plater
plater
helps youplater
makes it easy to work with data from experiments performed in plates.
Many scientific instruments (such as plate readers and qPCR machines) produce data in tabular form that mimics a microtiter plate: each cell corresponds to a well as physically laid out on the plate. For experiments like this, it’s often easiest to keep records of what was what (control vs. treatment, concentration, sample type, etc.) in a similar plate layout form. But while plate-shaped data is easy to think about, it’s not easy to analyze. The point of plater
is to seamlessly convert plate-shaped data (easy to think about) into tidy data (easy to analyze). It does this by defining a simple, systematic format for storing information in plate layouts. Then it painlessly rearranges data that intuitive format into a tidy data frame.
There are just two steps:
plater
formatplater
functionsImagine you’ve invented two new antibiotics. To show how well they work, you filled up a 96-well plate with dilutions of the antibiotics and mixed in four different types of bacteria. Then, you measured how many of the bacteria got killed. So for each well in the plate you know:
The first three items are variables you chose in setting up the experiment. The fourth item is what you measured.
plater
formatThe first step is to create a file for the experiment. plater
format is designed to store all the information about an experiment in one file. It’s simply a .csv file representing a single plate, containing one or more plate layouts. Each layout maps to a variable, so for the example experiment, there are four layouts in the file: Drug, Concentration, Bacteria, and Killing.
A plater
format file for the example experiment came with the package. Load plater
(i.e. run library(plater)
) and then run system.file("extdata", package = "plater")
. Open the folder listed there and then open example-1.csv
in a spreadsheet editor.
An abbreviated version of that file is shown below:
The format is pretty simple:
You can use plater
format with any standard plate size (6 to 1536 wells). Not every well has to be filled. If a well is blank in every layout in a file, it’s omitted. If it’s blank in some but not others, it’ll get NA
where it’s blank.
While creating a file in plater
format, it can be helpful to check whether you’re doing it right. For that purpose, you can pass the path of the file to check_plater_format()
, which will check that the format is correct and diagnose any problems.
Now that your file is set up, you’re ready to read in the data.
We will analyze this experiment two different ways to illustrate two common data analysis scenarios:
read_plate()
.add_plate()
.plater
format file with read_plate()
Here is how it works. (Note that below we use system.file()
here to get the file path of the example file, but for your own files you would specify the file path without using system.file()
).
file_path <- system.file("extdata", "example-1.csv", package = "plater")
data <- read_plate(
file = file_path, # full path to the .csv file
well_ids_column = "Wells", # name to give column of well IDs (optional)
sep = "," # separator used in the csv file (optional)
)
str(data)
#> Classes 'tbl_df', 'tbl' and 'data.frame': 96 obs. of 5 variables:
#> $ Wells : chr "A01" "A02" "A03" "A04" ...
#> $ Drug : chr "A" "A" "A" "A" ...
#> $ Concentration: num 1.00e+02 2.00e+01 4.00 8.00e-01 1.60e-01 3.20e-02 6.40e-03 1.28e-03 2.56e-04 5.12e-05 ...
#> $ Bacteria : chr "E. coli" "E. coli" "E. coli" "E. coli" ...
#> $ Killing : num 98 95 92 41 17 2 1.5 1.8 1 0.5 ...
head(data)
#> Wells Drug Concentration Bacteria Killing
#> 1 A01 A 100.000 E. coli 98
#> 2 A02 A 20.000 E. coli 95
#> 3 A03 A 4.000 E. coli 92
#> 4 A04 A 0.800 E. coli 41
#> 5 A05 A 0.160 E. coli 17
#> 6 A06 A 0.032 E. coli 2
So what happened? read_plate()
read in the plater
format file you created and turned each layout into a column, using the name of the layout specified in the file. So you have four columns: Drug, Concentration, Bacteria, and Killing. It additionally creates a column named “Wells” with the well identifiers for each well. Now, each well is represented by a single row, with the values indicated in the file for each column.
plater
format file with add_plate()
In the previous example, we assumed that the killing data was provided by the instrument in plate-shaped form, so it could just be pasted into the plater
format file. Sometimes, though, you’ll get data back formatted with one well per row.
add_plate()
is set up to help in this situation. You provide a tidy data frame including well IDs and then you provide a plater
format file with the other information and add_plate()
knits them together well-by-well. Here’s an example using the other two files installed along with plater
.
file2A <- system.file("extdata", "example-2-part-A.csv", package = "plater")
data2 <- read.csv(file2A)
str(data2)
#> 'data.frame': 96 obs. of 2 variables:
#> $ Wells : chr "A01" "A02" "A03" "A04" ...
#> $ Killing: num 98 95 92 41 17 2 1.5 1.8 1 0.5 ...
head(data2)
#> Wells Killing
#> 1 A01 98
#> 2 A02 95
#> 3 A03 92
#> 4 A04 41
#> 5 A05 17
#> 6 A06 2
meta <- system.file("extdata", "example-2-part-B.csv", package = "plater")
data2 <- add_plate(
data = data2, # data frame to add to
file = meta, # full path to the .csv file
well_ids_column = "Wells", # name of column of well IDs in data frame
sep = "," # separator used in the csv file (optional)
)
str(data2)
#> tibble [96 x 5] (S3: tbl_df/tbl/data.frame)
#> $ Wells : chr [1:96] "A01" "A02" "A03" "A04" ...
#> $ Killing : num [1:96] 98 95 92 41 17 2 1.5 1.8 1 0.5 ...
#> $ Drug : chr [1:96] "A" "A" "A" "A" ...
