Single-cell datasets are growing in size, posing challenges as well as opportunities for biology researchers. 'ondisc' (short for "on-disk single cell") enables users to easily and efficiently analyze large-scale single-cell data. 'ondisc' makes computing on large-scale single-cell data FUN: Fast, Universal, and iNtuitive.
Version: | 1.0.0 |
Depends: | R (≥ 3.5.0) |
Imports: | readr, methods, magrittr, rhdf5, data.table, Matrix, Rcpp, crayon, dplyr |
LinkingTo: | Rcpp, Rhdf5lib |
Suggests: | testthat, knitr, rmarkdown, covr |
Published: | 2021-03-05 |
Author: | Timothy Barry [aut, cre], Eugene Katsevich [ths], Kathryn Roeder [ths] |
Maintainer: | Timothy Barry <tbarry2 at andrew.cmu.edu> |
License: | MIT + file LICENSE |
URL: | https://timothy-barry.github.io/ondisc/ |
NeedsCompilation: | yes |
SystemRequirements: | GNU make |
Materials: | README |
CRAN checks: | ondisc results |
Reference manual: | ondisc.pdf |
Vignettes: |
Tutorial 1: Using the 'ondisc_matrix' class Tutorial 2: Using 'metadata_ondisc_matrix' and 'multimodal_ondisc_matrix' |
Package source: | ondisc_1.0.0.tar.gz |
Windows binaries: | r-devel: ondisc_1.0.0.zip, r-release: ondisc_1.0.0.zip, r-oldrel: ondisc_1.0.0.zip |
macOS binaries: | r-release (arm64): ondisc_1.0.0.tgz, r-oldrel (arm64): ondisc_1.0.0.tgz, r-release (x86_64): ondisc_1.0.0.tgz, r-oldrel (x86_64): ondisc_1.0.0.tgz |
Please use the canonical form https://CRAN.R-project.org/package=ondisc to link to this page.