVID in the
dataset.
Ignored parameters

inits Initialization list

PKpars Pk Parameters function

model The RxODE model to use

pred The Prediction function

err The Error function

lower Lower bounds

upper Upper Bounds

fixed Boolean vector indicating what parameters should be fixed.

skipCov Boolean vector indicating what parameters should be fixed when calculating
covariances

control FOCE:i options Control list. See foceiControl

thetaNames Names of the thetas to be used in the final object.

etaNames Eta names to be used in the final object.

etaMat Eta matrix for initial estimates or final estimates of the ETAs.

env An environment used to build the FOCEi or nlmixr object.

keep Columns to keep from either the input dataset. For the input dataset, if any
records are added to the data LOCF (Last Observation Carried forward) impu-
tation is performed.

drop Columns to drop from the output

Value

A focei fit or nlmixr fit object
FOCE: fit object

56 foceiFit

Author(s)

Matthew L. Fidler and Wenping Wang

Examples

Comparison to Wang2007 objective functions

mypar2 = function ()

{
k = thetal[1] x exp(etal1]);

3

mod <- RxODE({
ipre = 10 * exp(-k * t)
»

pred <- function() ipre

errProp <- function(){
return(prop(0.1))
3

inits <- list(THTA=c(0.5),
OMGA=1ist (ETA[1] ~ 0.04));

w7 <- Wang2007

w7$DV <- w7$Y
w7$EVID <- 0
W7$AMT <- @

Wang2007 prop error OBF 39.458 for NONMEM FOCEi, nlmixr matches.
fitPi <- foceiFit(w7, inits, mypar2,mod,pred,errProp,
control=foceiControl (maxOuterIterations=0,covMethod=""))

print(fitPi$objective)

Wang2007 prop error OBF 39.207 for NONMEM FOCE; nlmixr matches.

fitP <- foceiFit(w7, inits, mypar2,mod,pred,errProp,
control=foceiControl (maxOuterIterations=0,covMethod="",
interaction=FALSE))

print(fitP$objective)

Wang 2007 prop error OBF 39.213 for NONMEM FO; nlmixr matches

fitPfo <- foceiFit(w7, inits, mypar2,mod,pred,errProp,
control=foceiControl(maxOuterIterations=0,covMethod="",

fo=TRUE))

print(fitPfo$objective)

foceiFit 57

Note if you have the etas you can evaluate the likelihood
of an arbitrary model. It doesn't have to be solved by
FOCEi

etaMat <- matrix(fitPis$etal,-11)

fitP2 <- foceiFit(w7, inits, mypar2,mod,pred,errProp, etaMat=etaMat,
control=foceiControl (maxOuterIterations=0,maxInnerIterations=0,
covMethod=""))

errAdd <- function(){
return(add(@.1))
3

Wang2007 add error of -2.059 for NONMEM FOCE=NONMEM FOCEi;

nlmixr matches.

fitA <- foceiFit(w7, inits, mypar2,mod,pred,errAdd,
control=foceiControl (maxOuterIterations=0,covMethod=""))

Wang2007 add error of ©.026 for NONMEM FO; nlmixr matches

fitAfo <- foceiFit(w7, inits, mypar2,mod,pred,errAdd,
control=foceiControl (maxOuterIterations=0,fo=TRUE, covMethod=""))

Extending Wang2007 to add+prop with same dataset
errAddProp <- function(){

return(add(0.1) + prop(0.1));
3

fitAP <- foceiFit(w7, inits, mypar2,mod,pred,errAddProp,
control=foceiControl (maxOuterIterations=0,covMethod=""))

Checking lognormal
errLogn <- function(){

return(lnorm(@.1));
3

First run the fit with the nlmixr lnorm error

fitLN <- foceiFit(w7, inits, mypar2,mod,pred,errLogn,
control=foceiControl(maxOuterIterations=0,covMethod=""))

Next run on the log-transformed space

w72 <- w7; w723DV <- log(w72$DV)

predL <- function() log(ipre)

fitLN2 <- foceiFit(w72, inits, mypar2,mod,predL,errAdd,
control=foceiControl (maxOuterIterations=0,covMethod=""))

58

Correct the fitLN2's objective function to be on the normal scale
print(fitLN2$objective + 2xsum(w72$DV))

Note the objective function of the lognormal error is on the normal scale.
print(fitLN$objective)

mypar2 <- function ()

{
ka <- exp(THETA[1] + ETA[1])
cl <- exp(THETA[2] + ETA[2])
v <- exp(THETA[3] + ETA[31)
3

mod <- RxODE({
d/dt(depot) <- -ka x depot
d/dt(center) <- ka * depot - cl / v * center
cp <- center / v

»
pred <- function() cp

err <- function(){
return(add(@.1))
}

inits <- list(THTA=c(@.5, -3.2, -1),
OMGA=1ist(ETA[1] ~ 1, ETA[2] ~ 2, ETA[3] ~ 1));

Remove @ concentrations (should be 1lloq)

d <- theo_sd[theo_sd$EVID==0 & theo_sd$DV>0 | theo_sd$EVID>0,];

fitl <- foceiFit(d, inits, mypar2,mod,pred,err)

you can also fit lognormal data with the objective function on the same scale

errl <- function(){
return(lnorm(@.1))
3

fit2 <- foceiFit(d, inits, mypar2,mod,pred,errl)
You can also use the standard nlmixr functions to run FOCEi

library(data.table);

datr <- Infusion_1CPT;
datr$EVID<-ifelse(datr$EVID==1,10101,datr$EVID)
datr<-data.table(datr)

datr<-datr[EVID!=2]

datro<-copy(datr)
datIV<-datr[AMT>Q][,TIME:=TIME+AMT/RATE][, AMT:=-1xAMT]
datr<-rbind(datr,datIV)

foceiFit

foceiFit 59

one.compartment.IV.model <- function(){

ini({ # Where initial conditions/variables are specified

'<-' or '=' defines population parameters
Simple numeric expressions are supported
1C1 <- 1.6 #log Cl1 (L/hr)

1vc <- 4.5 #log V (L)

Bounds may be specified by c(lower, est, upper), like NONMEM:
Residuals errors are assumed to be population parameters
prop.sd <- 0.3

Between subject variability estimates are specified by
Semicolons are optional

eta.Vc ~ 0.1 #IIV V

eta.Cl ~ 0.1; #IIV Cl

D

model ({ # Where the model is specified

The model uses the ini-defined variable names

Vc <- exp(lVc + eta.Vc)

Cl <- exp(1Cl + eta.Cl)

RxODE-style differential equations are supported

d / dt(centr) = -(Cl / Vc) * centr;

Concentration is calculated

cp = centr / Vc;

And is assumed to follow proportional error estimated by prop.err
cp ~ prop(prop.sd)

b

fitIVp <- nlmixr(one.compartment.IV.model, datr, "focei");

You can also use the Box-Cox Transform of both sides with
proportional error (Donse 2016)

one.compartment.IV.model <- function(){
ini({ # Where initial conditions/variables are specified

»

'<-' or '=' defines population parameters
Simple numeric expressions are supported
1C1 <- 1.6 #log C1 (L/hr)

1Vc <- 4.5 #log V (L)

Bounds may be specified by c(lower, est, upper), like NONMEM:
Residuals errors are assumed to be population parameters
prop.err <- 0.3

add.err <- 0.01

lambda <- c(-2, 1, 2)

zeta <- ¢c(0.1, 1, 10)

Between subject variability estimates are specified by '~'
Semicolons are optional

eta.Vc ~ 0.1 #IIV V

eta.Cl ~ 0.1; #IIV Cl

model ({ ## Where the model is specified

The model uses the ini-defined variable names
Vc <- exp(lVc + eta.Vc)
Cl <- exp(lCl + eta.Cl)

60

foceiFit

RxODE-style differential equations are supported
d / dt(centr) = -(Cl / Vc) * centr;
Concentration is calculated
cp = centr / Vc;
And is assumed to follow proportional error estimated by prop.err
cp ~ pow(prop.err, zeta) + add(add.err) + boxCox(lambda)
This is proportional to the untransformed f; You can use the transformed f by using powT ()

3
fitIVtbs <- nlmixr(one.compartment.IV.model, datr, "focei”)

If you want to use a variance normalizing distribution with

negative/positive data you can use the Yeo-Johnson transformation
as well. This is implemented by the yeoJohnson(lambda) function.
one.compartment.IV.model <- function(){

ini({ # Where initial conditions/variables are specified

'<-' or '=' defines population parameters
Simple numeric expressions are supported
1C1 <- 1.6 #log C1 (L/hr)

1Vc <- 4.5 #log V (L)
Bounds may be specified by c(lower, est, upper), like NONMEM:
Residuals errors are assumed to be population parameters
prop.err <- 0.3
delta <- c(0.1, 1, 10)
add.err <- 0.01
lambda <- c(-2, 1, 2)
Between subject variability estimates are specified by '~'
Semicolons are optional
eta.Vc ~ 0.1 #IIV V
eta.Cl ~ 0.1; #IIV Cl
»
model ({ ## Where the model is specified
The model uses the ini-defined variable names
Vc <- exp(lVc + eta.Vc)
Cl <- exp(1Cl + eta.Cl)
RxODE-style differential equations are supported
d / dt(centr) = -(C1 / Vc) * centr;
Concentration is calculated
cp = centr / Vc;
And is assumed to follow proportional error estimated by prop.err
cp ~ pow(prop.err, delta) + add(add.err) + yeoJohnson(lambda)
DY

fitIVyj <- nlmixr(one.compartment.IV.model, datr, "focei")

In addition to using L-BFGS-B for FOCEi (outer problem) you may
use other optimizers. An example is below

one.cmt <- function() {
ini({
tka <- .44 # log Ka
tcl <- log(c(@, 2.7, 100)) # log Cl
tv <- 3.45 # log V

forwardSearch 61

eta.ka ~ 0.6
eta.cl ~ 0.3
eta.v ~ 0.1
add.err <- 0.7

1))

model ({
ka <- exp(tka + eta.ka)
cl <- exp(tcl + eta.cl)
v <- exp(tv + eta.v)
linCmt() ~ add(add.err)

D)

fit <- nlmixr(one.cmt, theo_sd, "focei”, foceiControl(outerOpt="bobyga"))

You may also make an arbitrary optimizer work by adding a wrapper function:

newuoa@ <- function(par, fn, gr, lower = -Inf, upper = Inf, control = list(), ...){
The function requires par, fn, gr, lower, upper and control
##

The par, fn, gr, lower and upper and sent to the function from nlmixr's focei.
The control is the foceiControl list

#

The following code modifies the list control list for no warnings.

.ctl <- control;

if (is.null(.ctl$npt)) .ctl$npt <- length(par) * 2 + 1

nlmixr will print information this is to suppress the printing from the

optimizer

.ctl$iprint <- OL;

.ctl <~ .ctl[names(.ctl) %in% c("npt”, "rhobeg", "rhoend”, "iprint”, "maxfun”)];
This does not require gradient and is an unbounded optimization:

.ret <- minga::newuoa(par, fn, control=.ctl);

The return statement must be a list with:

#i - x for the final parameter message
#it - message for a minimization message
- convergence for a convergence code

.ret$x <- .ret$par;

.ret$message <- .ret$msg;

.ret$convergence <- .ret$ierr

you can access the final list from the optimization by fit$optReturn
return(.ret);

fit <- nlmixr(one.cmt, theo_sd, "focei”, foceiControl(outerOpt=newuoad))

forwardSearch Forward covariate search

62 frwd_selection

Description

Forward covariate search

Usage

forwardSearch(covIinfo, fit, pVal = 0.05, outputDir, restart = FALSE)

Arguments
covInfo a list containing information about each variable-covariate pair
fit an nlmixr ’fit” object
pval p-value that should be used for selecting covariates in the forward search
outputDir the name of the output directory that stores the covariate search result
restart a boolean that controls if the search should be restarted; default is FALSE
Value

returns the updated ’fit’ object at the end of the forward search and a table of information for all the
covaraites tested

Author(s)
Vipul Mann, Matthew Fidler

frwd_selection Forward covariate selection for nlme-base non-linear mixed effect
models

Description

Implements forward covariate selection for nlme-based non-linear mixed effect models

Usage

frwd_selection(base, cv, dat, cutoff = 0.05)

Arguments
base base model
cv a list of candidate covariate to model parameters
dat model data
cutoff significance level
Value

an nlme object of the final model

gauss.quad

Examples

dat <- theo_md
dat$LOGWT <- log(dat$wT)
dat$TG <- (dat$ID < 6) + @ # dummy covariate

specs <- list(
fixed = list(lKA = 1KA ~ 1, 1CL = 1CL ~ 1, 1V = 1V ~ 1),
random = pdDiag(lKA + 1CL ~ 1),
start = c(0.5, -3.2, -1)
)
fitd® <- nlme_lin_cmpt(dat, par_model = specs, ncmt = 1)
cv <- list(ICL = c("WT", "TG"), 1V = c("WT"))
fit <- frwd_selection(fito@, cv, dat)
print(summary(fit))

gauss.quad Sets nodes and weights of Gauss-Hermite quadrature

Description

Sets nodes and weights of Gauss-Hermite quadrature

Usage

gauss.quad(n)

Arguments

n number of nodes

Value

a list of nodes and weights of Gauss-Hermite quadrature

Examples

gauss.quad(5)

64 gnlmm

getOMEGA Calculate gnlmm variance-covariance matrix of random effects

Description

Calculate variance-covariance matrix of random effects after a gnlmm() fit

Usage
getOMEGA(fit)

Arguments

fit a gnlmm fit object

Value

variance-covariance matrix of random effects

gnlmm Fit a generalized nonlinear mixed-effect model

Description

Fit a generalized nonlinear mixed-effect model by adaptive Gaussian quadrature (AQD)

Usage

gnlmm(
11ik,
data,
inits,
syspar = NULL,
system = NULL,
diag.xform = c("sqrt"”, "log", "identity"),

L

control = list()
)

gnlmm2(
11ik,
data,
inits,
syspar = NULL,
system = NULL,
diag.xform = c("sqrt"”, "log", "identity"),

gnlmm

L

65

control = list()

)

Arguments
11ik
data
inits
syspar
system

diag.xform

control

Details

log-likelihood function

data to be fitted

initial values

function: calculation of PK parameters

an optional (compiled) RxODE object

transformation to diagonal elements of OMEGA during fitting
additional options

additional optimization options

Fit a generalized nonlinear mixed-effect model by adaptive Gaussian quadrature (AGQ)

Value

gnlmm fit object

Author(s)

Wenping Wang

Examples

if (FALSE) {

11ik <- function() {
1p <- THETAL1] * x1 + THETA[2] * x2 + (x1 + x2 * THETA[3]) * ETA[1]

p <- pnorm(1lp)

dbinom(x, m, p, log = TRUE)

}

inits <- list(THTA = c(1, 1, 1), OMGA = list(ETAL1] ~ 1))

try(gnlmm(1llik, rats, inits, control = list(nAQD = 1)))

11ik <- function() {

if (group

AR

1p <- THETA[1] + THETA[2] * logtstd + ETA[1]

} else {

lp <- THETA[3] + THETA[4] % logtstd + ETA[1]

3

lam <- exp(1lp)

dpois(y, lam, log = TRUE)

66

inits <- list(THTA = c(1, 1, 1, 1), OMGA = list(ETA[1] ~ 1))

fit <- try(gnlmm(1lik, pump, inits,
control = list(
reltol.outer = le-4,

optim.outer = "nmsimplex”,
nAQD = 5
)
)
ode <- "

d/dt(depot) =-KAxdepot;
d/dt(centr) = KAxdepot - KExcentr;

n

sys1 <- RxODE(ode)

pars <- function() {
CL <- exp(THETA[1] + ETA[1]) # ; if (CL>100) CL=100
KA <- exp(THETA[2] + ETA[2]) # ; if (KA>20) KA=20
KE <- exp(THETAL31)
V <- CL / KE
sig2 <- exp(THETA[41)
3
11ik <- function() {
pred <- centr / V
dnorm(DV, pred, sd = sqrt(sig2), log = TRUE)
3
inits <- list(THTA = c(-3.22, 0.47, -2.45, 0))
inits$OMGA <- list(ETA[1]+ETA[2]~c(.027, .01, .37))

theo <- theo_md

fit <- try(gnlmm(1llik, theo, inits, pars, sysi,
control = list(trace = TRUE, nAQD = 1)
)

fit2 <- try(gnlmm2(1lik, theo, inits, pars, sysl1,
control = list(trace = TRUE, nAQD = 1)
)

if (inherits(fit, "gnlmm.fit")) {

cv <- calcCov(fit)

cbind(fit$par[fit$nsplt == 1], sqrt(diag(cv)))
3

3

gof Plot of a non-population dynamic model fit

Infusion_1CPT 67

Description

Plot of a non-population dynamic model fit

Usage
gof(x, ...)

S3 method for class 'dyn.ID'

plot(x, ...)
Arguments
X a dynamodel fit object
additional arguments
Value

nothing, displays a goodness of fit plot for dynmodely

Infusion_1CPT Infusion_ICPT — 1 Compartment Model Simulated Data from ACOP
2016

Description

This is a simulated dataset from the ACOP 2016 poster. All Datasets were simulated with the
following methods.

Usage
Infusion_1CPT

Format

A data frame with 7,920 rows and 14 columns

ID Simulated Subject ID

TIME Simulated Time

DV Simulated Dependent Variable

LNDV Simulated log(Dependent Variable)
MDYV Missing DV data item

AMT Dosing AMT

EVID NONMEM Event ID

DOSE Dose

V Individual Simulated Volume

68 ini

CL Individual Clearance
SS Steady State

II Interdose Interval

SD Single Dose Flag
RATE NONMEM Rate
CMT Compartment

Details

Richly sampled profiles were simulated for 4 different dose levels (10, 30, 60 and 120 mg) of 30
subjects each as single dose (over 72h), multiple dose (4 daily doses), single and multiple dose
combined, and steady state dosing, for a range of test models: 1- and 2-compartment disposition,
with and without 1st order absorption, with either linear or Michaelis-Menten (MM) clearance(MM
without steady state dosing). This provided a total of 42 test cases. All inter-individual variabilities
(ITVs) were set at 30 were the same for all models. A similar set of models was previously used to
compare NONMEM and Monolix4. Estimates of population parameters, standard errors for fixed-
effect parameters, and run times were compared both for closed-form solutions and using ODE:s.
Additionally, a sparse data estimation situation was investigated where 500 datasets of 600 subjects
each (150 per dose) were generated consisting of 4 random time point samples in 24 hours per
subject, using a first-order absorption, 1-compartment disposition, linear elimination model.

Source
Schoemaker R, Xiong Y, Wilkins J, Laveille C, Wang W. nlmixr: an open-source package for
pharmacometric modelling in R. ACOP 2016

See Also

Other nlmixr datasets: Bolus_1CPTMM, Bolus_1CPT, Bolus_2CPTMM, Bolus_2CPT, Oral_1CPT, Wang2007,
pheno_sd, rats, theo_md, theo_sd, warfarin

ini nlmixr ini block handling

Description
The ini block controls initial conditions for ’theta’ (fixed effects), ’omega’ (random effects), and
’sigma’ (residual error) elements of the model.

Usage

ini(ini, ...)

