The oem package provides estimation for various penalized linear models using the Orthogonalizing EM algorithm. Documentation for the package can be found here: oem site.
Install using the devtools package (RcppEigen must be installed first as well):
or by cloning and building using R CMD INSTALL
To cite oem please use:
Xiong, S., Dai, B., Huling, J., Qian, P. Z. G. (2016) Orthogonalizing EM: A design-based least squares algorithm, Technometrics, Volume 58, Pages 285-293,
http://dx.doi.org/10.1080/00401706.2015.1054436.
Huling, J.D. and Chien, P. (2018), Fast Penalized Regression and Cross Validation for Tall Data with the OEM Package, Journal of Statistical Software, to appear, URL: https://arxiv.org/abs/1801.09661.
library(microbenchmark)
library(glmnet)
library(oem)
# compute the full solution path, n > p
set.seed(123)
n <- 1000000
p <- 100
m <- 25
b <- matrix(c(runif(m), rep(0, p - m)))
x <- matrix(rnorm(n * p, sd = 3), n, p)
y <- drop(x %*% b) + rnorm(n)
lambdas = oem(x, y, intercept = TRUE, standardize = FALSE, penalty = "elastic.net")$lambda[[1]]
microbenchmark(
"glmnet[lasso]" = {res1 <- glmnet(x, y, thresh = 1e-10,
standardize = FALSE,
intercept = TRUE,
lambda = lambdas)},
"oem[lasso]" = {res2 <- oem(x, y,
penalty = "elastic.net",
intercept = TRUE,
standardize = FALSE,
lambda = lambdas,
tol = 1e-10)},
times = 5
)
## Unit: seconds
## expr min lq mean median uq max neval
## glmnet[lasso] 7.610364 7.622585 7.879448 7.667767 7.945518 8.551005 5
## oem[lasso] 1.969916 2.027118 2.133341 2.089135 2.126875 2.453660 5
## [1] 1.048072e-07
res1 <- glmnet(x, y, thresh = 1e-12,
standardize = FALSE,
intercept = TRUE,
lambda = lambdas)
# answers are now more close once we require more precise glmnet solutions
max(abs(coef(res1) - res2$beta[[1]]))
## [1] 3.763397e-09
library(sparsenet)
library(ncvreg)
library(plus)
# compute the full solution path, n > p
set.seed(123)
n <- 5000
p <- 200
m <- 25
b <- matrix(c(runif(m, -0.5, 0.5), rep(0, p - m)))
x <- matrix(rnorm(n * p, sd = 3), n, p)
y <- drop(x %*% b) + rnorm(n)
mcp.lam <- oem(x, y, penalty = "mcp",
gamma = 2, intercept = TRUE,
standardize = TRUE,
nlambda = 200, tol = 1e-10)$lambda[[1]]
scad.lam <- oem(x, y, penalty = "scad",
gamma = 4, intercept = TRUE,
standardize = TRUE,
nlambda = 200, tol = 1e-10)$lambda[[1]]
microbenchmark(
"sparsenet[mcp]" = {res1 <- sparsenet(x, y, thresh = 1e-10,
gamma = c(2,3), #sparsenet throws an error
#if you only fit 1 value of gamma
nlambda = 200)},
"oem[mcp]" = {res2 <- oem(x, y,
penalty = "mcp",
gamma = 2,
intercept = TRUE,
standardize = TRUE,
nlambda = 200,
tol = 1e-10)},
"ncvreg[mcp]" = {res3 <- ncvreg(x, y,
penalty = "MCP",
gamma = 2,
lambda = mcp.lam,
eps = 1e-7)},
"plus[mcp]" = {res4 <- plus(x, y,
method = "mc+",
gamma = 2,
lam = mcp.lam)},
"oem[scad]" = {res5 <- oem(x, y,
penalty = "scad",
gamma = 4,
intercept = TRUE,
standardize = TRUE,
nlambda = 200,
tol = 1e-10)},
"ncvreg[scad]" = {res6 <- ncvreg(x, y,
penalty = "SCAD",
gamma = 4,
lambda = scad.lam,
eps = 1e-7)},
"plus[scad]" = {res7 <- plus(x, y,
method = "scad",
gamma = 4,
lam = scad.lam)},
times = 5
)
## Unit: milliseconds
## expr min lq mean median uq max
## sparsenet[mcp] 1762.3026 1779.0533 1907.9942 1871.4751 1954.0494 2173.091
## oem[mcp] 159.3148 159.6247 194.6605 160.0044 238.3018 256.057
## ncvreg[mcp] 7566.5792 7636.3529 7900.8602 7681.1292 7907.0934 8713.146
## plus[mcp] 1625.3785 1692.9125 1703.2951 1694.1239 1711.7150 1792.346
## oem[scad] 136.1331 136.3932 138.6294 137.1140 138.2907 145.216
## ncvreg[scad] 7485.8139 8060.6739 8534.4502 8388.1125 8779.2423 9958.408
## plus[scad] 1765.2935 1873.8984 2009.8369 1878.5176 2097.5155 2433.959
diffs <- array(NA, dim = c(4, 1))
colnames(diffs) <- "abs diff"
rownames(diffs) <- c("MCP: oem and ncvreg", "SCAD: oem and ncvreg",
"MCP: oem and plus", "SCAD: oem and plus")
diffs[,1] <- c(max(abs(res2$beta[[1]] - res3$beta)), max(abs(res5$beta[[1]] - res6$beta)),
max(abs(res2$beta[[1]][-1,1:nrow(res4$beta)] - t(res4$beta))),
max(abs(res5$beta[[1]][-1,1:nrow(res7$beta)] - t(res7$beta))))
diffs
## abs diff
## MCP: oem and ncvreg 1.725859e-07
## SCAD: oem and ncvreg 5.094648e-08
## MCP: oem and plus 2.684136e-11
## SCAD: oem and plus 1.732409e-11
In addition to the group lasso, the oem package offers computation for the group MCP, group SCAD, and group sparse lasso penalties. All aforementioned penalties can also be augmented with a ridge penalty.
