x <- 1:4
model <- depmixS4::depmix(x ~ 1, nstates=2, ntimes=length(x))
depmixS4::fit(model)
#> Error in fb(init = init, A = trDens, B = dens, ntimes = ntimes(object), : NA/NaN/Inf in foreign function call (arg 10)
data("buggy.5states", package="plotHMM")
plot(buggy.5states$logratio)
model.spec <- depmixS4::depmix(
logratio ~ 1, data=buggy.5states, nstates=5)
set.seed(1)
model.fit <- depmixS4::fit(model.spec)
#> Error in fb(init = init, A = trDens, B = dens, ntimes = ntimes(object), : NA/NaN/Inf in foreign function call (arg 10)
data(neuroblastoma, package="neuroblastoma")
library(data.table)
nb.dt <- data.table(neuroblastoma$profiles)
one.pro <- nb.dt[profile.id=="4" & chromosome%in%1:10]
ntimes <- rle(as.integer(one.pro$chromosome))
n.states <- 4
model.spec <- depmixS4::depmix(
logratio ~ 1, data=one.pro,
nstates=n.states, ntimes=ntimes$lengths)
set.seed(1)
unconstrained.fit <- depmixS4::fit(model.spec)
#> converged at iteration 155 with logLik: 1332.267
param.names <- c(mean="(Intercept)", sd="sd")
par.vec <- depmixS4::getpars(unconstrained.fit)
matrix(
par.vec[names(par.vec) %in% param.names],
ncol=length(param.names),
byrow=TRUE,
dimnames=list(state=1:n.states, parameter=names(param.names)))
#> parameter
#> state mean sd
#> 1 0.022591507 0.0656462
#> 2 0.323438442 0.1177992
#> 3 -0.400759728 0.1855010
#> 4 -0.008333332 0.1170413
one.pro[, viterbi := factor(unconstrained.fit@posterior[,1]) ]
library(ggplot2)
ggplot()+
geom_point(aes(
position/1e6, logratio, color=viterbi),
data=one.pro)+
facet_grid(. ~ chromosome, scales="free", space="free")
par.vec <- depmixS4::getpars(model.spec)
equal.groups <- rep(1, length(par.vec))
equal.groups[names(par.vec)=="sd"] <- 2
if(FALSE){
constrained.fit <- depmixS4::fit(model.spec, equal=equal.groups)
}
one.chrom <- nb.dt[profile.id=="4" & chromosome=="2"]
n.states <- 3
model.spec <- depmixS4::depmix(
logratio ~ 1,
data=one.chrom,
nstates=n.states)
log.emission.mat <- log(model.spec@dens[,1,])
log.transition.mat <- log(model.spec@trDens[1,,])
log.init.vec <- log(model.spec@init[1,])
microbenchmark::microbenchmark(depmixS4={
result <- depmixS4::forwardbackward(model.spec)
}, plotHMM={
fwd.list <- plotHMM::forward_interface(
log.emission.mat, log.transition.mat, log.init.vec)
back.mat <- plotHMM::backward_interface(
log.emission.mat, log.transition.mat)
mult.mat <- plotHMM::multiply_interface(
fwd.list$log_alpha, back.mat)
pairwise.array <- plotHMM::pairwise_interface(
log.emission.mat, log.transition.mat,
fwd.list$log_alpha, back.mat)
}, times=5)
#> Unit: microseconds
#> expr min lq mean median uq max neval
#> depmixS4 86.8 94.0 118.76 102.2 130.8 180.0 5
#> plotHMM 286.8 288.2 8335.18 291.0 295.5 40514.4 5
plotHMM is 2-3x slower than depmixS4. Possibly due to (1) overhead of several function calls rather than just one, and (2) log space computations are slower than scaling.
microbenchmark::microbenchmark(depmixS4={
depmixS4::viterbi(model.spec)
}, plotHMM={
plotHMM::viterbi_interface(
log.emission.mat, log.transition.mat, log.init.vec)
}, times=5)
#> Unit: microseconds
#> expr min lq mean median uq max neval
#> depmixS4 2732.9 4145.1 4145.80 4218.1 4758.0 4874.9 5
#> plotHMM 11.6 13.2 31.88 13.8 29.8 91.0 5
plotHMM is about 100x faster than depmixS4, because of the overhead of loops in R (memory allocation in each iteration).