Arguments

ini Ini block or nlmixr model object

Other arguments parsed by nlmixr

ini 69
Details

’theta’ and ’sigma’ can be set using either <- or = such as tvCL <-1 or equivalently tvCL = 1.
’omega’ can be set with a ~.

Parameters can be named or unnamed (though named parameters are preferred). A named parameter
is set using the name on the left of the assignment while unnamed parameters are set without an
assignment operator. tvCL <-1 would set a named parameter of tvCL to 1. Unnamed parameters
are set using just the value, such as 1.

For some estimation methods, lower and upper bounds can be set for "theta’ and ’sigma’ values. To
set a lower and/or upper bound, use a vector of values. The vector is c(lower,estimate,upper).
The vector may be given with just the estimate (c(estimate)), the lower bound and estimate
(c(lower,estimate)), or all three (c(lower,estimate,upper)). To set an estimate and upper
bound without a lower bound, set the lower bound to -Inf, c(-Inf,estimate,upper). When an
estimation method does not support bounds, the bounds will be ignored with a warning.

’omega’ values can be set as a single value or as the values of a lower-triangular matrix. The values
may be set as either a variance-covariance matrix (the default) or as a correlation matrix for the
off-diagonals with the standard deviations on the diagonals. Names may be set on the left side
of the ~. To set a variance-covariance matrix with variance values of 2 and 3 and a covariance
of -2.5 use ~c(2,2.5,3). To set the same matrix with names of iivKa and iivCL, use iivKa
+1iivCL~c(2,2.5,3). To set a correlation matrix with standard deviations on the diagonal, use
cor() like iivKa + iivCL~cor(2,-0.5, 3).

Values may be fixed (and therefore not estimated) using either the name fixed at the end of the
assignment or by calling fixed() as a function for the value to fix. For ’theta’ and ’sigma’, either
the estimate or the full definition (including lower and upper bounds) may be included in the fixed
setting. For example, the following are all effectively equivalent to set a ’theta’ or ’sigma’ to a fixed
value (because the lower and upper bounds are ignored for a fixed value): tvCL <-fixed(1), tvCL
<-fixed(@,1), tvCL <-fixed(0,1,2), tvCL <-c(0,fixed(1),2),or tvCL <-c(0@,1,fixed). For
’omega’ assignment, the full block or none of the block must be set as fixed. Examples of set-
ting an ’omega’ value as fixed are: iivKa~fixed(1), iivKa + iivCL~fixed(1,2,3), or iivKa +
iivCL~c(1,2,3,fixed). Anywhere that fixed is used, FIX, FIXED, or fix may be used equiva-
lently.

For any value, standard mathematical operators or functions may be used to define the value. For
example, exp(2) and 24*30 may be used to define a value anywhere that a number can be used
(e.g. lower bound, estimate, upper bound, variance, etc.).

Values may be labeled using the label() function after the assignment. Labels are are used to
make reporting easier by giving a human-readable description of the parameter, but the labels do
not have any effect on estimation. The typical way to set a label so that the parameter tvCL has a
label of "Typical Value of Clearance (L/hr)" is tvCL <-1; label("Typical Value of Clearance
(L/hr)™).

nlmixr will attempt to determine some back-transformations for the user. For example, CL <-exp(tvCL)
will detect that tvCL must be back-transformed by exp() for easier interpretation. When you want

to control the back-transformation, you can specify the back-transformation using backTransform()
after the assignment. For example, to set the back-transformation to exp(), you can use tvCL <-1;
backTransform(exp()).

70 initializeCovars

Value

bounds expression or parsed ui object

Author(s)
Matthew L. Fidler

initializeCovars Initializing covariates before estimation

Description

Initializing covariates before estimation

Usage

initializeCovars(
fitobject,
fstring,
covNames,
initialEst,
initialEstLB,
initialEstUB

Arguments

fitobject an nlmixr ’fit” object

fstring a string giving the entire expression for the model function string
covNames a list of covariate names (parameters) that need to be estimates
initialEst the initial estimate for the covariate parameters to be estimated; default is 0
initialEstLB a lower bound for the covariate parameters to be estimated; default is -Inf

initialEstUB an upper bound for the covariate parameters to be estimated; default is Inf

Value

updated model object with the modified initial values

Author(s)

Vipul Mann, Matthew Fidler

instant.stan.extension 71

instant.stan.extension
instant.stan.extension.

Description

instant.stan.extension

Usage

instant.stan.extension(ode_str = NULL, covar = NULL)

Arguments
ode_str ODE equations in a string
covar a character vector of covariates
Value

Nothing, called for its side effects

invgaussian Inverse Guassian absorption model

Description

Inverse Guassian absorption model

Usage

invgaussian

Format
A data frame with 32 rows and 6 columns

time Time of observation

cp Concentration

Source

D’Argenio DZ, Schumitzky A, and Wang X (2009). "ADAPT 5 User’s Guide: Pharmacoki-
netic/Pharmacodynamic Systems Analysis Software".

72 lin_cmt

lin_cmt concentrations from a linear compartment model

Description

concentrations from a linear compartment model by close-form solutions

Usage
lin_cmt(
obs_time,
dose_time,
dose,
Tinf,
params,
oral,
infusion,
ncmt,
parameterization
)
Arguments
obs_time times at which an observation is desired
dose_time times at which doses are given
dose a vector of doses
Tinf a vector of infusion duration
params model-appropriate parameters per parameterization
oral logical, whether oral absorption is true
infusion logical, whether infusion is true
ncmt number of compartments
parameterization
type of parameterization, 1=clearance/volume, 2=micro-constants
Details

This is used by some of the internal nlmixr routines, for example the low level nlme estimation with
nlmixr. With the nlmixr functions you should use ‘linCmt()‘ instead. It is documented at https://
nlmixrdevelopment.github.io/Rx0ODE/articles/RxODE-model-types.html#solved-compartment-models

Value

calculated concentrations

https://nlmixrdevelopment.github.io/RxODE/articles/RxODE-model-types.html#solved-compartment-models
https://nlmixrdevelopment.github.io/RxODE/articles/RxODE-model-types.html#solved-compartment-models

makeDummies 73

makeDummies Create categorical covariates

Description

Create categorical covariates

Usage

makeDummies(data, covariate, varName)

Arguments
data a dataframe containing the dataset that needs to be used
covariate the covariate that needs to be converted to categorical; must be present in the
data
varName the variable name to which the given covariate is to be added
Value

a list of updated data with covariates added, an expression that needs to be added to the model
expression, the list of covariate names, and the column names corresponding to the categorical
covariates

Author(s)
Vipul Mann, Matthew Fidler

makeHockeyStick Creating Hockey-stick covariates

Description

Creating Hockey-stick covariates

Usage

makeHockeyStick(data, covariate, varName)

Arguments
data a dataframe containing the dataset that needs to be used
covariate the covariate that needs to be converted to hockey-stick; must be present in the

data

varName the variable name to which the given covariate is to be added

74 model

Value

a list of updated data with covariates added, an expression that needs to be added to the model
expression, the list of covariate names, and the column names corresponding to the hockey-stick
covariates

Author(s)
Vipul Mann, Matthew Fidler

metabolite Parent/Metabolite dataset

Description

Parent/Metabolite dataset

Usage

metabolite

Format
A data frame with 32 rows and 6 columns
time Time of observation

y1 Parent Concentration

y2 Metabolite Concentration

Source

D’Argenio DZ, Schumitzky A, and Wang X (2009). "ADAPT 5 User’s Guide: Pharmacoki-
netic/Pharmacodynamic Systems Analysis Software".

model nlmixr model block

Description

nlmixr model block

Usage

model (model, ..., .lines = NULL)

nlme_gof

Arguments

model

.lines

Value

Parsed UI object

Author(s)

Matthew L. Fidler

75

Model specification
Other arguments to model object parsed by nlmixr

This is an internal argument when codemodel is being called recursively and
should not be used.

nlme_gof

GOF plots for nlme-based mixed-effect models

Description

Generates basic goodness-of-fit plots for nlme-based mixed-effect models

Usage

nlme_gof (fit,

Arguments

fit

Value

.2

nlme fit object

optional additional arguments

nothing, displays plots

76 nlme_lin_cmpt

nlme_lin_cmpt Fit nlme-based linear compartment mixed-effect model using closed
form solution

Description

’nlme_lin_cmpt’ fits a linear one to three compartment model with either first order absorption, or
i.v. bolus, or i.v. infusion. A user specifies the number of compartments, route of drug adminis-
trations, and the model parameterization. ‘nlmixr* supports the clearance/volume parameterization
and the micro constant parameterization, with the former as the default. Specification of fixed
effects, random effects and initial values follows the standard nlme notations.

Usage

nlme_lin_cmpt(
dat,
parModel,
ncmt,
oral = TRUE,
infusion = FALSE,
tlag = FALSE,
parameterization = 1,
parTrans = .getParfn(oral, ncmt, parameterization, tlag),
mcCores = 1,

nlmeLinCmpt(
dat,
parModel,
ncmt,
oral = TRUE,
infusion = FALSE,
tlag = FALSE,
parameterization = 1,
parTrans = .getParfn(oral, ncmt, parameterization, tlag),
mcCores = 1,

nlmeLinCmt(
dat,
parModel,
ncmt,
oral = TRUE,
infusion = FALSE,
tlag = FALSE,

nlme_lin_cmpt 77

parameterization = 1,
parTrans = .getParfn(oral, ncmt, parameterization, tlag),
mcCores = 1,

)
Arguments
dat data to be fitted
parModel list: model for fixed effects, randoms effects and initial values using nlme-type
syntax.
ncmt numerical: number of compartments: 1-3
oral logical
infusion logical
tlag logical
parameterization
numerical: type of parameterization, 1=clearance/volume, 2=micro-constants
parTrans function: calculation of PK parameters
mcCores number of cores used in fitting (only for Linux)
additional nlme options
Value

A nlmixr nlme fit object

Author(s)

Wenping Wang

Examples
library(nlmixr)

specs <- list(fixed=1KA+1CL+1V~1, random = pdDiag(lKA+1CL~1),
start=c(1KA=0.5, 1CL=-3.2, 1v=-1))

fit <- nlme_lin_cmpt(theo_md, par_model=specs, ncmt=1, verbose=TRUE)

#plot(augPred(fit,level=0:1))

summary (fit)

78

nlme_ode

nlme_ode

Fit nlme-based mixed-effect model using ODE implementation

Description

’nlme_ode’ fits a mixed-effect model described using ordinary differential equation (ODEs). The
ODE-definition follows RxODE syntax. Specification of fixed effects, random effects and initial

values follows the standard nlme notations.

Usage

nlme_ode(

)

dat.o,

model,

parModel,

parTrans,

response,
responseScaler = NULL,
transitAbs = FALSE,

atol = 1e-08,
rtol = 1e-08,
maxsteps = 5000,
hmin = 0,

hmax = NA_real_,
hini = 9,

maxordn = 12,
maxords = 5,
debugODE = FALSE,
mcCores = 1,

nlmeOde(

dat.o,

model,

parModel,

parTrans,

response,
responseScaler = NULL,
transitAbs = FALSE,

atol = 1e-08,
rtol = 1e-08,
maxsteps = 5000,
hmin = @,

hmax = NA_real_,
hini = 0,

maxordn = 12,

nlme_ode

maxords = 5,

79

debugODE = FALSE,

mcCores = 1,

Arguments

dat.o

model

parModel
parTrans
response
responseScaler
transitAbs

atol

rtol

maxsteps

hmin

hmax

hini

maxordn

maxords

debugODE

mcCores

data to be fitted

a string containing the set of ordinary differential equations (ODE) and other
expressions defining the changes in the dynamic system. For details, see the
sections “Details” and “RxODE Syntax” below.

list: model for fixed effects, randoms effects and initial values.
function: calculation of PK parameters

names of the response variable

optional response variable scaler. default is NULL

boolean indicating if this is a transit compartment absorption

a numeric absolute tolerance (1e-8 by default) used by the ODE solver to deter-
mine if a good solution has been achieved; This is also used in the solved linear
model to check if prior doses do not add anything to the solution.

a numeric relative tolerance (1e-6 by default) used by the ODE solver to deter-
mine if a good solution has been achieved. This is also used in the solved linear
model to check if prior doses do not add anything to the solution.

maximum number of (internally defined) steps allowed during one call to the
solver. (5000 by default)

The minimum absolute step size allowed. The default value is 0.

The maximum absolute step size allowed. When hmax=NA (default), uses the
average difference + hmaxSd*sd in times and sampling events. The hmaxSd is a
user specified parameter and which defaults to zero. When hmax=NULL RxODE
uses the maximum difference in times in your sampling and events. The value 0
is equivalent to infinite maximum absolute step size.

The step size to be attempted on the first step. The default value is determined
by the solver (when hini = 0)

The maximum order to be allowed for the nonstiff (Adams) method. The default
is 12. It can be between 1 and 12.

The maximum order to be allowed for the stiff (BDF) method. The default value
is 5. This can be between 1 and 5.

a logical if debugging is enabled
number of cores used in fitting (only for Linux)

additional nlme options

80 nlme_ode

Details

The ODE-based model specification may be coded inside a character string or in a text file, see
Section RxODE Syntax below for coding details. An internal RxODE compilation manager object
translates the ODE system into C, compiles it, and dynamically loads the object code into the
current R session. The call to RxODE produces an object of class RxODE which consists of a list-like
structure (closure) with various member functions (see Section Value below).

Value

nlmixr nlme fit

RxODE Syntax

An RxODE model specification consists of one or more statements terminated by semi-colons, ‘;’,
and optional comments (comments are delimited by # and an end-of-line marker). NB: Comments
are not allowed inside statements.

A block of statements is a set of statements delimited by curly braces, ‘{ ... }’. Statements can
be either assignments or conditional if statements. Assignment statements can be either “sim-
ple” assignments, where the left hand is an identifier (i.e., variable), or special “time-derivative”
assignments, where the left hand specifies the change of that variable with respect to time e.g.,
d/dt(depot).

Expressions in assignment and ‘if’ statements can be numeric or logical (no character expressions
are currently supported). Numeric expressions can include the following numeric operators (‘+’,
=7 5%, 42, and those mathematical functions defined in the C or the R math libraries (e.g.,
fabs, exp, log, sin). (Note that the modulo operator ‘%’ is currently not supported.)

Identifiers in an RxODE model specification can refer to:
* state variables in the dynamic system (e.g., compartments in a pharmacokinetic/pharmacodynamic
model);

 implied input variable, t (time), podo (oral dose, for absorption models), and tlast (last time
point);

* model parameters, (ka rate of absorption, CL clearance, etc.);

* others, as created by assignments as part of the model specification.
Identifiers consist of case-sensitive alphanumeric characters, plus the underscore ‘_’ character. NB:
the dot ‘.’ character is not a valid character identifier.

The values of these variables at pre-specified time points are saved as part of the fitted/integrated/solved
model (see eventTable, in particular its member function add. sampling that defines a set of time
points at which to capture a snapshot of the system via the values of these variables).

The ODE specification mini-language is parsed with the help of the open source tool DParser,
Plevyak (2015).

Author(s)

Wenping Wang, Mathew Fidler

nlmixr 81

Examples

library(nlmixr)

ode <- "

d/dt(depot) =-KAxdepot;
d/dt(centr) = KAxdepot - KExcentr;

n

mypar <- function(lKA, 1KE, 1CL)

{
KA=exp (1KA)
KE=exp (1KE)
CL=exp(1CL)
V = CL/KE

3

specs <- list(fixed=1KA+1KE+1CL~1,
random = pdDiag(1KA+1CL~1),
start=c(1KA=0.5, 1KE=-2.5, 1CL=-3.2))

fit <- nlme_ode(theo_md, model=ode, par_model=specs, par_trans=mypar,
response="centr"”, response.scaler="V" control=nlmeControl(pnlsTol=0.9))

nlmixr nimixr fits population PK and PKPD non-linear mixed effects models.

Description

nlmixr is an R package for fitting population pharmacokinetic (PK) and pharmacokinetic-pharmacodynamic
(PKPD) models.

Usage

nlmixr(
object,
data,
est = NULL,
control = list(),
table = tableControl(),
save = NULL,
envir = parent.frame()

S3 method for class '‘function''
nlmixr(

object,

data,

82 nlmixr

est = NULL,
control = list(),
table = tableControl(),

L

save = NULL,

envir = parent.frame()
)
S3 method for class 'nlmixrFitCore'
nlmixr(

object,

data,

est = NULL,

control = list(),
table = tableControl(),

L

save = NULL,

envir = parent.frame()
)
S3 method for class 'nlmixrUI'
nlmixr(

object,

data,

est = NULL,

control = list(),

L

save = NULL,

envir = parent.frame()
)
Arguments
object Fitted object or function specifying the model.
data Dataset to estimate. Needs to be RxODE compatible (see https://nlmixrdevelopment.
github.io/RxODE/articles/RxODE-event-types.html for detailed dataset
requirements).
est Estimation method
control Estimation control options. They could be nlmeControl, saemControl or foceiControl
table A list controlling the table options (i.e. CWRES, NPDE etc). See tableControl.
Other parameters
save Boolean to save a nlmixr object in a rds file in the working directory. If NULL,
uses option "nlmixr.save"
envir Environment that nlmixr is evaluated in.
Details

The nlmixr generalized function allows common access to the nlmixr estimation routines.

https://nlmixrdevelopment.github.io/RxODE/articles/RxODE-event-types.html
https://nlmixrdevelopment.github.io/RxODE/articles/RxODE-event-types.html

nlmixr 83

Value

Either a nlmixr model or a nlmixr fit object

nlmixr modeling mini-language

Rationale

nlmixr estimation routines each have their own way of specifying models. Often the models are
specified in ways that are most intuitive for one estimation routine, but do not make sense for
another estimation routine. Sometimes, legacy estimation routines like nlme have their own syntax
that is outside of the control of the nlmixr package.

The unique syntax of each routine makes the routines themselves easier to maintain and expand,
and allows interfacing with existing packages that are outside of nlmixr (like nlme). However, a
model definition language that is common between estimation methods, and an output object that
is uniform, will make it easier to switch between estimation routines and will facilitate interfacing
output with external packages like Xpose.

The nlmixr mini-modeling language, attempts to address this issue by incorporating a common
language. This language is inspired by both R and NONMEM, since these languages are familiar
to many pharmacometricians.

Initial Estimates and boundaries for population parameters

nlmixr models are contained in a R function with two blocks: ini and model. This R function can
be named anything, but is not meant to be called directly from R. In fact if you try you will likely

n

get an error such as Error: could not find function "ini".

The ini model block is meant to hold the initial estimates for the model, and the boundaries of
the parameters for estimation routines that support boundaries (note nlmixr’s saem and nlme do not
currently support parameter boundaries).

