A manual to show the R package quickReg
.
The quickReg
package concentrates on a set of functions to display and pry a dataset. More precisely, the package can display statistical description for a dataset, build regression models for lm, glm and cox regression based on specified variables. More importantly, the package provides several seamless functions to display these regressions. Several examples are used to explain the idea.
The example data is a hypothetical dataset extracting a subset from package PredictABEL. It has no practical implications and only be used to demostrate the main idea of the package.
# If you haven't install the package, you can download it from cran
# install.packages("quickReg")
library(quickReg)
library(ggplot2)
library(rlang)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
# Load the dataset
data(diabetes)
# Show the first 6 rows of the data
head(diabetes)
## sex age smoking education diabetes BMI systolic diastolic CFHrs1061170 LOCrs10490924 CFHrs1410996 C2rs9332739 CFBrs641153 CFHrs2230199
## 1 1 44 1 0 1 40 129 91 1 2 2 1 1 0
## 2 0 53 0 0 0 29 137 98 2 1 1 1 0 0
## 3 1 46 1 0 0 29 136 93 1 1 2 1 1 1
## 4 1 63 0 0 0 29 176 119 1 0 1 1 0 0
## 5 0 60 NA 0 1 30 148 107 1 2 1 1 0 2
## 6 0 52 0 1 1 29 133 91 1 1 1 1 1 0
We can use the function display_table or display_table_group to show statistical descriptions of the data.
display_1<-display_table(data=diabetes,variables=c("age","smoking","education"),group="CFHrs2230199")
display_1
## variable level All sample CFHrs2230199 = 0 CFHrs2230199 = 1 CFHrs2230199 = 2 P.value1 P.value2 normality
## 1 age mean +- sd 58.98 +- 13.27 59.23 +- 13.36 58.34 +- 13.14 60.59 +- 13.16 0.36 0.47 6.45E-08; 3.01E-05; 0.24
## 2 NA 0 0 0 0
## 3 smoking 0 455 (49.14%) 259 (49.81%) 166 (48.4%) 30 (47.62%) 0.89 <NA>
## 4 1 471 (50.86%) 261 (50.19%) 177 (51.6%) 33 (52.38%)
## 5 NA 74 38 33 3
## 6 education 0 661 (66.1%) 370 (66.31%) 248 (65.96%) 43 (65.15%) 0.98 <NA>
## 7 1 339 (33.9%) 188 (33.69%) 128 (34.04%) 23 (34.85%)
## 8 NA 0 0 0 0
# You could do a sub-group analysis by sex
display_2<-display_table_group(data=diabetes,variables=c("age","smoking"),group="CFHrs2230199",super_group = "sex")
display_2
## # A tibble: 10 x 10
## sex variable level `All sample` `CFHrs2230199 = 0` `CFHrs2230199 = 1` `CFHrs2230199 = 2` P.value1 P.value2 normality
## <dbl> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
## 1 0 age mean +- sd 59.22 +- 13.72 59.94 +- 14.09 58.52 +- 13.38 57.54 +- 12.53 0.36 0.40 2.71E-05; 1.59E-03; 0.08
## 2 0 NA 0 0 0 0
## 3 0 smoking 0 259 (49.05%) 142 (48.63%) 100 (50.51%) 17 (44.74%) 0.79 <NA>
## 4 0 1 269 (50.95%) 150 (51.37%) 98 (49.49%) 21 (55.26%)
## 5 0 NA 44 20 21 3
## 6 1 age mean +- sd 58.66 +- 12.65 58.33 +- 12.34 58.08 +- 12.84 65.60 +- 12.86 0.02 0.02 3.56E-04; 0.01; 0.95
## 7 1 NA 0 0 0 0
## 8 1 smoking 0 196 (49.25%) 117 (51.32%) 66 (45.52%) 13 (52%) 0.53 <NA>
## 9 1 1 202 (50.75%) 111 (48.68%) 79 (54.48%) 12 (48%)
## 10 1 NA 30 18 12 0
# You could do a sub-group analysis by two variables
display_3<-display_table_group(data=diabetes,variables=c("age","smoking"),group="CFHrs2230199",super_group = c("sex","education"))
display_3
