Outlier detection method that flags suspicious values within observations, constrasting them against the normal values in a user-readable format, potentially describing conditions within the data that make a given outlier more rare. Full procedure is described in Cortes (2020) <arXiv:2001.00636>. Loosely based on the 'GritBot' <https://www.rulequest.com/gritbot-info.html> software.
Version: | 1.8.1-1 |
Depends: | R (≥ 3.5.0) |
Imports: | Rcpp (≥ 1.0.1) |
LinkingTo: | Rcpp, Rcereal |
Suggests: | knitr, rmarkdown, kableExtra, data.table |
Published: | 2022-08-06 |
Author: | David Cortes |
Maintainer: | David Cortes <david.cortes.rivera at gmail.com> |
BugReports: | https://github.com/david-cortes/outliertree/issues |
License: | GPL (≥ 3) |
URL: | https://github.com/david-cortes/outliertree |
NeedsCompilation: | yes |
CRAN checks: | outliertree results |
Reference manual: | outliertree.pdf |
Vignettes: |
Explainable Outlier Detection in Titanic dataset Introducing OutlierTree |
Package source: | outliertree_1.8.1-1.tar.gz |
Windows binaries: | r-devel: outliertree_1.8.1-1.zip, r-release: outliertree_1.8.1-1.zip, r-oldrel: outliertree_1.8.1-1.zip |
macOS binaries: | r-release (arm64): outliertree_1.8.1-1.tgz, r-oldrel (arm64): outliertree_1.8.1-1.tgz, r-release (x86_64): outliertree_1.8.1-1.tgz, r-oldrel (x86_64): outliertree_1.8.1-1.tgz |
Old sources: | outliertree archive |
Reverse imports: | bagged.outliertrees, itsdm |
Reverse suggests: | isotree |
Please use the canonical form https://CRAN.R-project.org/package=outliertree to link to this page.