To explain how these initial estimates are specified we will start with an annotated example:

f <- function(){ ## Note the arguments to the function are currently
ignored by nlmixr

ini({
Initial conditions for population parameters (sometimes
called theta parameters) are defined by either ‘<-* or '='
1C1 <- 1.6 #log C1 (L/hr)
Note that simple expressions that evaluate to a number are
OK for defining initial conditions (like in R)
1vc = log(90) #log V (L)
Also a comment on a parameter is captured as a parameter label
1Ka <- 1 #log Ka (1/hr)
Bounds may be specified by c(lower, est, upper), like NONMEM:
Residuals errors are assumed to be population parameters
prop.err <- c(@, 0.2, 1)

b))

The model block will be discussed later

model ({})

84

nlmixr

As shown in the above examples:

Simple parameter values are specified as a R-compatible assignment
Boundaries my be specified by c(lower,est,upper).
Like NONMEM, c(lower,est) is equivalent to c(lower,est, Inf)

Also like NONMEM, c(est) does not specify a lower bound, and is equivalent to specifying
the parameter without R’s ‘c‘ function.

The initial estimates are specified on the variance scale, and in analogy with NONMEM, the
square roots of the diagonal elements correspond to coefficients of variation when used in the
exponential IIV implementation

These parameters can be named almost any R compatible name. Please note that:

Residual error estimates should be coded as population estimates (i.e. using an =’ or '<-’
statement, not a ’~’).

Naming variables that start with "_" are not supported. Note that R does not allow variable
starting with "_" to be assigned without quoting them.

Naming variables that start with "rx_" or "n1mixr_" is not supported since RXODE and nlmixr
use these prefixes internally for certain estimation routines and calculating residuals.

Variable names are case sensitive, just like they are in R. "CL" is not the same as "C1".

Initial Estimates for between subject error distribution NONMEM’s $§OMEGA)

In mixture models, multivariate normal individual deviations from the population parameters are
estimated (in NONMEM these are called eta parameters). Additionally the variance/covariance
matrix of these deviations is also estimated (in NONMEM this is the OMEGA matrix). These also
have initial estimates. In nlmixr these are specified by the ‘~‘ operator that is typically used in R
for "modeled by", and was chosen to distinguish these estimates from the population and residual
error parameters.

Continuing the prior example, we can annotate the estimates for the between subject error distribu-

tion

f <-

function(){
ini({
1C1 <- 1.6 #log C1 (L/hr)

1vc = 1log(90) #log V (L)

1Ka <- 1 #log Ka (1/hr)

prop.err <- c(@, 0.2, 1)

Initial estimate for ka IIV variance
Labels work for single parameters
eta.ka ~ 0.1 # BSV Ka

For correlated parameters, you specify the names of each
correlated parameter separated by a addition operator ‘+
and the left handed side specifies the lower triangular
matrix initial of the covariance matrix.
eta.cl + eta.vc ~ c(0.1,

0.005, 0.1)

\

nlmixr 85

Note that labels do not currently work for correlated
parameters. Also do not put comments inside the lower
triangular matrix as this will currently break the model.

1))
The model block will be discussed later

model ({})

As shown in the above examples:

» Simple variances are specified by the variable name and the estimate separated by ‘~*.
 Correlated parameters are specified by the sum of the variable labels and then the lower trian-
gular matrix of the covariance is specified on the left handed side of the equation. This is also
separated by ‘~°.
Currently the model syntax does not allow comments inside the lower triangular matrix.
Model Syntax for ODE based models NONMEM’s $PK, $SPRED, $DES and $SERROR)

Once the initialization block has been defined, you can define a model in terms of the defined
variables in the ini block. You can also mix in RxODE blocks into the model.

The current method of defining a nlmixr model is to specify the parameters, and then possibly the
RxODE lines:

Continuing describing the syntax with an annotated example:

f <= function(){

ini({
1C1 <- 1.6 #log C1 (L/hr)
1Vc <- 1log(90) #log Vc (L)
1KA <- 0.1 #log Ka (1/hr)

prop.err <- c(@, 0.2, 1)
eta.Cl ~ 0.1 ## BSV Cl
eta.Vc ~ 0.1 ## BSV Vc
eta.KA ~ 0.1 ## BSV Ka
b))
model ({
First parameters are defined in terms of the initial estimates
parameter names.
Cl <- exp(lCl + eta.Cl)
Ve = exp(1lVc + eta.Vc)
KA <- exp(lKA + eta.KA)
After the differential equations are defined
kel <- C1 / Vc;
d/dt(depot) = -KA*depot;
d/dt(centr) = KAxdepot-kel*centr;
And the concentration is then calculated
cp = centr / Vc;
Last, nlmixr is told that the plasma concentration follows
a proportional error (estimated by the parameter prop.err)

86

nlmixr

cp ~ prop(prop.err)
1))

A few points to note:

Parameters are defined before the differential equations. Currently directly defining the differ-
ential equations in terms of the population parameters is not supported.

The differential equations, parameters and error terms are in a single block, instead of multiple
sections.

State names, calculated variables cannot start with either "rx_" or "nlmixr_" since these are
used internally in some estimation routines.

Errors are specified using the ‘~‘. Currently you can use either add (parameter) for additive
error, prop(parameter) for proportional error or add(parameter1) + prop(parameter?2) for
additive plus proportional error. You can also specify norm(parameter) for the additive error,
since it follows a normal distribution.

Some routines, like saem require parameters in terms of Pop.Parameter + Individual.Deviation.Parameter
+ Covariate*Covariate.Parameter. The order of these parameters do not matter. This is
similar to NONMEM’s mu-referencing, though not quite so restrictive.

The type of parameter in the model is determined by the initial block; Covariates used in the
model are missing in the ini block. These variables need to be present in the modeling dataset
for the model to run.

Model Syntax for solved PK systems

Solved PK systems are also currently supported by nlmixr with the ‘linCmt() pseudo-function. An
annotated example of a solved system is below:

##

f <-

function(){

ini({
1C1 <- 1.6 #log C1 (L/hr)
1vc <- 1log(90) #log Vc (L)
1KA <- 0.1 #log Ka (1/hr)
prop.err <- c(@, 0.2, 1)
eta.Cl ~ 0.1 ## BSV Cl
eta.Vc ~ 0.1 ## BSV Vc
eta.KA ~ 0.1 ## BSV Ka

b))

model ({

Cl <- exp(ICl + eta.Cl)

Vc = exp(1Vc + eta.Vc)

KA <- exp(lKA + eta.KA)

Instead of specifying the ODEs, you can use

the linCmt() function to use the solved system.

#i

This function determines the type of PK solved system
to use by the parameters that are defined. In this case

nlmixr 87

it knows that this is a one-compartment model with first-order
absorption.
linCmt() ~ prop(prop.err)

1))

A few things to keep in mind:

* Currently the solved systems support either oral dosing, IV dosing or IV infusion dosing and
does not allow mixing the dosing types.

* While RxODE allows mixing of solved systems and ODEs, this has not been implemented in
nlmixr yet.

* The solved systems implemented are the one, two and three compartment models with or
without first-order absorption. Each of the models support a lag time with a tlag parameter.

* In general the linear compartment model figures out the model by the parameter names. nlmixr
currently knows about numbered volumes, Vc/Vp, Clearances in terms of both Cl and Q/CLD.
Additionally nlmixr knows about elimination micro-constants (ie K12). Mixing of these pa-
rameters for these models is currently not supported.

Checking model syntax

After specifying the model syntax you can check that nlmixr is interpreting it correctly by using the
nlmixr function on it.

Using the above function we can get:

> nlmixr(f)
1-compartment model with first-order absorption in terms of Cl
Initialization:
A A AR AR AR
Fixed Effects ($theta):
1C1 1vc 1KA
1.60000 4.49981 0.10000

Omega ($omega):

[,11 [,21 [,3]
[1,] 0.1 0.0 0.0
[2,] 0.0 0.1 0.0
[3,] 0.0 0.0 0.1

Model:
A
Cl <- exp(lCl + eta.Cl)

Vc = exp(1Vc + eta.Vc)

KA <- exp(1KA + eta.KA)

Instead of specifying the ODEs, you can use

the linCmt() function to use the solved system.

#H#

This function determines the type of PK solved system

88

nlmixr

to use by the parameters that are defined. In this case

it knows that this is a one-compartment model with first-order
absorption.

linCmt() ~ prop(prop.err)

In general this gives you information about the model (what type of solved system/RxODE), initial
estimates as well as the code for the model block.

Using the model syntax for estimating a model

Once the model function has been created, you can use it and a dataset to estimate the parameters
for a model given a dataset.

This dataset has to have RxODE compatible events IDs. Both Monolix and NONMEM use a dif-
ferent dataset description. You may convert these datasets to RxODE-compatible datasets with the
nmDataConvert function. Note that steady state doses are not supported by RxODE, and therefore
not supported by the conversion function.

As an example, you can use a simulated rich 1-compartment dataset.

d <- Oral_1CPT
d <- d[,names(d) != "SS"];
d <- nmDataConvert(d);

Once the data has been converted to the appropriate format, you can use the nlmixr function to run
the appropriate code.

The method to estimate the model is:

fit <- nlmixr(model.function, rxode.dataset, est="est",control=estControl(options))

Currently nlme and saem are implemented. For example, to run the above model with saem, we
could have the following:

> f <= function(){

ini({
1C1 <- 1.6 #log Cl (L/hr)
1Vc <- 1log(90) #log Vc (L)
1KA <- 0.1 #log Ka (1/hr)

prop.err <- c(0, 0.2, 1)
eta.Cl ~ 0.1 ## BSV C1
eta.Vc ~ 0.1 ## BSV Vc
eta.KA ~ 0.1 ## BSV Ka
b))
model ({
First parameters are defined in terms of the initial estimates
parameter names.
Cl <- exp(1Cl + eta.Cl)
Vc = exp(1lVc + eta.Vc)
KA <- exp(lKA + eta.KA)
After the differential equations are defined

nlmixr 89

kel <- C1 / Vc;
d/dt(depot) = -KA*depot;
d/dt(centr) = KAxdepot-kelxcentr;
And the concentration is then calculated
cp = centr / Vc;
Last, nlmixr is told that the plasma concentration follows
a proportional error (estimated by the parameter prop.err)
cp ~ prop(prop.err)
1))
3

> fit.s <- nlmixr(f,d,est="saem",control=saemControl(n.burn=50,n.em=100,print=50));
Compiling RxODE differential equations...done.
c:/Rtools/mingw_64/bin/g++ -I"c:/R/R-34~1.1/include” -DNDEBUG -I1"d:/Compiler/gcc-4.9.3/1ocal330/i
In file included from c:/R/R-34~1.1/1library/RCPPAR~1/include/armadillo:52:0,
from c:/R/R-34~1.1/1ibrary/RCPPAR~1/include/RcppArmadilloForward.h:46,

from c:/R/R-34~1.1/1library/RCPPAR~1/include/RcppArmadillo.h:31,

from saem3090757b4bd1x64.cpp:1:
c:/R/R-34~1.1/1ibrary/RCPPAR~1/include/armadillo_bits/compiler_setup.hpp:474:96: note: #pragma messa

#pragma message ("WARNING: use of OpenMP disabled; this compiler doesn't support OpenMP 3.0+")

A

c:/Rtools/mingw_64/bin/g++ -shared -s -static-libgcc -0 saem3090757b4bd1x64.d11 tmp.def saem3090757b4t

done.

1: 1.8174 4.6328 0.0553 0.0950 0.0950 0.0950 0.6357
50: 1.3900 4.2039 0.0001 0.0679 0.0784 0.1082 ©.1992
100: 1.3894 4.2054 0.0107 0.0686 0.0777 0.1111 0.1981
150: 1.3885 4.2041 0.0089 0.0683 0.0778 0.1117 0.1980

Using sympy via SnakeCharmR

Calculate ETA-based prediction and error derivatives:
Calculate Jacobian................... done.
Calculate sensitivities.......

done.

Calculate d(f)/d(eta)

#H# ...

done

#H# ...

done

The model-based sensitivities have been calculated
Calculating Table Variables...

done

The options for saem are controlled by saemControl. You may wish to make sure the minimization
is complete in the case of saem. You can do that with traceplot which shows the iteration history
with the divided by burn-in and EM phases. In this case, the burn in seems reasonable; you may
wish to increase the number of iterations in the EM phase of the estimation. Overall it is probably
a semi-reasonable solution.

nlmixr output objects

In addition to unifying the modeling language sent to each of the estimation routines, the outputs
currently have a unified structure.

nlmixr

You can see the fit object by typing the object name:

> fit.s
-- nlmixr SAEM fit (ODE); OBJF calculated from FOCEi approximation -------------
OBJF AIC BIC Log-likelihood Condition Number
62337.09 62351.09 62399.01 -31168.55 82.6086

-- Time (sec; fit.s$time): -------------- - - - - - -
saem setup Likelihood Calculation covariance table

elapsed 430.25 31.64 1.19 0 3.44

-- Parameters (fit.s$par.fixed): ------—------------"---------———--— -

Parameter Estimate SE

1C1 log C1 (L/hr) 1.39 0.0240 1.73 4.01 (3.83, 4.20) 26.6
1vc log Vc (L) 4.20 0.0256 0.608 67.0 (63.7, 70.4) 28.5
1KA log Ka (1/hr) 0.00924 ©.0323 349. 1.01 (0.947, 1.08) 34.3
prop.err prop.err 0.198 19.8

Shrink(SD)
1C1 0.248
1vc 1.09
1KA 4.19
prop.err 1.81

No correlations in between subject variability (BSV) matrix
Full BSV covariance (fit.s$omega) or correlation (fit.s$omega.R; diagonals=SDs)
Distribution stats (mean/skewness/kurtosis/p-value) available in fit.s$shrink

-- Fit Data (object fit.s is a modified data.frame): -------—-—---------———-—————-
A tibble: 6,947 x 22
ID TIME DV PRED RES WRES IPRED IRES IWRES CPRED CRES

* <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

11 0.25 205. 198. 6.60 0.0741 189. 16.2 0.434 198. 6.78

21 0.5 311. 349. -38.7 -0.261 330. -19.0 -0.291 349. -38.3

31 0.75 389. 464. -74.5 -0.398 434. -45.2 -0.526 463. -73.9

. with 6,944 more rows, and 11 more variables: CWRES <dbl>, eta.Cl <dbl>,
eta.Vc <dbl>, eta.KA <dbl>, depot <dbl>, centr <dbl>, Cl <dbl>, Vc <dbl>,

This example shows what is typical printout of a nlmixr fit object. The elements of the fit are:

* The type of fit (n1me, saem, etc)
* Metrics of goodness of fit (AIC, BIC, and loglLik).
— To align the comparison between methods, the FOCE:i likelihood objective is calculated
regardless of the method used and used for goodness of fit metrics.

— This FOCEi likelihood has been compared to NONMEM’s objective function and gives
the same values (based on the data in Wang 2007)

— Also note that saem does not calculate an objective function, and the FOCEi is used as
the only objective function for the fit.

nlmixr 91

— Even though the objective functions are calculated in the same manner, caution should be
used when comparing fits from various estimation routines.
* The next item is the timing of each of the steps of the fit.
— These can be also accessed by (fit.s$time).
— As a mnemonic, the access for this item is shown in the printout. This is true for almost
all of the other items in the printout.
* After the timing of the fit, the parameter estimates are displayed (can be accessed by fit.s$par. fixed)
— While the items are rounded for R printing, each estimate without rounding is still ac-
cessible by the ‘$‘ syntax. For example, the ‘$Untransformed‘ gives the untransformed
parameter values.

— The Untransformed parameter takes log-space parameters and back-transforms them to
normal parameters. Not the CIs are listed on the back-transformed parameter space.

— Proportional Errors are converted to
* Omega block (accessed by fit.s$omega)
The table of fit data. Please note:

— A nlmixr fit object is actually a data frame. Saving it as a Rdata object and then loading it
without nlmixr will just show the data by itself. Don’t worry; the fit information has not
vanished, you can bring it back by simply loading nlmixr, and then accessing the data.

— Special access to fit information (like the $omega) needs nlmixr to extract the information.
— If you use the $ to access information, the order of precedence is:

Fit data from the overall data.frame

Information about the parsed nlmixr model (via $uif)

Parameter history if available (via $par.hist and $par.hist.stacked)

Fixed effects table (via $par.fixed)

Individual differences from the typical population parameters (via $eta)

* % X X X ¥

Fit information from the list of information generated during the post-hoc residual
calculation.

*

Fit information from the environment where the post-hoc residual were calculated

+ Fit information about how the data and options interacted with the specified model
(such as estimation options or if the solved system is for an infusion or an IV bolus).

— While the printout may displays the data as a data. table object or tbl object, the data
is NOT any of these objects, but rather a derived data frame.

— Since the object is a data.frame, you can treat it like one.

In addition to the above properties of the fit object, there are a few additional that may be helpful
for the modeler:

* $theta gives the fixed effects parameter estimates (in NONMEM the thetas). This can also
be accessed in fixed. effects function. Note that the residual variability is treated as a fixed
effect parameter and is included in this list.

* $eta gives the random effects parameter estimates, or in NONMEM the etas. This can also
be accessed in using the random. effects function.

Author(s)
Matthew L. Fidler, Rik Schoemaker

92

Examples

f_ode <- function(){

ini({
1C1 <- 1.6 #log C1 (L/hr)
1Vc <- log(80) #log Vc (L)
1KA <- 0.3 #log Ka (1/hr)

»

model ({
First parameters are defined in terms of the initial estimates
parameter names.
Cl <- exp(1Cl + eta.Cl)
Vc = exp(lVc + eta.Vc)
KA <- exp(lKA + eta.KA)
After the differential equations are defined
kel <- Cl1 / Vc;
d/dt(depot) = -KA*depot;
d/dt(centr) = KAxdepot-kel*centr;
And the concentration is then calculated
cp = centr / Vc;
Last, nlmixr is told that the plasma concentration follows
a proportional error (estimated by the parameter prop.err)
cp ~ prop(prop.err)

»

3
f_linCmt <- function(){

ini({
1C1 <- 1.6 #log C1 (L/hr)
1Vc <- log(90) #log Vc (L)
1KA <- 0.1 #log Ka (1/hr)

bl

prop.err <- c(0, 0.2, 1)
eta.Cl ~ 0.3 ## BSV C1
eta.Vc ~ 0.2 ## BSV Vc
eta.KA ~ 0.1 ## BSV Ka

prop.err <- c(0, 0.2, 1)
add.err <- c(0, 0.01)
eta.Cl ~ 0.1 ## BSV Cl
eta.Vc ~ 0.1 ## BSV Vc
eta.KA ~ 0.1 ## BSV Ka

model ({

Cl <- exp(1Cl + eta.Cl)

Vc = exp(lVc + eta.Vc)

KA <- exp(lKA + eta.KA)

Instead of specifying the ODEs, you can use

the 1linCmt() function to use the solved system.