#> $ Concentration: num [1:96] 1.00e+02 2.00e+01 4.00 8.00e-01 1.60e-01 3.20e-02 6.40e-03 1.28e-03 2.56e-04 5.12e-05 ...
#> $ Bacteria : chr [1:96] "E. coli" "E. coli" "E. coli" "E. coli" ...
head(data2)
#> # A tibble: 6 x 5
#> Wells Killing Drug Concentration Bacteria
#> <chr> <dbl> <chr> <dbl> <chr>
#> 1 A01 98 A 100 E. coli
#> 2 A02 95 A 20 E. coli
#> 3 A03 92 A 4 E. coli
#> 4 A04 41 A 0.8 E. coli
#> 5 A05 17 A 0.16 E. coli
#> 6 A06 2 A 0.032 E. coli
add_plate
then makes it easy to store data in a mix of formats, in some cases tidy and in some cases plate-shaped, which is the reality of many experiments.
Say you were happy with the tests of you antibiotics, so you decided to do a second experiment, testing some other common pathogenic bacteria. Now you have data from two separate plates. Rather than handling them separately, you can combine them all into a common data frame with the read_plates()
function.
Just like before, you create one plater
file per plate, with all the information describing the experiment. In this case, you’ll have two files, one from each experiment. Then, just read them in with read_plates()
. You can specify names for each plate, which will become a column in the output identifying which plate the well was on. By default it’ll use the file names.
# same file as above
file1 <- system.file("extdata", "example-1.csv", package = "plater")
# new file
file2 <- system.file("extdata", "more-bacteria.csv", package = "plater")
data <- read_plates(
files = c(file1, file2),
plate_names = c("Experiment 1", "Experiment 2"),
well_ids_column = "Wells", # optional
sep = ",") # optional
str(data)
#> tibble [192 x 6] (S3: tbl_df/tbl/data.frame)
#> $ Plate : chr [1:192] "Experiment 1" "Experiment 1" "Experiment 1" "Experiment 1" ...
#> $ Wells : chr [1:192] "A01" "A02" "A03" "A04" ...
#> $ Drug : chr [1:192] "A" "A" "A" "A" ...
#> $ Concentration: num [1:192] 1.00e+02 2.00e+01 4.00 8.00e-01 1.60e-01 3.20e-02 6.40e-03 1.28e-03 2.56e-04 5.12e-05 ...
#> $ Bacteria : chr [1:192] "E. coli" "E. coli" "E. coli" "E. coli" ...
#> $ Killing : num [1:192] 98 95 92 41 17 2 1.5 1.8 1 0.5 ...
head(data)
#> # A tibble: 6 x 6
#> Plate Wells Drug Concentration Bacteria Killing
#> <chr> <chr> <chr> <dbl> <chr> <dbl>
#> 1 Experiment 1 A01 A 100 E. coli 98
#> 2 Experiment 1 A02 A 20 E. coli 95
#> 3 Experiment 1 A03 A 4 E. coli 92
#> 4 Experiment 1 A04 A 0.8 E. coli 41
#> 5 Experiment 1 A05 A 0.16 E. coli 17
#> 6 Experiment 1 A06 A 0.032 E. coli 2
Sometimes it’s useful to look back at the data in plate shape. Was there something weird about that one column? Was there contamination all in one corner of the plate?
For this, use view_plate()
which takes a tidy data frame and displays columns from it as plate layouts.
view_plate(
data = data2,
well_ids_column = "Wells",
columns_to_display = c("Concentration", "Killing")
)
#> $Concentration
#> 1 2 3 4 5 6 7 8 9 10 11 12
#> A 100 20 4 0.8 0.16 0.032 0.0064 0.00128 0.000256 5.12e-05 1.024e-05 0
#> B 100 20 4 0.8 0.16 0.032 0.0064 0.00128 0.000256 5.12e-05 1.024e-05 0
#> C 100 20 4 0.8 0.16 0.032 0.0064 0.00128 0.000256 5.12e-05 1.024e-05 0
#> D 100 20 4 0.8 0.16 0.032 0.0064 0.00128 0.000256 5.12e-05 1.024e-05 0
#> E 100 20 4 0.8 0.16 0.032 0.0064 0.00128 0.000256 5.12e-05 1.024e-05 0
#> F 100 20 4 0.8 0.16 0.032 0.0064 0.00128 0.000256 5.12e-05 1.024e-05 0
#> G 100 20 4 0.8 0.16 0.032 0.0064 0.00128 0.000256 5.12e-05 1.024e-05 0
#> H 100 20 4 0.8 0.16 0.032 0.0064 0.00128 0.000256 5.12e-05 1.024e-05 0
#>
#> $Killing
#> 1 2 3 4 5 6 7 8 9 10 11 12
#> A 98 95 92 41 17 2 1.5 1.8 1 0.5 0.5 0.3
#> B 15 8 3 1.2 1.1 0.8 1.2 0.4 0.6 0.1 0.2 0.4
#> C 72 21 7 1.1 0.8 1.3 0.2 1.8 1 0.2 0.4 0.2
#> D 0.4 0.2 0.1 0.5 0.3 0.2 0.1 0.1 0.5 0.5 0.3 0.4
#> E 37 7 2 0.3 0.2 0.4 0.6 0.1 1 0.2 0.4 0.2
#> F 99 99 99 99 99 61 5 2.2 1.3 0.2 0.3 0.2
#> G 99 33 4 0.5 0.3 0.2 0.2 0.3 0.2 0.2 0.4 0.2
#> H 98 99 99 97 98 99 98 97 65 22 8 0.5