Implemented fast and memory-efficient 'Notch'-filter,
'Welch-periodogram', and discrete wavelet transform algorithm for hours of
high-resolution signals; providing fundamental toolbox
for 'iEEG' preprocess pipelines.
Documentation and examples about 'RAVE' project are provided at
<https://openwetware.org/wiki/RAVE>, and the paper by John F. Magnotti,
Zhengjia Wang, Michael S. Beauchamp (2020)
<doi:10.1016/j.neuroimage.2020.117341>; see 'citation("ravetools")' for
details.
Version: |
0.0.6 |
Depends: |
R (≥ 4.0.0) |
Imports: |
graphics, stats, filearray (≥ 0.1.3), Rcpp (≥ 1.0.8), waveslim (≥ 1.8.2), signal (≥ 0.7.7), digest (≥ 0.6.29) |
LinkingTo: |
Rcpp |
Suggests: |
fftwtools, bit64, pracma, microbenchmark, testthat |
Published: |
2022-08-25 |
Author: |
Zhengjia Wang [aut, cre, cph],
Beauchamp lab [cph],
Karim Rahim [cph] (R package fftwtools),
Prerau Lab [cph] (Multitaper Spectrogram Code),
RcppParallel Authors [cph] (TinyParallel Code comes from RcppParallel),
Marcus Geelnard [cph] (TinyThread library) |
Maintainer: |
Zhengjia Wang <dipterix.wang at gmail.com> |
BugReports: |
https://github.com/dipterix/ravetools/issues |
License: |
GPL-3 |
URL: |
https://dipterix.org/ravetools/ |
NeedsCompilation: |
yes |
SystemRequirements: |
fftw3 (libfftw3-dev (deb), or fftw-devel (rpm)) |
Language: |
en-US |
Citation: |
ravetools citation info |
Materials: |
README NEWS |
CRAN checks: |
ravetools results |