##

This function determines the type of PK solved system
to use by the parameters that are defined. In this case

it knows that this is a one-compartment model with first-order

nlmixr

nlmixrAugPred

absorption.
linCmt() ~ add(add.err) + prop(prop.err)
»
}

Use nlme algorithm

fit_linCmt_nlme <- try(nlmixr(f_ode, Oral_1CPT, est="nlme",
control=nlmeControl (maxstepsOde = 50000, pnlsTol=0.4)))

if (linherits(fit_linCmt_nlme, "try-error”)) print(fit_linCmt_nlme)

Use Focei algorithm
fit_linCmt_focei <- try(nlmixr(f_linCmt, Oral_1CPT, est="focei"))
if (linherits(fit_linCmt_focei, "try-error”)) print(fit_linCmt_focei)

The ODE model can be fitted using the saem algorithm, more
iterations should be used for real applications

fit_ode_saem <- try(nlmixr(f_ode, Oral_1CPT, est = "saem”,
control = saemControl(n.burn = 50, n.em = 100, print = 50)))
if (!inherits(fit_ode_saem, "try-error”)) print(fit_ode_saem)

93

nlmixrAugPred Augmented Prediction for nlmixr fit

Description

Augmented Prediction for nlmixr fit

Usage
nlmixrAugPred(
object,
covsInterpolation = c("locf"”, "linear"”, "nocb"”, "midpoint"”),
primary = NULL,
minimum = NULL,
maximum = NULL,
length.out = 51L
)
S3 method for class 'nlmixrFitData'
augPred(
object,
primary = NULL,
minimum = NULL,

maximum = NULL,
length.out = 51,

94 nlmixrBounds

Arguments

object NlImixr fit object

e some methods for the generic may require additional arguments.
covsInterpolation
specifies the interpolation method for time-varying covariates. When solving
ODE:s it often samples times outside the sampling time specified in events.
When this happens, the time varying covariates are interpolated. Currently this
can be:
* "linear” interpolation, which interpolates the covariate by solving the line
between the observed covariates and extrapolating the new covariate value.
e "constant" — Last observation carried forward (the default).
* "NOCB" — Next Observation Carried Backward. This is the same method
that NONMEM uses.
* "midpoint” Last observation carried forward to midpoint; Next observa-
tion carried backward to midpoint.
primary an optional one-sided formula specifying the primary covariate to be used to
generate the augmented predictions. By default, if a covariate can be extracted
from the data used to generate object (using getCovariate), it will be used as

primary.
minimum an optional lower limit for the primary covariate. Defaults to min(primary).
maximum an optional upper limit for the primary covariate. Defaults to max(primary).
length.out an optional integer with the number of primary covariate values at which to

evaluate the predictions. Defaults to 51.

Value

Stacked data.frame with observations, individual/population predictions.

Author(s)
Matthew L. Fidler

nlmixrBounds Extract the nlmixr bound information from a function.

Description

Extract the nlmixr bound information from a function.

Usage

nlmixrBounds(fun)

nlmixrBounds.eta.names

Arguments

fun Function to extract bound information from.

Value

a data.frame with bound information.

Author(s)

Bill Denney and Matthew L. Fidler

See Also

Other nlmixrBounds: nlmixrBoundsParser()

95

nlmixrBounds.eta.names
Get ETA names

Description

Get ETA names

Usage

nlmixrBounds.eta.names(obj)

Arguments

obj UI object

Value

ETA names

Author(s)

Matthew L. Fidler

96 nlmixrBoundsParser

nlmixrBounds.focei.upper.lower
Get upper/lower/names for THETAs

Description

Get upper/lower/names for THETAs

Usage

nlmixrBounds.focei.upper.lower(obj, type = c("upper”, "lower", "name", "err"))
Arguments

obj Bounds object

type type of object extracted
Value

lower/upper/name vector

Author(s)
Matthew L. Fidler

nlmixrBoundsParser Functions to assist with setting initial conditions and boundaries

Description

These functions are not intended to be called by a user. They are intended to be internal to nlmixr
Usage
nlmixrBoundsParser(x)

S3 method for class ' ('
nlmixrBoundsParser(x)

Arguments

X the object to attempt extraction from

Value

A list with how the object will be used

nlmixrDynmodelConvert 97
Methods (by class)

¢ (: For function bodies and similar.

See Also

Other nlmixrBounds: n1mixrBounds ()

nlmixrDynmodelConvert Converting nlmixr objects to dynmodel objects

Description

Convert nlmixr Objects to dynmodel objects for use in fitting non-population dynamic models

Usage

nlmixrDynmodelConvert(.nmf)

Arguments

.nmf nlmixr object

Value

list containing inputs for the dynmodel()

* $fixPars - fixed parameters defined as fixed() in the nlmixr object
e $sigma - error model parameters

* $inits - initial estimates for parameters in the model

* $lower - lower boundaries for estimated parameters

* $upper - upper boundaries for estimated parameters

* $system - RxODE object that defines the structural model

¢ $model - error model

Author(s)

Mason McComb and Matt Fidler

98

nlmixrEst

nlmixrEst

Generic for nlmixr estimation methods

Description

Generic for nlmixr estimation methods

Usage

nlmixrEst(env,

S3 method for
nlmixrEst(env,

S3 method for
nlmixrEst(env,

S3 method for
nlmixrEst(env,

S3 method for
nlmixrEst(env,

S3 method for
nlmixrEst(env,

S3 method for
nlmixrEst(env,

S3 method for
nlmixrEst(env,

S3 method for
nlmixrEst(env,

S3 method for
nlmixrEst(env,

S3 method for
nlmixrEst(env,

S3 method for
nlmixrEst(env,

S3 method for
nlmixrEst(env,

.2

class

)

class

.2

class

)

class

.2

class

class

.2

class

)

class

.2

class

class

class

class

)

'saem’

"'nlme’

'nlme.mu'

‘nlme.mu.cov'’

'nlme.free'

'posthoc’

'focei'

'foce'

If’ov

"foi'

'posthoc’

"dynmodel’

nlmixrGill83 99

S3 method for class 'nlmixrEst'

nlmixrEst(env, ...)
Arguments
env Environment for nlmixr estimation routines

Extra arguments sent to estimation routine

Details
This is a S3 generic that allows others to use the nlmixr environment to do their own estimation
routines

Value

nlmixr estimation object

Author(s)
Matthew Fidler

nlmixrGill83 Get the optimal forward difference interval by Gill83 method

Description

Get the optimal forward difference interval by Gill83 method

Usage

nlmixrGill83(
what,
args,
envir = parent.frame(),
which,
gillRtol = sqrt(.Machine$double.eps),
gillK = 1oL,
gillStep = 2,
gillFtol = @

Arguments

what either a function or a non-empty character string naming the function to be
called.

args a list of arguments to the function call. The names attribute of args gives the
argument names.

100

envir

which

gillRtol
gillK

gillStep

gillFtol

Value

nlmixrGill83

an environment within which to evaluate the call. This will be most useful if
what is a character string and the arguments are symbols or quoted expressions.

Which parameters to calculate the forward difference and optimal forward dif-
ference interval

The relative tolerance used for Gill 1983 determination of optimal step size.

The total number of possible steps to determine the optimal forward/central dif-
ference step size per parameter (by the Gill 1983 method). If 0, no optimal step
size is determined. Otherwise this is the optimal step size determined.

When looking for the optimal forward difference step size, this is This is the
step size to increase the initial estimate by. So each iteration the new step size =
(prior step size)*gillStep

The gillFtol is the gradient error tolerance that is acceptable before issuing a
warning/error about the gradient estimates.

A data frame with the following columns:

¢ infoGradient evaluation/forward difference information

¢ hfForward difference final estimate

¢ dfDerivative estimate

¢ df22nd Derivative Estimate

e errError of the final estimate derivative

» aEpsAbsolute difference for forward numerical differences

* rEpsRelative Difference for backward numerical differences

» aEpsCAbsolute difference for central numerical differences

» rEpsCRelative difference for central numerical differences

The info returns one of the following:

¢ Not AssessedGradient wasn’t assessed

* GoodSuccess in Estimating optimal forward difference interval

* High Grad ErrorLarge error; Derivative estimate error fTol or more of the derivative

 Constant GradFunction constant or nearly constant for this parameter

* Odd/Linear GradFunction odd or nearly linear, df = K, df2 ~ 0

* Grad changes quicklydf2 increases rapidly as h decreases

Author(s)

Matthew Fidler

nlmixrHess 101

Examples

These are taken from the numDeriv::grad examples to show how
simple gradients are assessed with nlmixrGill83

nlmixrGill83(sin, pi)
nlmixrGill83(sin, (@:10)*2*pi/10)

func@® <- function(x){ sum(sin(x)) 3}
nlmixrGill83(funcd , (0:10)*2*pi/10)

funcl <- function(x){ sin(10*x) - exp(-x) %}
curve(funcl, from=0, to=5)

x <- 2.04

numdl <- nlmixrGill83(funcl, x)

exact <- 10*cos(10*x) + exp(-x)

c(numd1$df, exact, (numd1$df - exact)/exact)

x <= ¢c(1:10)

numdl <- nlmixrGill83(funcl, x)

exact <- 10*cos(10*x) + exp(-x)

cbind(numd1=numd1$df, exact, err=(numd1$df - exact)/exact)

sc2.f <- function(x){
n <- length(x)
sum((1:n) * (exp(x) - x)) / n
3
sc2.g <- function(x){
n <- length(x)
(1:n) * (exp(x) = 1) / n
}

X0 <- rnorm(100)
exact <- sc2.g(x0)

g <- nlmixrGill83(sc2.f, x0)

max (abs(exact - g$df)/(1 + abs(exact)))

nlmixrHess Calculate Hessian

Description

Unlike ‘stats::optimHess‘ which assumes the gradient is accurate, nlmixrHess does not make as
strong an assumption that the gradient is accurate but takes more function evaluations to calculate
the Hessian. In addition, this procedures optimizes the forward difference interval by nlmixrGill83

102 nlmixrHess

Usage
nlmixrHess(par, fn, ..., envir = parent.frame())
Arguments
par Initial values for the parameters to be optimized over.
fn A function to be minimized (or maximized), with first argument the vector of
parameters over which minimization is to take place. It should return a scalar
result.
Extra arguments sent to nlmixrGill83
envir an environment within which to evaluate the call. This will be most useful if
what is a character string and the arguments are symbols or quoted expressions.
Details

If you have an analytical gradient function, you should use ‘stats::optimHess*

Value

Hessian matrix based on Gill83

Author(s)
Matthew Fidler

References

https://v8doc.sas.com/sashtml/ormp/chap5/sect28.htm

See Also

nlmixrGill83, optimHess

Examples

func@ <- function(x){ sum(sin(x)) 3}
X <= (0:10)*2%pi/10
nlmixrHess(x, func®)

fr <- function(x) { ## Rosenbrock Banana function

x1 <= x[1]
x2 <- x[2]
100 * (x2 - x1 % x1)*2 + (1 - x1)*2
3
grr <- function(x) { ## Gradient of 'fr'
x1 <= x[1]
x2 <- x[2]
c(-400 * x1 * (x2 - x1 * x1) - 2 x (1 - x1),
200 * (x2 - x1 * x1))

https://v8doc.sas.com/sashtml/ormp/chap5/sect28.htm

nlmixrLogo 103

h1 <- optimHess(c(1.2,1.2), fr, grr)
h2 <- optimHess(c(1.2,1.2), fr)
in this case h3 is closer to h1 where the gradient is known

h3 <- nlmixrHess(c(1.2,1.2), fr)

nlmixrLogo Messages the nlmixr logo...

Description

Messages the nlmixr logo...

Usage

nlmixrLogo(str = "", version = sessionInfo()$otherPkgs$nlmixr$Version)
Arguments

str String to print

version Version information (by default use package version)
Value

nothing; Called to display version information

Author(s)
Matthew L. Fidler

nlmixrPred Predict a nlmixr solved system

Description

Predict a nlmixr solved system
Usage
nlmixrPred(object, ..., ipred = FALSE)

S3 method for class 'nlmixrFitData'
predict(object, ...)

104 nlmixrSim

Arguments
object is a either a RxODE family of objects, or a file-name with a RxODE model
specification, or a string with a RxODE model specification.

Other arguments including scaling factors for each compartment. This includes
S# = numeric will scale a compartment # by a dividing the compartment amount
by the scale factor, like NONMEM.

ipred Flag to calculate individual predictions. When ipred is TRUE, calculate individ-
ual predictions. When ipred is FALSE, set calculate typical population preda-
tions. When ipred is NA, calculate both individual and population predictions.

Value

an RxODE solved data frame with the predictions

nlmixrSim Simulate a nlmixr solved system

Description

This takes the uncertainty in the model parameter estimates and to simulate a number of theoretical
studies. Each study simulates a realization of the parameters from the uncertainty in the fixed
parameter estimates. In addition the omega and sigma matrices are simulated from the uncertainty
in the Omega/Sigma matrices based on the number of subjects and observations the model was
based on.

Usage

nlmixrSim(object, ...)

S3 method for class 'nlmixrFitData'
rxSolve(
object,
params = NULL,
events = NULL,
inits = NULL,
scale = NULL,
method = c("liblsoda”, "lsoda”, "dop853", "indLin"),
transitAbs = NULL,

atol = 1e-08,

rtol = 1e-06,
maxsteps = 70000L,
hmin = @,

hmax = NA_real_,
hmaxSd = o,

hini = 0,

maxordn = 12L,

nlmixrSim 105

maxords = 5L,

cores,

covsInterpolation = c("locf"”, "linear"”, "nocb"”, "midpoint"),

addCov = FALSE,

matrix = FALSE,

sigma = NULL,

sigmaDf = NULL,

sigmalLower = -Inf,

sigmaUpper = Inf,

nCoresRV = 1L,

sigmalsChol = FALSE,

sigmaSeparation = c("auto”, "lkj", "separation"),

sigmaXform = c("identity”, "variance”, "log"”, "nlmixrSqrt"”, "nlmixrlLog",
"nlmixrIdentity"),

nDisplayProgress = 10000L,

amountUnits = NA_character_,

timeUnits = "hours”,
stiff,
theta = NULL,

thetalLower = -Inf,
thetaUpper = Inf,

eta = NULL,

addDosing = FALSE,
stateTrim = Inf,
updateObject = FALSE,
omega = NULL,

omegaDf = NULL,
omegalsChol = FALSE,

omegaSeparation = c("auto”, "lkj", "separation"),

omegaXform = c("variance”, "identity"”, "log", "nlmixrSqgrt", "nlmixrLog",
"nlmixrIdentity"),

omegalower = -Inf,

omegaUpper = Inf,

nSub = 1L,

thetaMat = NULL,
thetaDf = NULL,
thetalsChol = FALSE,

nStud = 1L,
dfSub = 0,
dfObs = 0,

returnType = c("rxSolve”, "matrix”, "data.frame"”, "data.frame.TBS", "data.table",
"tbl"”, "tibble"),

seed = NULL,
nsim = NULL,
minSS = 10L,

maxSS = 1000L,
infSSstep = 12,

106 nlmixrSim

strictSS = TRUE,
istateReset = TRUE,
subsetNonmem = TRUE,
maxAtolRtolFactor = 0.1,
from = NULL,

to = NULL,

by = NULL,

length.out = NULL,

iCov = NULL,

keep = NULL,
indLinPhiTol = 1e-07,
indLinPhiM = oL,
indLinMatExpType = c("expokit", "Al-Mohy"”, "arma"),
indLinMatExpOrder = 6L,
drop = NULL,

idFactor = TRUE,

mxhnil = @,

hmxi = @,

warnIdSort = TRUE,
warnDrop = TRUE,

ssAtol = 1e-08,

ssRtol = 1e-06,
safeZero = TRUE,

sumType = c("pairwise”, "fsum”, "kahan”, "neumaier”, "c"),
prodType = c("long double”, "double”, "logify"),
sensType = c("advan", "autodiff"”, "forward”, "central”),

linDiff = c(tlag = 1.5e-05, f = 1.5e-05, rate = 1.5e-05, dur = 1.5e-05, tlag2 =
1.5e-05, f2 = 1.5e-05, rate2 = 1.5e-05, dur2 = 1.5e-05),
linDiffCentral = c(tlag = TRUE, f = TRUE, rate = TRUE, dur = TRUE, tlag2 = TRUE, f2 =
TRUE, rate2 = TRUE, dur2 = TRUE),
resample = NULL,
resampleID = TRUE
)

S3 method for class 'nlmixrFitData'
simulate(object, nsim = 1, seed = NULL, ...)

S3 method for class 'nlmixrFitData'

solve(a, b, ...)
Arguments
object nlmixr object

Other arguments sent to rxSolve

params a numeric named vector with values for every parameter in the ODE system; the
names must correspond to the parameter identifiers used in the ODE specifica-
tion;

nlmixrSim

events

inits

scale

method

transitAbs

atol

rtol

maxsteps

hmin

hmax

hmaxSd

hini

maxordn

maxords

cores

107

an eventTable object describing the input (e.g., doses) to the dynamic system
and observation sampling time points (see eventTable());

a vector of initial values of the state variables (e.g., amounts in each compart-
ment), and the order in this vector must be the same as the state variables (e.g.,
PK/PD compartments);

a numeric named vector with scaling for ode parameters of the system. The
names must correspond to the parameter identifiers in the ODE specification.
Each of the ODE variables will be divided by the scaling factor. For example
scale=c(center=2) will divide the center ODE variable by 2.

The method for solving ODEs. Currently this supports:

* "liblsoda” thread safe Isoda. This supports parallel thread-based solving,
and ignores user Jacobian specification.

* "lsoda” — LSODA solver. Does not support parallel thread-based solving,
but allows user Jacobian specification.

* "dop853" — DOP853 solver. Does not support parallel thread-based solving
nor user Jacobain specification

e "indLin" — Solving through inductive linearization. The RxODE dll must
be setup specially to use this solving routine.

boolean indicating if this is a transit compartment absorption

a numeric absolute tolerance (1e-8 by default) used by the ODE solver to deter-
mine if a good solution has been achieved; This is also used in the solved linear
model to check if prior doses do not add anything to the solution.

a numeric relative tolerance (1e-6 by default) used by the ODE solver to deter-
mine if a good solution has been achieved. This is also used in the solved linear
model to check if prior doses do not add anything to the solution.

maximum number of (internally defined) steps allowed during one call to the
solver. (5000 by default)

The minimum absolute step size allowed. The default value is 0.

The maximum absolute step size allowed. When hmax=NA (default), uses the
average difference + hmaxSd*sd in times and sampling events. The hmaxSd is a
user specified parameter and which defaults to zero. When hmax=NULL RxODE
uses the maximum difference in times in your sampling and events. The value 0
is equivalent to infinite maximum absolute step size.

The number of standard deviations of the time difference to add to hmax. The
default is O

The step size to be attempted on the first step. The default value is determined
by the solver (when hini = 0)

The maximum order to be allowed for the nonstiff (Adams) method. The default
is 12. It can be between 1 and 12.

The maximum order to be allowed for the stiff (BDF) method. The default value
is 5. This can be between 1 and 5.