## super_group super_group_level variable level All sample CFHrs2230199 = 0 CFHrs2230199 = 1 CFHrs2230199 = 2 P.value1 P.value2
## 1 sex 0 age mean +- sd 59.22 +- 13.72 59.94 +- 14.09 58.52 +- 13.38 57.54 +- 12.53 0.36 0.40
## 2 sex 0 NA 0 0 0 0
## 3 sex 0 smoking 0 259 (49.05%) 142 (48.63%) 100 (50.51%) 17 (44.74%) 0.79 <NA>
## 4 sex 0 1 269 (50.95%) 150 (51.37%) 98 (49.49%) 21 (55.26%)
## 5 sex 0 NA 44 20 21 3
## 6 sex 1 age mean +- sd 58.66 +- 12.65 58.33 +- 12.34 58.08 +- 12.84 65.60 +- 12.86 0.02 0.02
## 7 sex 1 NA 0 0 0 0
## 8 sex 1 smoking 0 196 (49.25%) 117 (51.32%) 66 (45.52%) 13 (52%) 0.53 <NA>
## 9 sex 1 1 202 (50.75%) 111 (48.68%) 79 (54.48%) 12 (48%)
## 10 sex 1 NA 30 18 12 0
## 11 education 0 age mean +- sd 58.68 +- 12.98 59.15 +- 12.95 57.73 +- 12.95 60.09 +- 13.36 0.31 0.49
## 12 education 0 NA 0 0 0 0
## 13 education 0 smoking 0 307 (49.68%) 166 (47.56%) 126 (55.26%) 15 (36.59%) 0.04 <NA>
## 14 education 0 1 311 (50.32%) 183 (52.44%) 102 (44.74%) 26 (63.41%)
## 15 education 0 NA 43 21 20 2
## 16 education 1 age mean +- sd 59.57 +- 13.81 59.37 +- 14.17 59.52 +- 13.48 61.52 +- 13.02 0.78 0.72
## 17 education 1 NA 0 0 0 0
## 18 education 1 smoking 0 148 (48.05%) 93 (54.39%) 40 (34.78%) 15 (68.18%) 7.35E-04 <NA>
## 19 education 1 1 160 (51.95%) 78 (45.61%) 75 (65.22%) 7 (31.82%)
## 20 education 1 NA 31 17 13 1
## normality
## 1 2.71E-05; 1.59E-03; 0.08
## 2
## 3
## 4
## 5
## 6 3.56E-04; 0.01; 0.95
## 7
## 8
## 9
## 10
## 11 1.18E-05; 7.28E-04; 0.39
## 12
## 13
## 14
## 15
## 16 5.73E-04; 4.11E-03; 0.84
## 17
## 18
## 19
## 20
# Sub-group analysis can be a combination
display_4<-display_table_group(data=diabetes,variables=c("age","smoking"),group="CFHrs2230199",super_group = c("sex","education"),group_combine = TRUE)
display_4
## # A tibble: 20 x 11
## sex education variable level `All sample` `CFHrs2230199 = 0` `CFHrs2230199 = 1` `CFHrs2230199 = 2` P.value1 P.value2 normality
## <dbl> <dbl> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
## 1 0 0 age mean +- sd 59.15 +- 13.47 60.08 +- 13.66 58.03 +- 13.20 58.52 +- 13.54 0.35 0.40 8.20E-04; 0.01; 0.13
## 2 0 0 NA 0 0 0 0
## 3 0 0 smoking 0 181 (49.86%) 91 (46.91%) 81 (57.04%) 9 (33.33%) 0.04 <NA>
## 4 0 0 1 182 (50.14%) 103 (53.09%) 61 (42.96%) 18 (66.67%)
## 5 0 0 NA 28 13 13 2
## 6 0 1 age mean +- sd 59.38 +- 14.28 59.66 +- 14.99 59.72 +- 13.84 55.17 +- 9.77 0.57 0.63 0.01; 0.07; 0.89
## 7 0 1 NA 0 0 0 0
## 8 0 1 smoking 0 78 (47.27%) 51 (52.04%) 19 (33.93%) 8 (72.73%) 0.02 <NA>
## 9 0 1 1 87 (52.73%) 47 (47.96%) 37 (66.07%) 3 (27.27%)
## 10 0 1 NA 16 7 8 1
## 11 1 0 age mean +- sd 58.00 +- 12.23 57.98 +- 11.94 57.24 +- 12.58 63.36 +- 12.83 0.22 0.25 0.01; 0.01; 0.94
## 12 1 0 NA 0 0 0 0
## 13 1 0 smoking 0 126 (49.41%) 75 (48.39%) 45 (52.33%) 6 (42.86%) 0.74 <NA>
## 14 1 0 1 129 (50.59%) 80 (51.61%) 41 (47.67%) 8 (57.14%)
## 15 1 0 NA 15 8 7 0
## 16 1 1 age mean +- sd 59.79 +- 13.29 59.01 +- 13.15 59.31 +- 13.22 68.45 +- 12.92 0.08 0.08 0.04; 0.04; 0.92
## 17 1 1 NA 0 0 0 0
## 18 1 1 smoking 0 70 (48.95%) 42 (57.53%) 21 (35.59%) 7 (63.64%) 0.03 <NA>
## 19 1 1 1 73 (51.05%) 31 (42.47%) 38 (64.41%) 4 (36.36%)
## 20 1 1 NA 15 10 5 0
# Apply univariate regression models
reg_1<-reg_x(data = diabetes, y = 5, factors = c(1, 3, 4), model = 'glm')
