pedquant

Travis build status CRAN status

pedquant (Public Economic Data and QUANTitative analysis) provides an interface to access public economic and financial data for economic research and quantitative analysis. The functions are grouped into three main categories,

The functions in this package are designed to write minimum codes for some common tasks in quantitative analysis process. Since the parameters to get data can be interactively specify, it’s very easy to start. The loaded data have been carefully cleansed and provided in a unified format.

pedquant package has advantages on multiple aspects, such as the format of loaded data is a list of data frames, which can be easily manipulated in data.table or tidyverse packages; high performance on speed by using data.table and TTR; and interactive charts by using echarts4r. Similar works including tidyquant or quantmod.

Installation

install.packages("pedquant")
devtools::install_github("shichenxie/pedquant")

Example

The following examples show you how to import data.

library(pedquant)
## import eocnomic data
dat1 = ed_fred('GDPCA')
#> 1/1 GDPCA
dat2 = ed_nbs(geo_type='nation', freq='quarterly', symbol='A010101')

## import market data
FAAG = md_stock(c('FB', 'AMZN', 'AAPL', 'GOOG'), date_range = '10y')
#> 1/4 fb
#> 2/4 amzn
#> 3/4 aapl
#> 4/4 goog
INDX = md_stock(c('^000001','^399001'), date_range = '10y')
#> 1/2 ^000001
#> 2/2 ^399001

# moving average crossover strategy
library(data.table)

# load data
data("dt_banks")
dtboc = md_stock_adjust(setDT(dt_banks)[symbol=='601988.SS'])
# added technical indicators
bocti = pq_addti(dtboc, x='close_adj', sma=list(n=200), sma=list(n=50))

# crossover signal 
dtorders = copy(bocti[[1]])[,.(symbol, name, date, close_adj, sma_50, sma_200)
 ][sma_50 %x>% sma_200, `:=`(
    type = 'buy', prices = close_adj
)][sma_50 %x<% sma_200, `:=`(
    type = 'sell', prices = close_adj
)][order(date)
 ][, (c('type', 'prices')) := lapply(.SD, shift), .SDcols = c('type', 'prices')]
head(dtorders[!is.na(type)])
#>       symbol     name       date close_adj   sma_50  sma_200 type   prices
#> 1: 601988.SS 中国银行 2009-04-27  2.175686 2.159212 2.154464  buy 2.169398
#> 2: 601988.SS 中国银行 2010-03-23  2.682837 2.685811 2.690783 sell 2.689302
#> 3: 601988.SS 中国银行 2010-05-06  2.618190 2.695508 2.694150  buy 2.669908
#> 4: 601988.SS 中国银行 2010-05-20  2.514756 2.677794 2.679346 sell 2.521220
#> 5: 601988.SS 中国银行 2011-04-27  2.332291 2.302393 2.299774  buy 2.318449
#> 6: 601988.SS 中国银行 2011-07-21  2.231820 2.285567 2.288007 sell 2.239067

# charting
e = pq_plot(dtboc,  y='close_adj', addti = list(sma=list(n=200), sma=list(n=50)), orders = dtorders[!is.na(type)])
e[[1]]
#> NULL

Issues and Contributions

This package still on the developing stage. If you have any issue when using this package, please update to the latest version from github. If the issue still exists, report it at github page. Contributions in any forms to this project are welcome.