Number of cores used in parallel ODE solving. This is equivalent to calling
setRxThreads()

108 nlmixrSim

covsInterpolation
specifies the interpolation method for time-varying covariates. When solving
ODE:s it often samples times outside the sampling time specified in events.
When this happens, the time varying covariates are interpolated. Currently this
can be:

* "linear” interpolation, which interpolates the covariate by solving the line
between the observed covariates and extrapolating the new covariate value.
e "constant” — Last observation carried forward (the default).
* "NOCB" — Next Observation Carried Backward. This is the same method
that NONMEM uses.
* "midpoint” Last observation carried forward to midpoint; Next observa-
tion carried backward to midpoint.
addCov A boolean indicating if covariates should be added to the output matrix or data
frame. By default this is disabled.
matrix A boolean indicating if a matrix should be returned instead of the RxODE’s
solved object.
sigma Named sigma covariance or Cholesky decomposition of a covariance matrix.
The names of the columns indicate parameters that are simulated. These are
simulated for every observation in the solved system.

sigmaDf Degrees of freedom of the sigma t-distribution. By default it is equivalent to
Inf, or a normal distribution.

sigmalLower Lower bounds for simulated unexplained variability (by default -Inf)

sigmaUpper Upper bounds for simulated unexplained variability (by default Inf)

nCoresRV Number of cores used for the simulation of the sigma variables. By default this

is 1. To reproduce the results you need to run on the same platform with the
same number of cores. This is the reason this is set to be one, regardless of what
the number of cores are used in threaded ODE solving.

sigmaIsChol Boolean indicating if the sigma is in the Cholesky decomposition instead of a
symmetric covariance

sigmaSeparation
separation strategy for sigma;
Tells the type of separation strategy when simulating covariance with parameter
uncertainty with standard deviations modeled in the thetaMat matrix.

e "1kj" simulates the correlation matrix from the rLKJ1 matrix with the dis-
tribution parameter eta equal to the degrees of freedom nu by (nu-1)/2

* "separation” simulates from the identity inverse Wishart covariance ma-
trix with nu degrees of freedom. This is then converted to a covariance
matrix and augmented with the modeled standard deviations. While com-
putationally more complex than the "1kj" prior, it performs better when
the covariance matrix size is greater or equal to 10

e "auto” chooses "1kj" when the dimension of the matrix is less than 10
and "separation” when greater than equal to 10.

sigmaXform When taking sigma values from the thetaMat simulations (using the separation
strategy for covariance simulation), how should the thetaMat values be turned
int standard deviation values:

nlmixrSim

109

e identity This is when standard deviation values are directly modeled by
the params and thetaMat matrix

e variance This is when the params and thetaMat simulates the variance
that are directly modeled by the thetaMat matrix

¢ log This is when the params and thetaMat simulates log(sd)

e nlmixrSqrt This is when the params and thetaMat simulates the inverse
cholesky decomposed matrix with the x*2 modeled along the diagonal.
This only works with a diagonal matrix.

* nlmixrLog This is when the params and thetaMat simulates the inverse
cholesky decomposed matrix with the exp(x*2) along the diagonal. This
only works with a diagonal matrix.

* nlmixrIdentity This is when the params and thetaMat simulates the in-
verse cholesky decomposed matrix. This only works with a diagonal ma-
trix.

nDisplayProgress

amountUnits

timeUnits

stiff

theta
thetalower
thetaUpper
eta
addDosing

An integer indicating the minimum number of c-based solves before a progress
bar is shown. By default this is 10,000.

This supplies the dose units of a data frame supplied instead of an event table.
This is for importing the data as an RxODE event table.

This supplies the time units of a data frame supplied instead of an event table.
This is for importing the data as an RXODE event table.

a logical (TRUE by default) indicating whether the ODE system is stiff or not.

For stiff ODE systems (‘stiff = TRUE‘), ‘RxODE‘ uses the

LSODA (Livermore Solver for Ordinary Differential Equations)
Fortran package, which implements an automatic method switching
for stiff and non-stiff problems along the integration
interval, authored by Hindmarsh and Petzold (2003).

For non-stiff systems (‘stiff = FALSE‘), ‘RxODE‘ uses
DOP853, an explicit Runge-Kutta method of order 8(5, 3) of
Dormand and Prince as implemented in C by Hairer and Wanner
(1993).

If stiff is not specified, the ‘method‘ argument is used instead.

A vector of parameters that will be named THETA\[#\] and added to parameters
Lower bounds for simulated population parameter variability (by default -Inf)
Upper bounds for simulated population unexplained variability (by default Inf)
A vector of parameters that will be named ETA\[#\] and added to parameters
Boolean indicating if the solve should add RxODE EVID and related columns.
This will also include dosing information and estimates at the doses. Be default,
RxODE only includes estimates at the observations. (default FALSE). When
addDosing is NULL, only include EVID=0 on solve and exclude any model-times
or EVID=2. If addDosing is NA the classic RxODE EVID events are returned.
When addDosing is TRUE add the event information in NONMEM-style format;
If subsetNonmem=FALSE RxODE will also include extra event types (EVID) for
ending infusion and modeled times:

110

stateTrim

updateObject

omega

omegaDf

omegalsChol

omegaSeparation

omegaXform

nlmixrSim

e EVID=-1 when the modeled rate infusions are turned off (matches rate=-1)

e EVID=-2 When the modeled duration infusions are turned off (matches
rate=-2)

* EVID=-10 When the specified rate infusions are turned off (matches rate>0)

* EVID=-20 When the specified dur infusions are turned off (matches dur>@)

 EVID=101,102,103,... Modeled time where 101 is the first model time, 102
is the second etc.

When amounts/concentrations in one of the states are above this value, trim
them to be this value. By default Inf. Also trims to -stateTrim for large negative
amounts/concentrations. If you want to trim between a range say c (0, 2000000)
you may specify 2 values with a lower and upper range to make sure all state
values are in the reasonable range.

This is an internally used flag to update the RxODE solved object (when supply-
ing an RxODE solved object) as well as returning a new object. You probably
should not modify it’s FALSE default unless you are willing to have unexpected
results.

Estimate of Covariance matrix. When omega is a list, assume it is a block matrix
and convert it to a full matrix for simulations.

The degrees of freedom of a t-distribution for simulation. By default this is NULL
which is equivalent to Inf degrees, or to simulate from a normal distribution
instead of a t-distribution.

Indicates if the omega supplied is a Cholesky decomposed matrix instead of the
traditional symmetric matrix.

Omega separation strategy

Tells the type of separation strategy when simulating covariance with parameter
uncertainty with standard deviations modeled in the thetaMat matrix.

e "1kj" simulates the correlation matrix from the rLKJ1 matrix with the dis-
tribution parameter eta equal to the degrees of freedom nu by (nu-1)/2

e "separation” simulates from the identity inverse Wishart covariance ma-
trix with nu degrees of freedom. This is then converted to a covariance
matrix and augmented with the modeled standard deviations. While com-
putationally more complex than the "1kj" prior, it performs better when
the covariance matrix size is greater or equal to 10

¢ "auto” chooses "1kj" when the dimension of the matrix is less than 10
and "separation” when greater than equal to 10.

When taking omega values from the thetaMat simulations (using the separation
strategy for covariance simulation), how should the thetaMat values be turned
int standard deviation values:

e identity This is when standard deviation values are directly modeled by
the params and thetaMat matrix

e variance This is when the params and thetaMat simulates the variance
that are directly modeled by the thetaMat matrix

¢ log This is when the params and thetaMat simulates log(sd)

nlmixrSim

omegalower
omegaUpper

nSub

thetaMat

thetaDf

thetaIsChol

nStud
dfSub

dfObs

returnType

seed

nsim

minSS

maxSS

111

¢ nlmixrSqrt This is when the params and thetaMat simulates the inverse
cholesky decomposed matrix with the x*2 modeled along the diagonal.
This only works with a diagonal matrix.

e nlmixrLog This is when the params and thetaMat simulates the inverse
cholesky decomposed matrix with the exp(x*2) along the diagonal. This
only works with a diagonal matrix.

e nlmixrIdentity This is when the params and thetaMat simulates the in-
verse cholesky decomposed matrix. This only works with a diagonal ma-
trix.

Lower bounds for simulated ETAs (by default -Inf)
Upper bounds for simulated ETAs (by default Inf)

Number between subject variabilities (ETAs) simulated for every realization of
the parameters.

Named theta matrix.

The degrees of freedom of a t-distribution for simulation. By default this is NULL
which is equivalent to Inf degrees, or to simulate from a normal distribution
instead of a t-distribution.

Indicates if the theta supplied is a Cholesky decomposed matrix instead of the
traditional symmetric matrix.

Number virtual studies to characterize uncertainty in estimated parameters.

Degrees of freedom to sample the between subject variability matrix from the
inverse Wishart distribution (scaled) or scaled inverse chi squared distribution.

Degrees of freedom to sample the unexplained variability matrix from the in-
verse Wishart distribution (scaled) or scaled inverse chi squared distribution.

This tells what type of object is returned. The currently supported types are:

* "rxSolve"” (default) will return a reactive data frame that can change easily
change different pieces of the solve and update the data frame. This is the

currently standard solving method in RxODE, is used for rxSolve(object, ...

solve(object,...),

* "data.frame” — returns a plain, non-reactive data frame; Currently very
slightly faster than returnType="matrix"

* "matrix” —returns a plain matrix with column names attached to the solved
object. This is what is used object$run as well as object$solve

* "data.table” —returns a data. table; The data. table is created by ref-
erence (ie setDt()), which should be fast.

e "thbl"” or "tibble" returns a tibble format.

an object specifying if and how the random number generator should be initial-
ized

represents the number of simulations. For RxODE, if you supply single subject
event tables (created with [eventTable()])

Minimum number of iterations for a steady-state dose

Maximum number of iterations for a steady-state dose

112

infSSstep

strictSS

istateReset

subsetNonmem

nlmixrSim

Step size for determining if a constant infusion has reached steady state. By
default this is large value, 420.

Boolean indicating if a strict steady-state is required. If a strict steady-state is
(TRUE) required then at least minSS doses are administered and the total number
of steady states doses will continue until maxSS is reached, or atol and rtol
for every compartment have been reached. However, if ODE solving problems
occur after the minSS has been reached the whole subject is considered an invalid
solve. If strictSSis FALSE then as long as minSS has been reached the last good
solve before ODE solving problems occur is considered the steady state, even
though either atol, rtol or maxSS have not been achieved.

When TRUE, reset the ISTATE variable to 1 for Isoda and liblsoda with doses,
like deSolve; When FALSE, do not reset the ISTATE variable with doses.

subset to NONMEM compatible EVIDs only. By default TRUE.

maxAtolRtolFactor

from

to

by

length.out

iCov

keep

indLinPhiTol
indLinPhiM

The maximum atol/rtol that FOCEi and other routines may adjust to. By
default 0.1

‘When there is no observations in the event table, start observations at this value.
By default this is zero.

When there is no observations in the event table, end observations at this value.
By default this is 24 + maximum dose time.

When there are no observations in the event table, this is the amount to increment
for the observations between from and to.

The number of observations to create if there isn’t any observations in the event
table. By default this is 200.

A data frame of individual non-time varying covariates to combine with the
events dataset by merge.

Columns to keep from either the input dataset or the iCov dataset. With the iCov
dataset, the column is kept once per line. For the input dataset, if any records
are added to the data LOCF (Last Observation Carried forward) imputation is
performed.

the requested accuracy tolerance on exponential matrix.

the maximum size for the Krylov basis

indLinMatExpType

This is them matrix exponential type that is use for RXODE. Currently the fol-
lowing are supported:
* Al-Mohy Uses the exponential matrix method of Al-Mohy Higham (2009)
» arma Use the exponential matrix from RcppArmadillo
» expokit Use the exponential matrix from Roger B. Sidje (1998)

indLinMatExpOrder

drop

an integer, the order of approximation to be used, for the A1-Mohy and expokit
values. The best value for this depends on machine precision (and slightly on
the matrix). We use 6 as a default.

Columns to drop from the output

nlmixrSim 113

idFactor This boolean indicates if original ID values should be maintained. This changes
the default sequentially ordered ID to a factor with the original ID values in the
original dataset. By default this is enabled.

mxhnil maximum number of messages printed (per problem) warning that T+ H =T on
a step (H = step size). This must be positive to result in a non-default value. The
default value is O (or infinite).

hmx i inverse of the maximum absolute value of H to are used. hmxi = 0.0 is allowed
and corresponds to an infinite hmax 1 (default). hminandhmximay be changed at any time, but will not take
fect until the next change ofHis considered. This option is only considered with-
method="liblsoda"".

warnIdSort Warn if the ID is not present and RxODE assumes the order of the parame-
ters/iCov are the same as the order of the parameters in the input dataset.

warnDrop Warn if column(s) were supposed to be dropped, but were not present.

ssAtol Steady state atol convergence factor. Can be a vector based on each state.
ssRtol Steady state rtol convergence factor. Can be a vector based on each state.
safeZero Use safe zero divide and log routines. By default this is turned on but you may

turn it off if you wish.

sumType Sum type to use for sum() in RxODE code blocks.
pairwise uses the pairwise sum (fast, default)
fsum uses Python’s fsum function (most accurate)
kahan uses Kahan correction
neumaier uses Neumaier correction
c uses no correction: default/native summing
prodType Product to use for prod() in RxODE blocks

long double converts to long double, performs the multiplication and then con-
verts back.

double uses the standard double scale for multiplication.

sensType Sensitivity type for 1inCmt () model:
advan Use the direct advan solutions
autodiff Use the autodiff advan solutions
forward Use forward difference solutions
central Use central differences
linDiff This gives the linear difference amount for all the types of linear compartment
model parameters where sensitivities are not calculated. The named components
of this numeric vector are:
e "lag" Central compartment lag
» "f" Central compartment bioavailability
* "rate"” Central compartment modeled rate
e "dur” Central compartment modeled duration
e "lag2" Depot compartment lag
e "f2" Depot compartment bioavailability
* "rate2” Depot compartment modeled rate

114

e "dur2" Depot compartment modeled duration

linDiffCentral This gives the which parameters use central differences for the linear compart-
ment model parameters. The are the same components as 1inDiff

resample A character vector of model variables to resample from the input dataset; This
sampling is done with replacement. When NULL or FALSE no resampling is done.
When TRUE resampling is done on all covariates in the input dataset

resampleID boolean representing if the resampling should be done on an individual basis
TRUE (ie. a whole patient is selected) or each covariate is resampled independent
of the subject identifier FALSE. When resampleID=TRUE correlations of param-
eters are retained, where as when resampleID=FALSE ignores patient covariate

correaltions. Hence the default is resampleID=TRUE.

a when using solve(), this is equivalent to the object argument. If you specify
object later in the argument list it overwrites this parameter.

b when using solve(), this is equivalent to the params argument. If you specify

params as a named argument, this overwrites the output

Value

A RxODE solved object

nlmixrTest nlmixTest function for testing

Description

nlmixTest function for testing

Usage

nlmixrTest(expr, silent = .isTestthat(), test = "cran")
Arguments

expr Expression for testing

silent Boolean for testing

test this represents the test group of the test
Value

Nothing, called for its side effects

Author(s)
Matthew Fidler

nlmixrUI.dynmodelfun

115

nlmixrUI.dynmodelfun Return dynmodel variable translation function

Description

Return dynmodel variable translation function

Usage

nlmixrUI.dynmodelfun(object)

Arguments

object nlmixr ui object

Value

nlmixr dynmodel translation

Author(s)
Matthew Fidler

nlmixrUI.dynmodelfun2 Return dynmodel variable translation function

Description

Return dynmodel variable translation function

Usage

nlmixrUI.dynmodelfun2(object)

Arguments

object nlmixr ui object

Value

nlmixr dynmodel translation

Author(s)
Matthew Fidler

116

nlmixrUI. focei.inits

nlmixrUI.focei.fixed Get parameters that are fixed

Description

Get parameters that are fixed

Usage
nlmixrUI.focei.fixed(obj)

Arguments

obj UI object

Value

logical vector of fixed THETA parameters

Author(s)
Matthew L. Fidler

nlmixrUI.focei.inits Get the FOCEIi initializations

Description

Get the FOCEi initializations

Usage

nlmixrUI.focei.inits(obj)

Arguments

obj UI object

Value

list with FOCE:i style initializations

Author(s)
Matthew L. Fidler

nlmixrUI nlme.specs 117

nlmixrUI.nlme.specs Create the nlme specs list for nlmixr nlme solving

Description

Create the nlme specs list for nlmixr nlme solving

Usage

nlmixrUI.nlme.specs(object, mu.type = c("thetas"”, "covariates”, "none"))
Arguments

object UI object

mu.type is the mu-referencing type of model hat nlme will be using.
Value

specs list for nlme

Author(s)
Matthew L. Fidler

nlmixrUI.rxode.pred Return RxODE model with predictions appended

Description

Return RxODE model with predictions appended

Usage

nlmixrUI.rxode.pred(object)

Arguments

object UI object

Value

String or NULL if RxODE is not specified by UL

Author(s)
Matthew L. Fidler

118

nlmixrUlI saem.bres

nlmixrUI.saem.ares Get initial estimate for ares SAEM.

Description

Get initial estimate for ares SAEM.

Usage

nlmixrUI.saem.ares(obj)

Arguments

obj UI model

Value

SAEM model$ares spec

Author(s)
Matthew L. Fidler

nlmixrUI.saem.bres Get initial estimate for bres SAEM.

Description

Get initial estimate for bres SAEM.

Usage

nlmixrUI.saem.bres(obj)

Arguments

obj UI model

Value

SAEM modelS$ares spec

Author(s)
Matthew L. Fidler

nlmixrUILsaem.cres 119

nlmixrUI.saem.cres Get initial estimate for bres SAEM.

Description

Get initial estimate for bres SAEM.

Usage

nlmixrUI.saem.cres(obj)

Arguments

obj UI model

Value

SAEM model$ares spec

Author(s)
Matthew L. Fidler

nlmixrUI.saem.distribution
Get SAEM distribution

Description

Get SAEM distribution

Usage

nlmixrUI.saem.distribution(obj)

Arguments

obj UI object

Value

Character of distribution

Author(s)
Matthew L. Fidler

120 nlmixrUIsaem.fit

nlmixrUI.saem.eta.trans
Get the eta->eta.trans for SAEM

Description

Get the eta->eta.trans for SAEM

Usage

nlmixrUI.saem.eta.trans(obj)

Arguments

obj ui object

Value

list of eta to eta.trans

Author(s)
Matthew L. Fidler

nlmixrUI.saem.fit Generate saem.fit user function.

Description

Generate saem.fit user function.

Usage

nlmixrUI.saem.fit(obj)

Arguments

obj UI object

Value

saem user function

Author(s)
Matthew L. Fidler

nlmixrUILsaem.fixed 121

nlmixrUI.saem.fixed Get parameters that are fixed for SAEM

Description

Get parameters that are fixed for SAEM

Usage

nlmixrUI.saem.fixed(obj)

Arguments

obj UI object

Value

List of parameters that are fixed.

Author(s)
Matthew L. Fidler

nlmixrUI.saem.init Get saem initilization list

Description

Get saem initilization list

Usage

nlmixrUI.saem.init(obj)

Arguments

obj nlmixr UT object
Value

Return SAEM inits list.
Author(s)

Matthew L. Fidler

122 nlmixrUl saem.init.theta

nlmixrUI.saem.init.omega
SAEM'’s init$omega

Description

SAEM’s init$omega

Usage

nlmixrUI.saem.init.omega(obj, names = FALSE)

Arguments

obj nlmixr UT object

names When TRUE return the omega names. By default this is FALSE.
Value

Return initial matrix

Author(s)
Matthew L. Fidler

nlmixrUI.saem.init.theta
Generate SAEM initial estimates for THETA.

Description

Generate SAEM initial estimates for THETA.