reg_1
## x term estimate std.error statistic p.value OR OR.low OR.high N
## 1 sex sex_1 -0.0995619364 0.163419266 -0.60924234 5.423638e-01 0.9052339 0.6571403 1.246992 1000
## 2 age age -0.0016515166 0.006083056 -0.27149453 7.860107e-01 0.9983498 0.9865176 1.010324 1000
## 3 smoking smoking_1 0.2203884367 0.171356638 1.28613889 1.983946e-01 1.2465608 0.8909523 1.744105 926
## 4 education education_1 0.0072440035 0.169823173 0.04265615 9.659756e-01 1.0072703 0.7220916 1.405076 1000
## 5 BMI BMI -0.0205541093 0.021530295 -0.95465990 3.397497e-01 0.9796557 0.9391757 1.021880 994
## 6 systolic systolic -0.0001758354 0.004399858 -0.03996388 9.681219e-01 0.9998242 0.9912392 1.008484 995
## 7 diastolic diastolic -0.0010196342 0.007323325 -0.13923104 8.892676e-01 0.9989809 0.9847445 1.013423 995
## 8 CFHrs1061170 CFHrs1061170 0.1648181445 0.108731134 1.51583211 1.295618e-01 1.1791787 0.9528565 1.459257 1000
## 9 LOCrs10490924 LOCrs10490924 0.6243454613 0.112922906 5.52895320 3.221473e-08 1.8670235 1.4963378 2.329539 1000
## 10 CFHrs1410996 CFHrs1410996 0.3154310240 0.128347280 2.45763699 1.398545e-02 1.3708501 1.0659591 1.762947 1000
## 11 C2rs9332739 C2rs9332739 1.0717936770 0.433256076 2.47381107 1.336804e-02 2.9206134 1.2493549 6.827510 1000
## 12 CFBrs641153 CFBrs641153 0.1993582016 0.253688461 0.78583866 4.319620e-01 1.2206191 0.7424038 2.006874 1000
## 13 CFHrs2230199 CFHrs2230199 0.3402726917 0.125293121 2.71581303 6.611324e-03 1.4053308 1.0993320 1.796504 1000
# Or a survial analysis
reg_2<-reg_x(data = diabetes, x = c(3:4, 6), y ="diabetes",time=2,factors = c(1, 3, 4), model = 'coxph')
reg_2
## x term estimate std.error statistic p.value HR HR.low HR.high N
## 1 smoking smoking_1 0.17247504 0.15526447 1.1108468 0.266634305 1.1882422 0.8764832 1.6108916 926
## 2 education education_1 -0.06871785 0.15313905 -0.4487285 0.653627559 0.9335901 0.6915188 1.2604001 1000
## 3 BMI BMI -0.05564539 0.02111973 -2.6347584 0.008419718 0.9458745 0.9075203 0.9858496 994
# adjust some covariates
reg_3<-reg_x(data = diabetes, x = c("sex","age"), y ="diabetes" ,cov=c("CFBrs641153","CFHrs2230199"), factors ="sex", model = 'glm',cov_show = TRUE)
reg_3
## x term estimate std.error statistic p.value OR OR.low OR.high N
## 2 sex sex_1 -0.095195435 0.164518306 -0.5786313 0.562838007 0.9091952 0.6585957 1.255149 1000
## 3 sex CFBrs641153 0.230790886 0.255559041 0.9030825 0.366482136 1.2595958 0.7633065 2.078564 1000
## 4 sex CFHrs2230199 0.342102415 0.125633639 2.7230160 0.006468892 1.4079045 1.1006105 1.800996 1000
## 6 age age -0.001887778 0.006114376 -0.3087442 0.757516121 0.9981140 0.9862240 1.010147 1000
## 7 age CFBrs641153 0.224355970 0.255129981 0.8793791 0.379195768 1.2515164 0.7590485 2.063496 1000
## 8 age CFHrs2230199 0.344428164 0.125604894 2.7421556 0.006103742 1.4111827 1.1032354 1.805088 1000
# How about regression on several dependent variables
reg_4<-reg_y(data = diabetes, x = c("sex","age","CFHrs1061170"), y =c("systolic","diastolic","BMI") ,cov=c("CFBrs641153","CFHrs2230199"), factors ="sex", model = 'lm')
reg_4