library(gglasso)
library(grpreg)
library(grplasso)
# compute the full solution path, n > p
set.seed(123)
n <- 10000
p <- 200
m <- 25
b <- matrix(c(runif(m, -0.5, 0.5), rep(0, p - m)))
x <- matrix(rnorm(n * p, sd = 3), n, p)
y <- drop(x %*% b) + rnorm(n)
groups <- rep(1:floor(p/10), each = 10)
grp.lam <- oem(x, y, penalty = "grp.lasso",
groups = groups,
nlambda = 100, tol = 1e-10)$lambda[[1]]
microbenchmark(
"gglasso[grp.lasso]" = {res1 <- gglasso(x, y, group = groups,
lambda = grp.lam,
intercept = FALSE,
eps = 1e-8)},
"oem[grp.lasso]" = {res2 <- oem(x, y,
groups = groups,
intercept = FALSE,
standardize = FALSE,
penalty = "grp.lasso",
lambda = grp.lam,
tol = 1e-10)},
"grplasso[grp.lasso]" = {res3 <- grplasso(x=x, y=y,
index = groups,
standardize = FALSE,
center = FALSE, model = LinReg(),
lambda = grp.lam * n * 2,
control = grpl.control(trace = 0, tol = 1e-10))},
"grpreg[grp.lasso]" = {res4 <- grpreg(x, y, group = groups,
eps = 1e-10, lambda = grp.lam)},
times = 5
)
## Unit: milliseconds
## expr min lq mean median uq
## gglasso[grp.lasso] 3483.62353 3529.320 3601.1492 3600.3122 3675.7521
## oem[grp.lasso] 99.62382 100.823 107.9303 106.6158 114.8208
## grplasso[grp.lasso] 7105.62106 7409.959 7835.5972 7836.2535 7977.5347
## grpreg[grp.lasso] 1972.84562 2013.477 2132.7026 2015.0525 2149.0820
## max neval
## 3716.7380 5
## 117.7679 5
## 8848.6178 5
## 2513.0563 5
diffs <- array(NA, dim = c(2, 1))
colnames(diffs) <- "abs diff"
rownames(diffs) <- c("oem and gglasso", "oem and grplasso")
diffs[,1] <- c( max(abs(res2$beta[[1]][-1,] - res1$beta)), max(abs(res2$beta[[1]][-1,] - res3$coefficients)) )
diffs
## abs diff
## oem and gglasso 1.303906e-06
## oem and grplasso 1.645871e-08
set.seed(123)
n <- 500000
p <- 200
m <- 25
b <- matrix(c(runif(m, -0.5, 0.5), rep(0, p - m)))
x <- matrix(rnorm(n * p, sd = 3), n, p)
y <- drop(x %*% b) + rnorm(n)
groups <- rep(1:floor(p/10), each = 10)
# fit all group penalties at once
grp.penalties <- c("grp.lasso", "grp.mcp", "grp.scad",
"grp.mcp.net", "grp.scad.net",
"sparse.group.lasso")
system.time(res <- oem(x, y,
penalty = grp.penalties,
groups = groups,
alpha = 0.25, # mixing param for l2 penalties
tau = 0.5)) # mixing param for sparse grp lasso
## user system elapsed
## 3.23 0.17 3.46
The oem algorithm is quite efficient at fitting multiple penalties simultaneously when p is not too big.
set.seed(123)
n <- 100000
p <- 100
m <- 15
b <- matrix(c(runif(m, -0.25, 0.25), rep(0, p - m)))
x <- matrix(rnorm(n * p, sd = 3), n, p)
y <- drop(x %*% b) + rnorm(n)
microbenchmark(
"oem[lasso]" = {res1 <- oem(x, y,
penalty = "elastic.net",
intercept = TRUE,
standardize = TRUE,
tol = 1e-10)},
"oem[lasso/mcp/scad/ols]" = {res2 <- oem(x, y,
penalty = c("elastic.net", "mcp",
"scad", "grp.lasso",
"grp.mcp", "sparse.grp.lasso",
"grp.mcp.net", "mcp.net"),
gamma = 4,
tau = 0.5,
alpha = 0.25,
groups = rep(1:10, each = 10),
intercept = TRUE,
standardize = TRUE,
tol = 1e-10)},
times = 5
)
## Unit: milliseconds
## expr min lq mean median uq
## oem[lasso] 214.3171 218.2459 225.8759 219.6271 226.8682
## oem[lasso/mcp/scad/ols] 253.8738 255.8601 279.3674 272.4458 276.6489
## max neval
## 250.3211 5
## 338.0085 5
#png("../mcp_path.png", width = 3000, height = 3000, res = 400);par(mar=c(5.1,5.1,4.1,2.1));plot(res2, which.model = 2, main = "mcp",lwd = 3,cex.axis=2.0, cex.lab=2.0, cex.main=2.0, cex.sub=2.0);dev.off()
#
layout(matrix(1:4, ncol=2, byrow = TRUE))
plot(res2, which.model = 1, lwd = 2,
xvar = "lambda")
plot(res2, which.model = 2, lwd = 2,
xvar = "lambda")
plot(res2, which.model = 4, lwd = 2,
xvar = "lambda")
plot(res2, which.model = 7, lwd = 2,
xvar = "lambda")