psychtm: Text Mining Methods for Psychological Research
Provides text mining methods for social science research. The
package implements estimation, inference, summarization, and goodness-of-fit
methods for topic models including Latent Dirichlet Allocation (LDA),
supervised LDA, and supervised LDA with covariates using Bayesian Markov Chain
Monte Carlo. A description of the key models and estimation methods is available
in Wilcox, Jacobucci, Zhang, & Ammerman (2021). <doi:10.31234/osf.io/62tc3>.
Version: |
2021.1.0 |
Depends: |
R (≥ 3.3.0) |
Imports: |
coda (≥ 0.4), label.switching, methods, Rcpp (≥ 0.11.0), rlang (≥ 0.4.10), tibble (≥ 2.1.3) |
LinkingTo: |
Rcpp (≥ 0.11.0), RcppArmadillo, RcppProgress (≥ 0.4.2) |
Suggests: |
spelling, knitr (≥ 1.22), covr, dplyr, ggplot2, lda, testthat (≥ 3.0.2), rmarkdown |
Published: |
2021-11-02 |
Author: |
Kenneth Wilcox [aut, cre, cph] |
Maintainer: |
Kenneth Wilcox <kwilcox3 at nd.edu> |
BugReports: |
https://github.com/ktw5691/psychtm/issues |
License: |
LGPL (≥ 3) |
URL: |
https://github.com/ktw5691/psychtm/ |
NeedsCompilation: |
yes |
SystemRequirements: |
C++11 |
Language: |
en-US |
Citation: |
psychtm citation info |
Materials: |
README NEWS |
CRAN checks: |
psychtm results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=psychtm
to link to this page.