## y x term estimate std.error statistic p.value coef coef.low coef.high N
## 1 systolic sex sex_1 -2.69428330 1.177660308 -2.2878272 2.235750e-02 -2.69428330 -5.00527758 -0.38328902 995
## 2 systolic age age 0.62409179 0.039210814 15.9163181 5.778111e-51 0.62409179 0.54714603 0.70103755 995
## 3 systolic CFHrs1061170 CFHrs1061170 0.49087994 0.783066116 0.6268691 5.308894e-01 0.49087994 -1.04577821 2.02753809 995
## 4 diastolic sex sex_1 -1.73296131 0.708148117 -2.4471735 1.457089e-02 -1.73296131 -3.12260333 -0.34331929 995
## 5 diastolic age age 0.15343916 0.025977166 5.9066936 4.793066e-09 0.15343916 0.10246259 0.20441573 995
## 6 diastolic CFHrs1061170 CFHrs1061170 -0.30611928 0.471042899 -0.6498756 5.159232e-01 -0.30611928 -1.23047534 0.61823679 995
## 7 BMI sex sex_1 -0.39143773 0.243573523 -1.6070619 1.083597e-01 -0.39143773 -0.86941742 0.08654197 994
## 8 BMI age age 0.05159255 0.008939646 5.7712071 1.052213e-08 0.05159255 0.03404972 0.06913538 994
## 9 BMI CFHrs1061170 CFHrs1061170 -0.10033051 0.161718714 -0.6204013 5.351364e-01 -0.10033051 -0.41768134 0.21702033 994
# Cool, but I want to do a subgroup analysis
reg_5<-reg(data = diabetes, x = c("age","CFHrs1061170"), y =c("systolic","diastolic") ,cov=c("CFBrs641153","CFHrs2230199"), model = 'lm',group="sex")
reg_5
## # A tibble: 8 x 12
## sex y x term estimate std.error statistic p.value coef coef.low coef.high N
## <dbl> <fctr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0 systolic age age 0.6477326 0.05076473 12.7594992 6.063847e-33 0.6477326 0.54802193 0.7474432 569
## 2 0 systolic CFHrs1061170 CFHrs1061170 1.1440952 1.05733099 1.0820597 2.796876e-01 1.1440952 -0.93268422 3.2208747 569
## 3 0 diastolic age age 0.1303477 0.03356128 3.8838704 1.149692e-04 0.1303477 0.06442756 0.1962678 569
## 4 0 diastolic CFHrs1061170 CFHrs1061170 0.2286169 0.62463113 0.3660031 7.144998e-01 0.2286169 -0.99826579 1.4554996 569
## 5 1 systolic age age 0.5930679 0.06179047 9.5980472 7.305923e-20 0.5930679 0.47161244 0.7145233 426
## 6 1 systolic CFHrs1061170 CFHrs1061170 -0.4651260 1.15629722 -0.4022547 6.877002e-01 -0.4651260 -2.73794544 1.8076933 426
## 7 1 diastolic age age 0.1937122 0.04099307 4.7254861 3.132224e-06 0.1937122 0.11313616 0.2742882 426
## 8 1 diastolic CFHrs1061170 CFHrs1061170 -1.0898894 0.71130615 -1.5322366 1.262133e-01 -1.0898894 -2.48803370 0.3082550 426
# or two subgroup analysis
reg_6<-reg(data = diabetes, x = c("age","CFHrs1061170"), y =c("systolic","diastolic") ,cov=c("CFBrs641153","CFHrs2230199"), model = 'lm',group=c("sex","smoking"))
reg_6
## group level y x term estimate std.error statistic p.value coef coef.low coef.high N
## 1 sex 0 systolic age age 0.64773257 0.05076473 12.75949920 6.063847e-33 0.64773257 0.54802193 0.7474432 569
## 2 sex 0 systolic CFHrs1061170 CFHrs1061170 1.14409524 1.05733099 1.08205968 2.796876e-01 1.14409524 -0.93268422 3.2208747 569
## 3 sex 0 diastolic age age 0.13034768 0.03356128 3.88387043 1.149692e-04 0.13034768 0.06442756 0.1962678 569
## 4 sex 0 diastolic CFHrs1061170 CFHrs1061170 0.22861690 0.62463113 0.36600306 7.144998e-01 0.22861690 -0.99826579 1.4554996 569
## 5 sex 1 systolic age age 0.59306788 0.06179047 9.59804724 7.305923e-20 0.59306788 0.47161244 0.7145233 426
## 6 sex 