Usage

nlmixrUI.saem.init.theta(obj)

Arguments

obj nlmixr UT object

Value

SAEM theta initial estimates

Author(s)
Matthew L. Fidler

nlmixrUl saem.log.eta

123

nlmixrUI.saem.log.eta Get model$log.eta for SAEM

Description

Get model$log.eta for SAEM

Usage

nlmixrUI.saem.log.eta(obj)

Arguments

obj UI model
Value

SAEM model$log.eta
Author(s)

Matthew L. Fidler

nlmixrUI.saem.model Generate SAEM model list

Description

Generate SAEM model list

Usage

nlmixrUI.saem.model(obj)

Arguments

obj nlmixr UT object

Value

SAEM model list

Author(s)
Matthew L. Fidler

124

nlmixrUIl saem.res.mod

nlmixrUI.saem.model.omega

Get the SAEM model Omega
Description
Get the SAEM model Omega
Usage

nlmixrUI.saem.model.omega(obj)

Arguments

obj UI model
Value

SAEM model$omega spec
Author(s)

Matthew L. Fidler

nlmixrUI.saem.res.mod Get the SAEM model$res.mod code

Description

Get the SAEM model$res.mod code

Usage

nlmixrUI.saem.res.mod(obj)

Arguments

obj UI model
Value

SAEM model$res.mod spec
Author(s)

Matthew L. Fidler

nlmixrUl saem.res.name

125

nlmixrUI.saem.res.name
Get error names for SAEM

Description

Get error names for SAEM

Usage

nlmixrUI.saem.res.name(obj)

Arguments

obj SAEM user interface function.

Value

Names of error estimates for SAEM

Author(s)
Matthew L. Fidler

nlmixrUI.saem.rx1 Return RxODE model with predictions appended

Description

Return RxODE model with predictions appended

Usage

nlmixrUI.saem.rx1(object)

Arguments

object UI object

Value

Combined focei model text for RxODE

Author(s)
Matthew L. Fidler

126 nlmixrUI.theta.pars

nlmixrUI.saem.theta.name
Get THETA names for nimixr’s SAEM

Description

Get THETA names for nlmixr’s SAEM

Usage

nlmixrUI.saem.theta.name(uif)

Arguments

uif nlmixr Ul object

Value

SAEM theta names

Author(s)
Matthew L. Fidler

nlmixrUI.theta.pars Get the Parameter function with THETA/ETAs defined

Description

Get the Parameter function with THETA/ETAs defined

Usage
nlmixrUI.theta.pars(obj)

Arguments

obj UI object

Value

parameters function defined in THETA[#] and ETA[#]s.

Author(s)
Matthew L. Fidler

nlmixrValidate 127

nlmixrvValidate Validate nlmixr

Description

This allows easy vaildation/qualification of nlmixr by running the testing suite on your system.

Usage

nlmixrValidate(type = NULL, check = FALSE)

nmTest(type = NULL, check = FALSE)

Arguments

type of test to be run

check Use devtools::check to run checks
Value

Nothing, called for its side effects

Author(s)
Matthew L. Fidler

nlmixrVersion Display nlmixr’s version

Description

Display nlmixr’s version
play

Usage

nlmixrVersion()

Value

Nothing, called for its side effects

Author(s)
Matthew L. Fidler

128

nlmixr_fit

nlmixr_fit

Fit a nlmixr model

Description

Fit a nlmixr model

Usage
nlmixr_fit(
uif,
data,

est = NULL,

control = list(),

’

sum.prod = FALSE,

table =
keep = NULL,
drop = NULL,
save = NULL,
envir =

Arguments
uif

data

est

control

sum. prod
table
keep
drop

save

envir

tableControl(),

parent.frame()

Parsed nlmixr model (by nlmixr(mod.fn)).

Dataset to estimate. Needs to be RkODE compatible (see https://nlmixrdevelopment.
github.io/RxODE/articles/RxODE-event-types.html for detailed dataset
requirements).

Estimation method
Estimation control options. They could be nlmeControl, saemControl or foceiControl
Parameters passed to estimation method.

Take the RxODE model and use more precise products/sums. Increases solving
accuracy and solving time.

A list controlling the table options (i.e. CWRES, NPDE etc). See tableControl.

Columns to keep from either the input dataset. For the input dataset, if any
records are added to the data LOCF (Last Observation Carried forward) impu-
tation is performed.

Columns to drop from the output

This option determines if the fit will be saved to be reloaded if already run. If
NULL, get the option from options("nlmixr.save");

Environment that nlmixr is evaluated in.

https://nlmixrdevelopment.github.io/RxODE/articles/RxODE-event-types.html
https://nlmixrdevelopment.github.io/RxODE/articles/RxODE-event-types.html

nmDocx

Value

nlmixr fit object

Author(s)
Matthew L. Fidler

129

nmDocx

Create a run summary word document

Description

Create a run summary word document

Usage

nmDocx (
X7

docxOut = NULL,
docxTemplate = NULL,

plot = TRUE,
titleStyle =
subtitleStyle
normalStyle =
headerStyle =
centeredStyle

getOption(”"nlmixr.docx.title”, "Title"),

= getOption("nlmixr.docx.subtitle”, "Subtitle"),
getOption("nlmixr.docx.normal”, "Normal”),

getOption(”"nlmixr.docx.headingl1”, "Heading 1"),
= getOption("nlmixr.docx.centered”, "centered"),

preformattedStyle = getOption(”"nlmixr.docx.preformatted”, "HTML Preformatted”),
width = getOption("nlmixr.docx.width”, 69),

save = FALSE
)
nmSave(x, ..., save = TRUE)
Arguments

X nlmixr fit object.

docxOut Output file for run information document. If not specified it is the name of R
object where the fit is located with the ~YEAR-MONTH-DAY . docx appended. If it
is NULL the document is not saved, but the of ficer object is returned.

docxTemplate This is the document template. If not specified it defaults to option(”"nlmixr.docx.template”).
Ifoption("nlmixr.docx. template”) is not specified it uses the included nlmixr
document template. When docxTemplate=NULL it uses the of ficer blank doc-
ument.

plot Boolean indicating if the default goodness of fit plots are added to the document.

By default TRUE

130 nmDocx

titleStyle This is the word style name for the nlmixr title; Usually this is nlmixr version
(R object). Defaults to option("nlmixr.docx.title"”) or Title

subtitleStyle This is the word style for the subtitle which is nlmixr model name and date.
Defaults to option("nlmixr.docx.subtitle") or Subtitle

normalStyle This is the word style for normal text. Defaults to option("nlmixr.docx.normal")
or Normal

headerStyle This is the word style for heading text. Defaults to option("nlmixr.docx.heading1™)
or Heading 1

centeredStyle This is the word style for centered text which is used for the figures. Defaults to
option(”"nlmixr.docx.centered”) or centered
preformattedStyle

This is the preformatted text style for R output lines. Defaults to option(”"nlmixr.docx.preformatted”
or HTML Preformatted

width Is an integer representing the number of characters your preformatted style sup-
ports. By default this is option("nlmixr.docx.width") or 69

save Should the docx be saved in a zip file with the R rds data object for the fit? By
default this is FALSE with nmDocx and TRUE with nmSave

when using ‘nmSave‘ these arguments are passed to ‘nmDocx

Value

An officer docx object

Author(s)
Matthew Fidler

Examples

library(nlmixr)
pheno <- function() {
Pheno with covariance
ini({
tcl <- log(0.008) # typical value of clearance
tv <- log(@0.6) # typical value of volume
var(eta.cl)
eta.cl + eta.v ~ c(1,
0.01, 1) ## cov(eta.cl, eta.v), var(eta.v)
interindividual variability on clearance and volume
add.err <- 0.1 # residual variability
D)
model ({
cl <- exp(tcl + eta.cl) # individual value of clearance
v <- exp(tv + eta.v) # individual value of volume
ke <= cl /v # elimination rate constant
d/dt(A1) = - ke * Al # model differential equation
cp=A1 /v # concentration in plasma

nmLst 131

cp ~ add(add.err) # define error model
b))
3

fit.s <- nlmixr(pheno, pheno_sd, "saem")

Save output information into a word document
RXODE: : .rxWithWd(tempdir(), # Put document in temporary directory
nmDocx (fit.s)

)

nmLst Create a large output based on a nlmixr fit

Description

Create a large output based on a nlmixr fit

Usage

nmLst(x, lst = NULL)

Arguments
X nlmixr fit object
1st Listing file. If not specified, it is determined by the day and the model/R-object
name. If it is specified as NULL the listing output is displayed on the screen.
Value

invisibly returns fit

Author(s)

Matthew Fidler

132 ofv

nmsimplex Nelder-Mead simplex search

Description

Nelder-Mead simplex search

Usage

nmsimplex(start, fr, rho = NULL, control = list())

Arguments

start initials
fr objective function
rho evaluation environment

control additional optimization options

Value

alistof ...

ofv Return the objective function

Description

Return the objective function

Usage
ofv(x, type, ...)
Arguments
X object to return objective function value
type Objective function type value to retrieve or add.

* focei For most models you can specify "focei" and it will add the focei
objective function.

* nlme This switches/chooses the nlme objective function if applicable. This
objective function cannot be added if it isn’t present.

* fo FO objective function value. Cannot be generated

* foce FOCE object function value. Cannot be generated

Oral _1CPT 133

* laplace# This adds/retrieves the Laplace objective function value. The #
represents the number of standard deviations requested when expanding
the Gaussian Quadrature. This can currently only be used with saem fits.

 gauss#.# This adds/retrieves the Gaussian Quadrature approximation of the
objective function. The first number is the number of nodes to use in the
approximation. The second number is the number of standard deviations to
expand upon.

Other arguments sent to ofv for other methods.

Value

Objective function value

Author(s)
Matthew Fidler
Oral_1CPT Oral_ICPT — I Compartment Model with Oral Absorption Simulated
Data from ACOP 2016
Description

This is a simulated dataset from the ACOP 2016 poster. All Datasets were simulated with the
following methods.

Usage
Oral_1CPT

Format

A data frame with 7,920 rows and 15 columns

ID Simulated Subject ID

TIME Simulated Time

DV Simulated Dependent Variable

LNDV Simulated log(Dependent Variable)
MDYV Missing DV data item

AMT Dosing AMT

EVID NONMEM Event ID

DOSE Dose

V Individual Simulated Volume

CL Individual Clearance

134 performNorm

KA Individual Ka
SS Steady State

II Interdose Interval
SD Single Dose Flag
CMT Compartment

Details

Richly sampled profiles were simulated for 4 different dose levels (10, 30, 60 and 120 mg) of 30
subjects each as single dose (over 72h), multiple dose (4 daily doses), single and multiple dose
combined, and steady state dosing, for a range of test models: 1- and 2-compartment disposition,
with and without 1st order absorption, with either linear or Michaelis-Menten (MM) clearance(MM
without steady state dosing). This provided a total of 42 test cases. All inter-individual variabilities
(ITVs) were set at 30 were the same for all models. A similar set of models was previously used to
compare NONMEM and Monolix4. Estimates of population parameters, standard errors for fixed-
effect parameters, and run times were compared both for closed-form solutions and using ODEs.
Additionally, a sparse data estimation situation was investigated where 500 datasets of 600 subjects
each (150 per dose) were generated consisting of 4 random time point samples in 24 hours per
subject, using a first-order absorption, 1-compartment disposition, linear elimination model.

Source
Schoemaker R, Xiong Y, Wilkins J, Laveille C, Wang W. nlmixr: an open-source package for
pharmacometric modelling in R. ACOP 2016

See Also

Other nlmixr datasets: Bolus_1CPTMM, Bolus_1CPT, Bolus_2CPTMM, Bolus_2CPT, Infusion_1CPT,
Wang2007, pheno_sd, rats, theo_md, theo_sd, warfarin

performNorm Perform normalization of the covariate

Description

Perform normalization of the covariate

Usage

performNorm(
data,
covariate,
varName,
normOp,
normValVec,
isLog = FALSE,

pheno_sd 135

isCat = FALSE,

isHS = FALSE

)
Arguments

data a dataframe consisting the covariates added

covariate a string giving the covariate name; must be present in the data used for ’fit’

varName the variable name to which the covariate is being added

normOp an operator indicating the kind transformation to be done on the covariate

normValVec a numeric value to be used for normalization of the covariate

isLog a boolean indicating the presence of log-transformation in the funstring; default

is FALSE

isCat a boolean indicating if the covariate is categorical; default is FALSE

isHS a boolean indicating if the covariate is of Hockey-stick kind; default is FALSE
Value

a list comprising the update dataframe, the expression for covariate, and a list of covariate names

Author(s)
Vipul Mann, Matthew Fidler

pheno_sd Single Dose Phenobarbitol PK/PD

Description
This is from a PK study in neonatal infants. They received multiple doses of phenobarbital for
seizure prevention.

Usage

pheno_sd

Format

A data frame with 744 rows and 8 columns

ID Infant ID

TIME Time of (hr)

AMT Dose in (ug/kg)

WT Weight in kg

APGR A 5-minute Apgar score to measure infant health

136 plot.dyn.mcmc

DV The concentration of phenobarbitol in the serum (ug/mL)
MDYV If the dependent variable (DV) is missing; O for observations, 1 for doses
EVID Event ID

Details

The data were originally given in Grasela and Donn(1985) and are analyzed in Boeckmann, Sheiner
and Beal (1994), in Davidian and Giltinan (1995), and in Littell et al. (1996).

Source

Pinheiro, J. C. and Bates, D. M. (2000), Mixed-Effects Models in S and S-PLUS, Springer, New
York. (Appendix A.23)

Davidian, M. and Giltinan, D. M. (1995), Nonlinear Models for Repeated Measurement Data, Chap-
man and Hall, London. (section 6.6)

Grasela and Donn (1985), Neonatal population pharmacokinetics of phenobarbital derived from
routine clinical data, Developmental Pharmacology and Therapeutics, 8, 374-383.

Boeckmann, A. J., Sheiner, L. B., and Beal, S. L. (1994), NONMEM Users Guide: Part V, Univer-
sity of California, San Francisco.

Littell, R. C., Milliken, G. A., Stroup, W. W. and Wolfinger, R. D. (1996), SAS System for Mixed
Models, SAS Institute, Cary, NC.
See Also

Other nlmixr datasets: Bolus_1CPTMM, Bolus_1CPT, Bolus_2CPTMM, Bolus_2CPT, Infusion_1CPT,
Oral_1CPT, Wang2007, rats, theo_md, theo_sd, warfarin

plot.dyn.mcmc Plot of a non-population dynamic model fit using mcmc

Description

Plot of a non-population dynamic model fit using mcmc

Usage
S3 method for class 'dyn.mcmc'
plot(x, ...)
Arguments
X a dynmodel fit object
additional arguments
Value

nothing, called to produce goodness of fits

plot.nlmixrFitData 137

plot.nlmixrFitData Plot a nlmixr data object

Description

Plot some standard goodness of fit plots for the focei fitted object

Usage
S3 method for class 'nlmixrFitData'
plot(x, ...)
Arguments
X a focei fit object
additional arguments
Value

Nothing, called for its side effects

Author(s)
Wenping Wang & Matthew Fidler

plot.saemFit Plot an SAEM model fit

Description

Plot an SAEM model fit

Usage
S3 method for class 'saemFit'
plot(x, ...)

Arguments

X a saemPFit object

others

Value

a list

138 preconditionFit

preCondInv Calculate the inverse preconditioning matrix

Description

Calculate the inverse preconditioning matrix

Usage
preCondInv(Rin)

Arguments

Rin The R matrix input

Value

The inverse preconditioning matrix

preconditionFit Linearly re-parameterize the model to be less sensitive to rounding
errors

Description

Linearly re-parameterize the model to be less sensitive to rounding errors

Usage

preconditionFit(fit, estType = c("full”, "posthoc”, "none"), ntry = 10L)

Arguments
fit A nlmixr fit to be preconditioned
estType Once the fit has been linearly reparametrized, should a "full" estimation, "posthoc”
estimation or simply a estimation of the covariance matrix "none" before the fit
is updated
ntry number of tries before giving up on a pre-conditioned covariance estimate
Value

A nlmixr fit object that was preconditioned to stabilize the variance/covariance calculation

References

Aoki Y, Nordgren R, Hooker AC. Preconditioning of Nonlinear Mixed Effects Models for Stabilisa-
tion of Variance-Covariance Matrix Computations. AAPS J. 2016;18(2):505-518. doi:10.1208/s12248-
016-9866-5

prediction 139

prediction Prediction after a gnlmm fit

Description

Generate predictions after a generalized non-linear mixed effect model fit

Usage

prediction(fit, pred, data = NULL, mc.cores = 1)

Arguments

fit a gnlmm fit object

pred prediction function

data new data

mc.cores number of cores (for Linux only)
Value

observed and predicted

Examples

if (FALSE) {

ode <- "

d/dt(depot) =-KA*depot;
d/dt(centr) = KAxdepot - KExcentr;

n

sys1 <- RxODE(ode)

pars <- function() {
CL <- exp(THETA[1] + ETA[1]) # ; if (CL>100) CL=100
KA <- exp(THETA[2] + ETA[2]) # ; if (KA>20) KA=20
KE <- exp(THETA[31)
V <- CL / KE
sig2 <- exp(THETA[4])
3
11ik <- function() {
pred <- centr / V
dnorm(DV, pred, sd = sqrt(sig2), log = TRUE)
3

inits <- list(THTA = c(-3.22, 0.47, -2.45, 0))

inits$OMGA <- list(ETA[1]+ETA[2]~c(.027, .01, .37))

140 print.dyn.ID

theo <- theo_md

fit <- try(gnlmm(llik, theo, inits, pars, sysi,
control = list(trace = TRUE, nAQD = 1)
)

if (linherits(fit, "try-error”)) {

pred <- function() {
pred <- centr / V

}

s <- try(prediction(fit, pred))
if (!inherits(s, "try-error”)) {
plot(sp, sdv)
abline(@, 1, col = "red")
3
3
}

print.dyn.ID Print a non-population dynamic model fit object

Description

Print a non-population dynamic model fit object

Usage
S3 method for class 'dyn.ID'
print(x, ...)
Arguments
X a dynmodel fit object
additional arguments
Value

the original object

print.gnlmm.fit 141

print.gnlmm.fit Print a gnlmm fit

Description

Print a generalized non-linear mixed effect model fit

Usage
S3 method for class 'gnlmm.fit'
print(x, ...)
Arguments
X a gnlmm fit object
additional arguments
Value

the original object (invisibly)

print.nlmixrUI Print Ul function

Description

Print UI function

Usage
S3 method for class 'nlmixrUI'
print(x, ...)
Arguments
X UI function
other arguments
Value

original object (invisibly)

Author(s)
Matthew L. Fidler

142 pump

print.saemFit Print an SAEM model fit summary

Description

Print an SAEM model fit summary

Usage
S3 method for class 'saemFit'
print(x, ...)

Arguments

X a saemFit object

others

Value

a list

pump Pump failure example dataset

Description

The records the number of failures and operation time for groups of 10 pumps.

Usage

pump

Format

A data frame with 10 rows and 5 columns

y Number of pump failures

t Failure Time

group Continuous Operation (=1) or Intermittent Operation(=2)
ID ID for group of 10 pumps

logtstd Centeredy operation times

Source

https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#
statug_nlmixed_sect@40.htm

https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_nlmixed_sect040.htm
https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_nlmixed_sect040.htm

rats 143

References

Gaver, D. P. and O’Muircheartaigh, I. G. (1987), "Robust Empirical Bayes Analysis of Event Rates,"
Technometrics, 29, 1-15.

rats Pregnant Rat Diet Experiment

Description

16 pregnant rats have a control diet, and 16 have a chemically treated diet. The litter size for each
rat is recorded after 4 and 21 days. This dataset is used in the SAS Probit-model with binomial data,
and saved in the nlmixr package as rats.