1 systolic CFHrs1061170 CFHrs1061170 -0.46512605 1.15629722 -0.40225475 6.877002e-01 -0.46512605 -2.73794544 1.8076933 426
## 7 sex 1 diastolic age age 0.19371219 0.04099307 4.72548612 3.132224e-06 0.19371219 0.11313616 0.2742882 426
## 8 sex 1 diastolic CFHrs1061170 CFHrs1061170 -1.08988936 0.71130615 -1.53223665 1.262133e-01 -1.08988936 -2.48803370 0.3082550 426
## 9 smoking 0 systolic age age 0.56709310 0.05775625 9.81873047 9.527853e-21 0.56709310 0.45358764 0.6805986 454
## 10 smoking 0 systolic CFHrs1061170 CFHrs1061170 0.09315881 1.09475817 0.08509533 9.322234e-01 0.09315881 -2.05831432 2.2446319 454
## 11 smoking 0 diastolic age age 0.12266643 0.03938756 3.11434456 1.961246e-03 0.12266643 0.04526004 0.2000728 454
## 12 smoking 0 diastolic CFHrs1061170 CFHrs1061170 0.34433728 0.68460209 0.50297434 6.152284e-01 0.34433728 -1.00107674 1.6897513 454
## 13 smoking 1 systolic age age 0.70147846 0.05756805 12.18520429 8.091810e-30 0.70147846 0.58835143 0.8146055 467
## 14 smoking 1 systolic CFHrs1061170 CFHrs1061170 0.48555084 1.21375126 0.40004147 6.893105e-01 0.48555084 -1.89959281 2.8706945 467
## 15 smoking 1 diastolic age age 0.19687617 0.03742561 5.26046659 2.200772e-07 0.19687617 0.12333107 0.2704213 467
## 16 smoking 1 diastolic CFHrs1061170 CFHrs1061170 -0.97263707 0.70551713 -1.37861582 1.686790e-01 -0.97263707 -2.35904940 0.4137752 467
## 17 smoking NA systolic age age 0.53068925 0.14994046 3.53933329 7.175890e-04 0.53068925 0.23164244 0.8297361 74
## 18 smoking NA systolic CFHrs1061170 CFHrs1061170 2.87081804 2.97945574 0.96353774 3.385946e-01 2.87081804 -3.07151907 8.8131551 74
## 19 smoking NA diastolic age age 0.10466712 0.09433926 1.10947570 2.710221e-01 0.10466712 -0.08348661 0.2928208 74
## 20 smoking NA diastolic CFHrs1061170 CFHrs1061170 -0.23489246 1.75288157 -0.13400361 8.937842e-01 -0.23489246 -3.73090451 3.2611196 74
# or subgroup combination analysis
reg_7<-reg(data = diabetes, x = c("age","CFHrs1061170"), y =c("systolic","diastolic") ,cov=c("CFBrs641153","CFHrs2230199"), model = 'lm',group=c("sex","smoking"),group_combine = TRUE)
reg_7
## # A tibble: 24 x 13
## sex smoking y x term estimate std.error statistic p.value coef coef.low coef.high N
## <dbl> <dbl> <fctr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0 0 systolic age age 0.56566186 0.07304951 7.74354045 2.301974e-13 0.56566186 0.42180198 0.7095217 258
## 2 0 0 systolic CFHrs1061170 CFHrs1061170 0.03696846 1.39565115 0.02648833 9.788886e-01 0.03696846 -2.71155369 2.7854906 258
## 3 0 0 diastolic age age 0.05249817 0.05145244 1.02032422 3.085456e-01 0.05249817 -0.04882956 0.1538259 258
## 4 0 0 diastolic CFHrs1061170 CFHrs1061170 0.01277514 0.88599675 0.01441894 9.885071e-01 0.01277514 -1.73206039 1.7576107 258
## 5 0 1 systolic age age 0.70618780 0.07593126 9.30035608 5.640935e-18 0.70618780 0.55667724 0.8556984 267
## 6 0 1 systolic CFHrs1061170 CFHrs1061170 2.02610247 1.69213826 1.19736225 2.322435e-01 2.02610247 -1.30576002 5.3579650 267
## 7 0 1 diastolic age age 0.20585792 0.04809969 4.27981799 2.622268e-05 0.20585792 0.11114843 0.3005674 267
## 8 0 1 diastolic CFHrs1061170 CFHrs1061170 0.42781849 0.96394397 0.44382091 6.575370e-01 0.42781849 -1.47021125 2.3258482 267
## 9 0 NA systolic age age 0.81921451 0.20115008 4.07265312 2.135090e-04 0.81921451 0.41267503 1.2257540 44
## 10 0 NA systolic CFHrs1061170 CFHrs1061170 2.31536173 4.56061889 0.50768586 6.144618e-01 2.31536173 -6.90199287 11.5327163 44
## 11 0 NA diastolic age age 0.12892734 0.12646759 1.01944967 3.141161e-01 0.12892734 -0.12667319 0.3845279 44
## 12 0 NA diastolic CFHrs1061170 CFHrs1061170 -0.17778391 2.44958412 -0.07257718 9.425043e-01 -0.17778391 -5.12857809 4.7730103 44
## 13 1 0 systolic age age 0.57996701 0.09378644 6.18391135 3.684510e-09 0.57996701 0.39498297 0.7649511 196
## 14 1 0 systolic CFHrs1061170 CFHrs1061170 -0.11335576 1.77338944 -0.06392040 9.491001e-01 -0.11335576 -3.61118286 3.3844713 196
## 15 1 0 diastolic age age 0.22779350 0.06043316 3.76934634 2.177436e-04 0.22779350 0.10859535 0.3469917 196
## 16 1 0 diastolic CFHrs1061170 CFHrs1061170 0.57770379 1.08064396 0.53459216 5.935504e-01 0.57770379 -1.55375456 2.7091621 196
## 17 1 1 systolic age age 0.69287978 0.08951395 7.74046694 5.144888e-13 0.69287978 0.51634563 0.8694139 200
## 18 1 1 systolic CFHrs1061170 CFHrs1061170 -1.14297702 1.72236416 -0.66360938 5.077201e-01 -1.14297702 -4.53972238 2.2537684 200
## 19 1 1 diastolic age age 0.18182606 0.06063870 2.99851533 3.064515e-03 0.18182606 0.06223799 0.3014141 200
## 20 1 1 diastolic CFHrs1061170 CFHrs1061170 -2.58830102 1.02894363 -2.51549350 1.268953e-02 -2.58830102 -4.61752317 -0.5590789 200
## 21 1 NA systolic age age 0.13268222 0.18812265 0.70529638 4.868970e-01 0.13268222 -0.25400942 0.5193739 30
## 22 1 NA systolic CFHrs1061170 CFHrs1061170 2.91196013 3.01091415 0.96713489 3.423874e-01 2.91196013 -3.27706254 9.1009828 30
## 23 1 NA diastolic age age 0.05955039 0.13652874 0.43617474 6.663104e-01 0.05955039 -0.22108846 0.3401892 30
## 24 1 NA diastolic CFHrs1061170 CFHrs1061170 -0.73920266 2.20642133 -0.33502335 7.402955e-01 -0.73920266 -5.27456666 3.7961613 30
# good idea
plot(reg_1)
# One OR value is larger than others, we can set the limits
plot(reg_1,limits=c(NA,3))
# Sort the variables according to alphabetical
plot(reg_1,limits=c(NA,3), sort ="alphabetical")
# Similarly, we can plot for several dependent variables result
plot(reg_4)
## Some variables are duplicated in your regression result.
## Using cov_show = FALSE for covariate variables or facet for subgroup result.
# Subgroup and several dependent variables result
plot(reg_5)+facet_grid(sex~y)
## Some variables are duplicated in your regression result.
## Using cov_show = FALSE for covariate variables or facet for subgroup result.
# Actually, you can modify the plot like ggplot2
library(ggplot2);library(ggthemes)
plot(reg_1,limits=c(0.5,2))+
labs(list(title = "Regression Model", x = "variables"))+
theme_classic() %+replace%
theme(legend.position ="none",axis.text.x=element_text(angle=45,size=rel(1.5)))
The quickReg
package provides a flexible and convenient way to dispaly data and the association between variables. This vignette offers a glimpse of its use and features. The source code and help files are more helpful. The package is ongoing. If you have any comments, questions or bug reports, please contact me.