Usage

rats

Format

A data frame with 32 rows and 6 columns

trt Treatment; c= control diet; t=treated diet
m Litter size after 4 days

x Litter size after 21 days

x1 Indicator for trt=c

x2 Indicator for trt=t

ID RatID

Source

https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#
statug_nlmixed_sect@40.htm

References

Weil, C.S., 1970. Selection of the valid number of sampling units and a consideration of their
combination in toxicological studies involving reproduction, teratogenesis or carcinogenesis. Fd.
Cosmet. Toxicol. 8, 177-182.

Williams, D.A., 1975. The analysis of binary responses from toxicological experiments involving
reproduction and teratogenicity. Biometrics 31, 949-952.

McCulloch, C. E. (1994), "Maximum Likelihood Variance Components Estimation for Binary
Data," Journal of the American Statistical Association, 89, 330 - 335.

Ochi, Y. and Prentice, R. L. (1984), "Likelihood Inference in a Correlated Probit Regression Model,"
Biometrika, 71, 531-543.

https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_nlmixed_sect040.htm
https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_nlmixed_sect040.htm

144 removeCovMultiple

See Also

Other nlmixr datasets: Bolus_1CPTMM, Bolus_1CPT, Bolus_2CPTMM, Bolus_2CPT, Infusion_1CPT,
Oral_1CPT, Wang2007, pheno_sd, theo_md, theo_sd, warfarin

removeCovariate Remove covariate expression from a function string

Description

Remove covariate expression from a function string

Usage

removeCovariate(funstring, varName, covariate, theta)

Arguments
funstring a string giving the expression that needs to be modified
varName the variable to which the given string corresponds to in the model expression
covariate the covariate expression that needs to be removed (from the appropriate place)
theta a list of names of the "theta’ parameters in the ’fit’ object

Value

returns the modified string with the covariate removed from the function string

Author(s)
Vipul Mann, Matthew Fidler

removeCovMultiple Removing multiple covariates

Description

Removing multiple covariates

Usage

removeCovMultiple(covInfo, fitobject)

Arguments

covInfo a list containing information about each variable-covariate pair

fitobject an nlmixr ’fit” object

removeCovVar 145

Value

a list with the updated fit object, the variable-covariate pair string, and the parameter names for the
corresponding covaraites removed

Author(s)

Vipul Mann, Matthew Fidler

removeCovVar Remove covariate from function string

Description

Function to remove covariates from a given variable’s equation in the function string text

Usage

removeCovVar(fitobject, varName, covariate, categorical = FALSE, isHS = FALSE)

Arguments
fitobject an nlmixr ’fit’ object
varName a string giving the variable name to which covariate needs to be added
covariate a string giving the covariate name; must be present in the data used for ’fit’
categorical a boolean to represent if the covariate to be added is categorical
isHS a boolean to represent if the covariate to be added is hockey-stick normalized
Value

returns a list containing the updated model and the parameter names for the covariates added

Author(s)

Vipul Mann, Matthew Fidler

146 saem.fit

residuals.nlmixrFitData
Extract residuals from the FOCEI fit

Description

Extract residuals from the FOCEI fit

Usage
S3 method for class 'nlmixrFitData’
residuals(
object,
type = c("ires”, "res”, "iwres", "wres”, "cwres”, "cpred”, "cres"
)
Arguments
object focei.fit object
Additional arguments
type Residuals type fitted.
Value
residuals
Author(s)

Matthew L. Fidler

saem.fit Fit an SAEM model

Description

Fit an SAEM model using either closed-form solutions or ODE-based model definitions

saem.fit 147

Usage

saem.fit(
model,
data,
inits,
PKpars = NULL,
pred = NULL,
covars = NULL,
mcmc = list(niter = c(200, 300), nmc = 3, nu = c(2, 2, 2)),
ODEopt = list(atol = 1e-06, rtol = 1e-04, method = "1soda"”, transitAbs = FALSE),
distribution = c("normal”, "poisson”, "binomial”, "lnorm"),
seed = 99

)

saem(
model,
data,
inits,
PKpars = NULL,
pred = NULL,
covars = NULL,
mcmc = list(niter = c(200, 300), nmc = 3, nu = c(2, 2, 2)),
ODEopt = list(atol = 1e-06, rtol = 1e-04, method = "lsoda"”, transitAbs = FALSE),
distribution = c("normal”, "poisson”, "binomial”, "lnorm"),
seed = 99

)

S3 method for class 'fit.nlmixr.ui.nlme'
saem(
model,
data,
inits,
PKpars = NULL,
pred = NULL,
covars = NULL,
mcme = list(niter = c(200, 300), nmc = 3, nu = c(2, 2, 2)),
ODEopt = list(atol = 1e-06, rtol = 1e-04, method = "1soda"”, transitAbs = FALSE),
distribution = c("normal”, "poisson”, "binomial”, "lnorm"),
seed = 99

)

S3 method for class 'fit.function'
saem(

model,

data,

inits,

PKpars = NULL,

pred = NULL,

148 saem.fit

covars = NULL,
mcme = list(niter = c(200, 300), nmc = 3, nu = c(2, 2, 2)),
ODEopt = list(atol = 1e-06, rtol = 1e-04, method = "1soda"”, transitAbs = FALSE),
distribution = c("normal”, "poisson”, "binomial”, "lnorm”),
seed = 99
)

S3 method for class 'fit.nlmixrUI'
saem(
model,
data,
inits,
PKpars = NULL,
pred = NULL,
covars = NULL,
mcme = list(niter = c(200, 300), nmc = 3, nu = c(2, 2, 2)),
ODEopt = list(atol = 1e-06, rtol = 1e-04, method = "lsoda", transitAbs = FALSE),
distribution = c("normal”, "poisson”, "binomial”, "lnorm”),
seed = 99

)

S3 method for class 'fit.RxODE'
saem(
model,
data,
inits,
PKpars = NULL,
pred = NULL,
covars = NULL,
mcmc = list(niter = c(200, 300), nmc = 3, nu = c(2, 2, 2)),
ODEopt = list(atol = 1e-06, rtol = 1e-04, method = "1soda"”, transitAbs = FALSE),
distribution = c("normal”, "poisson”, "binomial”, "lnorm"),
seed = 99

)

S3 method for class 'fit.default'
saem(
model,
data,
inits,
PKpars = NULL,
pred = NULL,
covars = NULL,
mcmc = list(niter = c(200, 300), nmc = 3, nu = c(2, 2, 2)),
ODEopt = list(atol = 1e-06, rtol = 1e-04, method = "1soda"”, transitAbs = FALSE),
distribution = c("normal”, "poisson”, "binomial”, "lnorm”),
seed = 99

saemControl 149

Arguments
model an RxODE model or lincmt()
data input data
inits initial values
PKpars PKpars function
pred pred function
covars Covariates in data
mcme a list of various mcmc options
ODEopt optional ODE solving options
distribution one of ¢("normal","poisson","binomial")
seed seed for random number generator
Details

Fit a generalized nonlinear mixed-effect model using the Stochastic Approximation Expectation-
Maximization (SAEM) algorithm

Value

saem fit object

Author(s)
Matthew Fidler & Wenping Wang

saemControl Control Options for SAEM

Description

Control Options for SAEM

Usage

saemControl (
seed = 99,
nBurn = 200,
nEm = 300,
nmc = 3,
nu = c(2, 2, 2),
atol = 1e-06,
rtol = 1e-04,

method = "liblsoda”,
transitAbs = FALSE,

150 saemControl

print = 1,
trace = 0,
COVMethOd = C(”]_inFim", llfimll’ Ilr’sll, Ilr.lﬁ, Ilsll, IIH),

calcTables = TRUE,

loglik = FALSE,

nnodes.gq = 3,

nsd.gq = 1.6,

optExpression = FALSE,

maxsteps = 100000L,

adjobf = TRUE,

sum.prod = FALSE,

addProp = c("combined2”, "combinedl"),
singleOde = TRUE,

tol = 1e-06,
itmax = 30,
type = c("nelder-mead”, "newuoa"),

powRange = 10,

lambdaRange = 3,
loadSymengine = FALSE,
odeRecalcFactor = 107(0.5),
maxOdeRecalc = 5L,

Arguments

seed Random Seed for SAEM step. (Needs to be set for reproducibility.) By default
this is 99.

nBurn Number of iterations in the Stochastic Approximation (SA), or burn-in step.
This is equivalent to Monolix’s K_@ or K_b.

nEm Number of iterations in the Expectation-Maximization (EM) Step. This is equiv-
alent to Monolix’s K_1.

nmc Number of Markov Chains. By default this is 3. When you increase the number
of chains the numerical integration by MC method will be more accurate at the
cost of more computation. In Monolix this is equivalent to L

nu This is a vector of 3 integers. They represent the numbers of transitions of the
three different kernels used in the Hasting-Metropolis algorithm. The default
value is c(2,2,2), representing 40 for each transition initially (each value is
multiplied by 20).
The first value represents the initial number of multi-variate Gibbs samples are
taken from a normal distribution.
The second value represents the number of uni-variate, or multi- dimensional
random walk Gibbs samples are taken.
The third value represents the number of bootstrap/reshuffling or uni-dimensional
random samples are taken.

atol a numeric absolute tolerance (1e-8 by default) used by the ODE solver to deter-
mine if a good solution has been achieved; This is also used in the solved linear
model to check if prior doses do not add anything to the solution.

saemControl

rtol

method

transitAbs

print

trace

covMethod

calcTables

loglLik

nnodes.gq

nsd.gq

optExpression

maxsteps

adjobf

151

a numeric relative tolerance (1e-6 by default) used by the ODE solver to deter-
mine if a good solution has been achieved. This is also used in the solved linear
model to check if prior doses do not add anything to the solution.

The method for solving ODEs. Currently this supports:
* "liblsoda” thread safe Isoda. This supports parallel thread-based solving,
and ignores user Jacobian specification.

e "lsoda” — LSODA solver. Does not support parallel thread-based solving,
but allows user Jacobian specification.

* "dop853" — DOP853 solver. Does not support parallel thread-based solving
nor user Jacobain specification

e "indLin" — Solving through inductive linearization. The RxODE dII must
be setup specially to use this solving routine.
boolean indicating if this is a transit compartment absorption

The number it iterations that are completed before anything is printed to the
console. By default, this is 1.

An integer indicating if you want to trace(1) the SAEM algorithm process. Use-
ful for debugging, but not for typical fitting.

Method for calculating covariance. In this discussion, R is the Hessian matrix
of the objective function. The S matrix is the sum of each individual’s gradient
cross-product (evaluated at the individual empirical Bayes estimates).

"linFim" Use the Linearized Fisher Information Matrix to calculate the covari-
ance.

"fim" Use the SAEM-calculated Fisher Information Matrix to calculate the co-
variance.

"r,s" Uses the sandwich matrix to calculate the covariance, thatis: R~ 1 x S x
R™1

"r" Uses the Hessian matrix to calculate the covariance as 2 x R~1

"s" Uses the crossproduct matrix to calculate the covariance as 4 x S~ 1

"" Does not calculate the covariance step.

This boolean is to determine if the foceiFit will calculate tables. By default this
is TRUE

boolean indicating that log-likelihood should be calculate by Gaussian quadra-
ture.

number of nodes to use for the Gaussian quadrature when computing the likeli-
hood with this method (defaults to 1, equivalent to the Laplaclian likelihood)

span (in SD) over which to integrate when computing the likelihood by Gaussian
quadrature. Defaults to 3 (eg 3 times the SD)

Optimize the RxODE expression to speed up calculation. By default this is
turned on.

maximum number of (internally defined) steps allowed during one call to the
solver. (5000 by default)

is a boolean to indicate if the objective function should be adjusted to be closer
to NONMEM'’s default objective function. By default this is TRUE

152 setCov

sum. prod Take the RxXODE model and use more precise products/sums. Increases solving
accuracy and solving time.

addProp one of "combined1" and "combined2"; These are the two forms of additive+proportional
errors supported by monolix/nonmem:
combinedl: transform(y)=transform(f)+(a+b*f"c)*eps
combined2: transform(y)=transform(f)+(a"2+b"2*{*(2c))*eps

singleOde This option allows a single ode model to include the PK parameter information
instead of splitting it into a function and a RxODE model

tol This is the tolerance for the regression models used for complex residual errors
(ie add+prop etc)

itmax This is the maximum number of iterations for the regression models used for
complex residual errors. The number of iterations is itmax*number of parame-
ters

type indicates the type of optimization for the residuals; Can be one of c("nelder-
mead", "newuoa")

powRange This indicates the range that powers can take for residual errors; By default this
is 10 indicating the range is c¢(1/10, 10) or ¢(0.1,10)

lambdaRange This indicates the range that Box-Cox and Yeo-Johnson parameters are con-

strained to be; The default is 3 indicating the range (-3,3)

loadSymengine Boolean indicating if the model should be loaded into symengine. This cause
all the ODEs to be collapsed into one expression that is eventually optimized if
optExpression is TRUE.

odeRecalcFactor
The factor to increase the rtol/atol with bad ODE solving.

maxOdeRecalc Maximum number of times to reduce the ODE tolerances and try to resolve the
system if there was a bad ODE solve.

Other arguments to control SAEM.

Value

List of options to be used in n1lmixr fit for SAEM.

Author(s)
Wenping Wang & Matthew L. Fidler

setCov Set the covariance type based on prior calculated covariances

Description

Set the covariance type based on prior calculated covariances

setOfv 153

Usage

setCov(fit, method)

Arguments

fit nlmixr fit

method covariance method
Value

Fit object with covariance updated

Author(s)

Matt Fidler

setOfv Set/get Objective function type for a nlmixr object

Description

Set/get Objective function type for a nlmixr object
Usage

setOfv(x, type)

getOfvType(x)

Arguments

X nlmixr fit object

type Type of objective function to use for AIC, BIC, and $objective

Value

Nothing

Author(s)
Matthew L. Fidler

154

summary.dyn.ID

sgrtm Return the square root of general square matrix A

Description

Return the square root of general square matrix A

Usage

sqrtm(m)

Arguments

m Matrix to take the square root of.

Value

A square root general square matrix of m

summary.dyn.ID Summary of a non-population dynamic model fit

Description

Summary of a non-population dynamic model fit

Usage
S3 method for class 'dyn.ID'
summary(object, ...)

Arguments
object a dynmodel fit object

additional arguments

Value

original object (invisible)

summary.dyn.mcmc 155

summary .dyn.mcmc Print summary of a non-population dynamic model fit using mcmc

Description

Print summary of a non-population dynamic model fit using mcmc

Usage

S3 method for class 'dyn.mcmc'
summary (object, ...)

S3 method for class 'dyn.mcmc'

print(x, ...)
Arguments
additional arguments
X, object a dynmodel fit object
Value

invisibly return original object

summary.saemFit Print an SAEM model fit summary

Description

Print an SAEM model fit summary

Usage
S3 method for class 'saemFit'
summary (object, ...)
Arguments
object a saemFit object
others
Value

a list

cholSEtol = (.Machine$double.eps)*(1/3),
state = TRUE,

lhs = TRUE,

eta = TRUE,

covariates = TRUE,

addDosing = FALSE,

subsetNonmem = TRUE,

156 tableControl
tableControl Output table/data.frame options
Description
Output table/data.frame options
Usage
tableControl(
npde = NULL,
cwres =
nsim = 300,
ties = TRUE,
censMethod = c("truncated-normal”, "cdf”, "ipred”, "pred”, "epred”, "omit"),
seed = 1009,

When TRUE, request npde regardless of the algorithm used.
When TRUE, request CWRES and FOCE:i likelihood regardless of the algorithm

represents the number of simulations. For RxODE, if you supply single subject

When ‘TRUE" jitter prediction-discrepancy points to discourage ties in cdf.

truncated-normal"‘ Simulates from a truncated normal distribution under the

- “"cdf"* Use the cdf-method for censoring with npde and use this for any other

an object specifying if and how the random number generator should be initial-

cores = NULL
Arguments
npde
cwres
used.
nsim
event tables (created with [eventTable()])
ties
censMethod Handle censoring method:
assumption of the model and censoring.
residuals (‘cwres® etc)
- “"omit"‘ omit the residuals for censoring
seed
ized
cholSEtol The tolerance for the ‘RxODE::choleSE* function
state

is a Boolean indicating if ‘state values will be included (default “TRUE®)

theo_md

lhs
eta
covariates

addDosing

subsetNonmem

cores

Details

157

is a Boolean indicating if remaining ‘lhs‘ values will be included (default ‘TRUE)
is a Boolean indicating if ‘eta‘ values will be included (default “TRUE®)
is a Boolean indicating if covariates will be included (default ‘“TRUE)

Boolean indicating if the solve should add RxODE EVID and related columns.
This will also include dosing information and estimates at the doses. Be default,
RxODE only includes estimates at the observations. (default FALSE). When
addDosing is NULL, only include EVID=0 on solve and exclude any model-times
or EVID=2. If addDosing is NA the classic RxODE EVID events are returned.
When addDosing is TRUE add the event information in NONMEM-style format;
If subsetNonmem=FALSE RxODE will also include extra event types (EVID) for
ending infusion and modeled times:

¢ EVID=-1 when the modeled rate infusions are turned off (matches rate=-1)

e EVID=-2 When the modeled duration infusions are turned off (matches
rate=-2)

e EVID=-10 When the specified rate infusions are turned off (matches rate>0)

* EVID=-20 When the specified dur infusions are turned off (matches dur>0)

e« EVID=101,102,103,... Modeled time where 101 is the first model time, 102
is the second etc.

subset to NONMEM compatible EVIDs only. By default TRUE.

Number of cores used in parallel ODE solving. This is equivalent to calling
setRxThreads()

If you ever want to add CWRES/FOCE:i objective function you can use the addCwres

If you ever want to add NPDE/EPRED columns you can use the addNpde

Value

A list of table options for nlmixr

Author(s)

Matthew L. Fidler

theo_md

Multiple dose theophylline PK data

Description

This data set starts with the day 1 concentrations of the theophylline data that is included in the
nlme/NONMEM. After day 7 concentrations were simulated with once a day regimen for 7 days

(QD).

158 theo_sd

Usage

theo_md

Format

A data frame with 348 rows by 7 columns

ID Subject ID

TIME Time (hrs)

DV Dependent Variable, theophylline Concentration
AMT Dose Amount/kg

EVID RxODE/nlmixr event ID (not NONMEM’s)
CMT Compartment number

WT Weight (kg)

Source

NONMEM/nlme

See Also

Other nlmixr datasets: Bolus_1CPTMM, Bolus_1CPT, Bolus_2CPTMM, Bolus_2CPT, Infusion_1CPT,
Oral_1CPT, Wang2007, pheno_sd, rats, theo_sd, warfarin

theo_sd Multiple dose theophylline PK data

Description

This data set is the day 1 concentrations of the theophylline data that is included in the nlme/NONMEM.

Usage

theo_sd

Format

A data frame with 144 rows by 7 columns

ID Subject ID

TIME Time (hrs)

DV Dependent Variable, theophylline concentration
AMT Dose Amount/kg

EVID RxODE/nlmixr event ID (not NONMEM’s)
CMT Compartment Number

WT Weight (kg)

VarCorr.nlmixrNIme 159

Source

NONMEM/nlme

See Also

Other nlmixr datasets: Bolus_1CPTMM, Bolus_1CPT, Bolus_2CPTMM, Bolus_2CPT, Infusion_1CPT,
Oral_1CPT, Wang2007, pheno_sd, rats, theo_md, warfarin

VarCorr.nlmixrNlme Return VarCorr for nlmixr nlme

Description

This returns a numeric matrix instead of character matrix

Usage
S3 method for class 'nlmixrNlme'
VarCorr(x, sigma = NULL, ...)
Arguments
X a fitted model object, usually an object inheriting from class "1me".
sigma an optional numeric value used as a multiplier for the standard deviations. The

default is x$sigma or 1 depending on class(x).

further optional arguments passed to other methods (none for the methods doc-
umented here).

Value

Extract the VarCorr from the nlmixr nlme object

Author(s)

Matthew L. Fidler

160 vpc_nlmixr_nlme

vpc Vpc function for nlmixr

Description

Vpc function for nlmixr

Usage

vpc(sim, ...)

Default S3 method:

vpc(sim, ...)
Arguments
sim Observed data frame or fit object
Other parameters
Value

a nlmixr composite vpc object

vpc_nlmixr_nlme Visual predictive check (VPC) for nlmixr nlme objects

Description

Do visual predictive check (VPC) plots for nlme-based non-linear mixed effect models

Usage
vpc_nlmixr_nlme(fit, nsim = 100, condition = NULL, ...)
vpcNImixrNlme(fit, nsim = 100, condition = NULL, ...)

S3 method for class 'nlmixrNlme'
vpc(sim, ...)

vpc_saemFit 161

Arguments
fit nlme fit object
nsim number of simulations
condition conditional variable
Additional arguments
sim this is usually a data.frame with observed data, containing the independent and
dependent variable, a column indicating the individual, and possibly covariates.
E.g. load in from NONMEM using read_table_nm. However it can also be an
object like a nlmixr or xpose object
Value

Called for its side effects of creating a VPC

Examples

specs <- list(fixed=1KA+1CL+1V~1, random = pdDiag(1KA+1CL~1), start=c(1KA=0.5, 1CL=-3.2, 1V=-1))
fit <- nlme_lin_cmpt(theo_md, par_model=specs, ncmt=1, verbose=TRUE)

vpc_nlmixr_nlme(fit, nsim = 100, condition = NULL)
vpc_saemFit VPC for nlmixr saemFit objects
Description

VPC for nlmixr saemFit objects

Usage
vpc_saemFit(fit, dat, nsim = 100, by = NULL, ...)

S3 method for class 'saemFit'

vpc(sim, ...)
Arguments
fit saemFit object
dat Data to augment the saemFit vpc simulation
nsim Number of simulations for the VPC
by Variables to condition the VPC
Other arguments sent to vpc_vpc
sim this is usually a data.frame with observed data, containing the independent and

dependent variable, a column indicating the individual, and possibly covariates.
E.g. load in from NONMEM using read_table_nm. However it can also be an
object like a nlmixr or xpose object

162 vpc_ui

Value

vpc object from the vpc_vpc package

Author(s)
Wenping Wang
vpc_ui VPC based on ui model
Description
VPC based on ui model
Usage
vpc_ui(
fit,
data = NULL,
n = 100,
bins = "jenks",
n_bins = "auto",
bin_mid = "mean”,
show = NULL,

stratify = NULL,
pred_corr = FALSE,
pred_corr_lower_bnd = 0,
pi = c(0.05, 0.95),

ci = c(0.05, 0.95),

ulog = NULL,

1log = NULL,

log_y = FALSE,
log_y_min = 0.001,
xlab = NULL,

ylab = NULL,

title = NULL,

smooth = TRUE,
vpc_theme = NULL,
facet = "wrap”,
labeller = NULL,
vpcdb = FALSE,
verbose = FALSE,

)

S3 method for class 'nlmixrFitData'
vpc(sim, ...)

vpc_ui 163

S3 method for class 'nlmixrVpc
vpc(sim, ...)

S3 method for class 'ui'

vpc(sim, ...)
Arguments

fit nlmixr fit object

data this is the data to use to augment the VPC fit. By default is the fitted data, (can
be retrieved by getData), but it can be changed by specifying this argument.

n Number of VPC simulations. By default 100

bins either "density", "time", or "data", "none", or one of the approaches available in
classInterval() such as "jenks" (default) or "pretty", or a numeric vector specify-
ing the bin separators.

n_bins when using the "auto" binning method, what number of bins to aim for

bin_mid either "mean" for the mean of all timepoints (default) or "middle" to use the
average of the bin boundaries.

show what to show in VPC (obs_dv, obs_ci, pi, pi_as_area, pi_ci, obs_median, sim_median,
sim_median_ci)

stratify character vector of stratification variables. Only 1 or 2 stratification variables
can be supplied.

pred_corr perform prediction-correction?

pred_corr_lower_bnd
lower bound for the prediction-correction

pi simulated prediction interval to plot. Default is c(0.05, 0.95),

ci confidence interval to plot. Default is (0.05, 0.95)

uloq Number or NULL indicating upper limit of quantification. Default is NULL.

lloq Number or NULL indicating lower limit of quantification. Default is NULL.

log_y Boolean indicting whether y-axis should be shown as logarithmic. Default is
FALSE.

log_y_min minimal value when using log_y argument. Default is 1e-3.

xlab label for x axis

ylab label for y axis

title title

smooth "smooth" the VPC (connect bin midpoints) or show bins as rectangular boxes.
Default is TRUE.

vpc_theme theme to be used in VPC. Expects list of class vpc_theme created with function

vpc_theme()

facet either "wrap", "columns", or "rows"

labeller ggplot2 labeller function to be passed to underlying ggplot object

164 Wang2007

vpcdb Boolean whether to return the underlying vpcdb rather than the plot

verbose show debugging information (TRUE or FALSE)
Args sent to rxSolve

sim this is usually a data.frame with observed data, containing the independent and
dependent variable, a column indicating the individual, and possibly covariates.
E.g. load in from NONMEM using read_table_nm. However it can also be an
object like a nlmixr or xpose object

Value

Simulated dataset (invisibly)

Author(s)
Matthew L. Fidler

Wang2007 Simulated Data Set for comparing objective functions

Description
This is a simulated dataset from Wang2007 where various NONMEM estimation methods (Laplace
FO, FOCE with and without interaction) are described.

Usage

Wang2007

Format
A data frame with 20 rows and 3 columns
ID Simulated Subject ID

Time Simulated Time
Y Simulated Value

Source
Table 1 from Wang, Y Derivation of Various NONMEM estimation methods. J Pharmacokinet
Pharmacodyn (2007) 34:575-593.

See Also

Other nlmixr datasets: Bolus_1CPTMM, Bolus_1CPT, Bolus_2CPTMM, Bolus_2CPT, Infusion_1CPT,
Oral_1CPT, pheno_sd, rats, theo_md, theo_sd, warfarin

warfarin 165

warfarin Warfarin PK/PD data

Description

Warfarin PK/PD data

Usage

warfarin

Format

A data frame with 519 rows and 9 columns

id Patient identifier (n=32)

time Time [h]

amt Total drug administered [mg]

dv Warfarin concentrations [mg/L] or PCA measurement

dvid Dependent identifier Information (cp: Dose or PK, pca: PCA, factor)
evid Event identifier

wt Weight [kg]

age Age [yr]

sex Gender (male or female, factor)

Source

Funaki T, Holford N, Fujita S (2018). Population PKPD analysis using nlmixr and NONMEM.
PAGIJA 2018

References

O’Reilly RA, Aggeler PM, Leong LS. Studies of the coumarin anticoagulant drugs: The pharma-
codynamics of warfarin in man. Journal of Clinical Investigation 1963; 42(10): 1542-1551

O’Reilly RA, Aggeler PM. Studies on coumarin anticoagulant drugs Initiation of warfarin therapy
without a loading dose. Circulation 1968; 38: 169-177.

See Also

Other nlmixr datasets: Bolus_1CPTMM, Bolus_1CPT, Bolus_2CPTMM, Bolus_2CPT, Infusion_1CPT,
Oral_1CPT, Wang2007, pheno_sd, rats, theo_md, theo_sd

Index

+ datasets
Bolus_1CPT, 14
Bolus_1CPTMM, 15
Bolus_2CPT, 16
Bolus_2CPTMM, 18
Infusion_1CPT, 67
invgaussian, 71
metabolite, 74
Oral_1CPT, 133
pheno_sd, 135
pump, 142
rats, 143
theo_md, 157
theo_sd, 158
Wang2007, 164
warfarin, 165

+ nlmixr datasets
Bolus_1CPT, 14
Bolus_1CPTMM, 15
Bolus_2CPT, 16
Bolus_2CPTMM, 18
Infusion_1CPT, 67
Oral_1CPT, 133
pheno_sd, 135
rats, 143
theo_md, 157
theo_sd, 158
Wang2007, 164
warfarin, 165

+ nlmixrBounds
nlmixrBounds, 94
nlmixrBoundsParser, 96

addCovariate, 5
addCovVar, 6
addCwres, 7, 157
addNpde, 8, 157
addTable, 9
AIC, 90
as.dynmodel, 11

166

as.focei, 12
augPred.nlmixrFitData (nlmixrAugPred),
93

backwardSearch, 13

BIC, 90

bobyqga, 39

Bolus_1CPT, 14, 16, 17, 19, 68, 134, 136, 144,
158, 159, 164, 165

Bolus_1CPTMM, 15,15, 17, 19, 68, 134, 136,
144, 158, 159, 164, 165

Bolus_2CPT, 15, 16, 16, 19, 68, 134, 136, 144,
158, 159, 164, 165

Bolus_2CPTMM, 15-17, 18, 68, 134, 136, 144,
158, 159, 164, 165

bootdata, 19

bootplot, 20

bootplot.nlmixrFitCore, 20

bootstrapFit, 21

boxCox, 23

calc.2LL, 24
calc.Cov, 25
calcCov, 25
cholSE, 26

class, 159
configsaem, 27
covarSearchAuto, 30

dynmodel, 32
dynmodel .memc, 34
dynmodelControl, 32, 35

eventTable, 80
eventTable(), 107

fixed.effects, 9/
focei.eta, 41

focei.fit (foceiFit), 54
focei.theta, 42
foceiControl, 43, 55, 82, 128

INDEX

foceiFit, 54
forwardSearch, 61
frwd_selection, 62

gauss.quad, 63
getData, 163
getOfvType (set0Ofv), 153
getOMEGA, 64

gnlmm, 64

gnlmm2 (gnlmm), 64
gof, 66

iBoxCox (boxCox), 23

Infusion_1CPT, 15-17, 19, 67, 134, 136, 144,
158, 159, 164, 165

ini, 68

initializeCovars, 70

instant.stan.extension, 71

invgaussian, 71

iYeoJohnson (boxCox), 23

lbfgs, 39
1lbfgsb3c, 39, 40
lin_cmt, 72
1me, 159
logLik, 90

makeDummies, 73
makeHockeyStick, 73
metabolite, 74
model, 74

nigni, 54

nlme, 83, 88, 90

nlme_gof, 75

nlme_lin_cmpt, 76

nlme_ode, 78
nlmeControl, 82, 128
nlmeLinCmpt (nlme_lin_cmpt), 76
nlmeLinCmt (nlme_lin_cmpt), 76
nlmeOde (nlme_ode), 78
nlminb, 40

nlmixr, 32, 81, 152
nlmixr_fit, 128
nlmixrAugPred, 93
nlmixrBounds, 94, 97
nlmixrBounds.eta.names, 95
nlmixrBounds. focei.upper.lower, 96
nlmixrBoundsParser, 95, 96

167

nlmixrDynmodelConvert, 97
nlmixrEst, 98
nlmixrGills3s, 99, 101, 102
nlmixrHess, 101
nlmixrLogo, 103
nlmixrPred, 103

nlmixrSim, 104

nlmixrTest, 114
nlmixrUI.dynmodelfun, 115
nlmixrUI.dynmodelfun2, 115
nlmixrUI.focei.fixed, 116
nlmixrUI.focei.inits, 116
nlmixrUI.nlme.specs, 117
nlmixrUI.rxode.pred, 117
nlmixrUI.saem.ares, 118
nlmixrUI.saem.bres, 118
nlmixrUI.saem.cres, 119
nlmixrUI.saem.distribution, 119
nlmixrUI.saem.eta.trans, 120
nlmixrUI.saem.fit, 120
nlmixrUI.saem.fixed, 121
nlmixrUI.saem.init, 121
nlmixrUI.saem.init.omega, 122
nlmixrUI.saem.init.theta, 122
nlmixrUI.saem.log.eta, 123
nlmixrUI.saem.model, 123
nlmixrUI.saem.model.omega, 124
nlmixrUI.saem.res.mod, 124
nlmixrUI.saem.res.name, 125
nlmixrUI.saem.rx1, 125
nlmixrUI.saem.theta.name, 126
nlmixrUI.theta.pars, 126
nlmixrValidate, 127
nlmixrVersion, 127
nmDataConvert, 88

nmDocx, 129

nmLst, 131

nmSave (nmDocx), 129
nmsimplex, 132

nmTest (nlmixrValidate), 127

ofv, 132

optim, 54

optimHess, 102

Oral_1CPT, 15-17, 19, 68, 133, 136, 144, 158,
159, 164, 165

performNorm, 134

168

pheno_sd, 15-17, 19, 68, 134, 135, 144, 158,
159, 164, 165

plot.dyn.ID (gof), 66

plot.dyn.mcmc, 136

plot.nlmixrFitData, 137

plot.saemFit, 137

preCondInv, 138

preconditionFit, 138

predict.nlmixrFitData (nlmixrPred), 103

prediction, 139

print.dyn.ID, 140

print.dyn.mcmc (summary.dyn.mcmc), 155

print.gnlmm.fit, 141

print.nlmixrUI, 141

print.saemFit, 142

pump, 142

random.effects, 91

rats, 15-17, 19, 68, 134, 136, 143, 158, 159,
164, 165

read_table_nm, 161, 164

removeCovariate, 144

removeCovMultiple, 144

removeCovVar, 145

residuals.nlmixrFitData, 146

rxControl, 41

RxODE, 32, 84

rxSolve, 54, 164

rxSolve.nlmixrFitData (nlmixrSim), 104

saem, 83, 86, 88—90

saem (saem.fit), 146

saem.fit, 146
saemControl, 82, 89, 128, 149

setCov, 152

setOfyv, 153
setRxThreads(), 47, 107, 157
simulate.nlmixrFitData (n1mixrSim), 104
solve.nlmixrFitData (nlmixrSim), 104
sqrtm, 154

summary.dyn.ID, 154
summary.dyn.mcmc, 155
summary.saemFit, 155

tableControl, 82, 128, 156

theo_md, 15-17, 19, 68, 134, 136, 144, 157,
159, 164, 165

theo_sd, 15-17, 19, 68, 134, 136, 144, 158,
158, 164, 165

INDEX

traceplot, 89
traceplot (bootplot.nlmixrFitCore), 20

VarCorr.nlmixrNlme, 159

vpc, 160

vpc.nlmixrFitData (vpc_ui), 162
vpc.nlmixrNlme (vpc_nlmixr_nlme), 160
vpc.nlmixrVpc (vpc_ui), 162
vpc.saemFit (vpc_saemFit), 161
vpc.ui (vpc_ui), 162
vpc_nlmixr_nlme, 160
vpc_saemFit, 161

vpc_ui, 162

vpc_vpc, 161, 162

vpcN1ImixrN1lme (vpc_nlmixr_nlme), 160

Wang2007, 15-17, 19, 68, 134, 136, 144, 158,
159, 164, 165

warfarin, 15-17, 19, 68, 134, 136, 144, 158,
159, 164, 165

yeoJohnson (boxCox), 23

	addCovariate
	addCovVar
	addCwres
	addNpde
	addTable
	as.dynmodel
	as.focei
	backwardSearch
	Bolus_1CPT
	Bolus_1CPTMM
	Bolus_2CPT
	Bolus_2CPTMM
	bootdata
	bootplot
	bootplot.nlmixrFitCore
	bootstrapFit
	boxCox
	calc.2LL
	calc.COV
	calcCov
	cholSE
	configsaem
	covarSearchAuto
	dynmodel
	dynmodel.mcmc
	dynmodelControl
	focei.eta
	focei.theta
	foceiControl
	foceiFit
	forwardSearch
	frwd_selection
	gauss.quad
	getOMEGA
	gnlmm
	gof
	Infusion_1CPT
	ini
	initializeCovars
	instant.stan.extension
	invgaussian
	lin_cmt
	makeDummies
	makeHockeyStick
	metabolite
	model
	nlme_gof
	nlme_lin_cmpt
	nlme_ode
	nlmixr
	nlmixrAugPred
	nlmixrBounds
	nlmixrBounds.eta.names
	nlmixrBounds.focei.upper.lower
	nlmixrBoundsParser
	nlmixrDynmodelConvert
	nlmixrEst
	nlmixrGill83
	nlmixrHess
	nlmixrLogo
	nlmixrPred
	nlmixrSim
	nlmixrTest
	nlmixrUI.dynmodelfun
	nlmixrUI.dynmodelfun2
	nlmixrUI.focei.fixed
	nlmixrUI.focei.inits
	nlmixrUI.nlme.specs
	nlmixrUI.rxode.pred
	nlmixrUI.saem.ares
	nlmixrUI.saem.bres
	nlmixrUI.saem.cres
	nlmixrUI.saem.distribution
	nlmixrUI.saem.eta.trans
	nlmixrUI.saem.fit
	nlmixrUI.saem.fixed
	nlmixrUI.saem.init
	nlmixrUI.saem.init.omega
	nlmixrUI.saem.init.theta
	nlmixrUI.saem.log.eta
	nlmixrUI.saem.model
	nlmixrUI.saem.model.omega
	nlmixrUI.saem.res.mod
	nlmixrUI.saem.res.name
	nlmixrUI.saem.rx1
	nlmixrUI.saem.theta.name
	nlmixrUI.theta.pars
	nlmixrValidate
	nlmixrVersion
	nlmixr_fit
	nmDocx
	nmLst
	nmsimplex
	ofv
	Oral_1CPT
	performNorm
	pheno_sd
	plot.dyn.mcmc
	plot.nlmixrFitData
	plot.saemFit
	preCondInv
	preconditionFit
	prediction
	print.dyn.ID
	print.gnlmm.fit
	print.nlmixrUI
	print.saemFit
	pump
	rats
	removeCovariate
	removeCovMultiple
	removeCovVar
	residuals.nlmixrFitData
	saem.fit
	saemControl
	setCov
	setOfv
	sqrtm
	summary.dyn.ID
	summary.dyn.mcmc
	summary.saemFit
	tableControl
	theo_md
	theo_sd
	VarCorr.nlmixrNlme
	vpc
	vpc_nlmixr_nlme
	vpc_saemFit
	vpc_ui
	Wang2007
	warfarin
	Index

