The package require all variables to be numerical. So a multi-categorical factor needs to be converted to dummy variables or multiple dichotomous indicators. For survival outcome models, the indicator variable is for the event (1 = event, 0 = censored).
library(regmedint)
library(tidyverse)
## Prepare dataset
data(vv2015)
regmedint
objectFollowing typical modeling workflow in R (e.g., lm
and glm
), a constructor function is used to create a model fit object. The summary
method is the main user function for examining the results in the object. Lower-level methods such as coef
, vcov
, and confint
are also provided for flexibility. The print
method is mainly for meaningful implicit printing when only the object name is evaluated. All methods for the regmedint
object has arguments a0
, a1
, m_cde
, and c_cond
. These are used to re-evaluate the results without re-fitting the underlying models.
regemedint()
object constructor<- regmedint(data = vv2015,
regmedint_obj ## Variables
yvar = "y",
avar = "x",
mvar = "m",
cvar = c("c"),
eventvar = "event",
## Values at which effects are evaluated
a0 = 0,
a1 = 1,
m_cde = 1,
c_cond = 0.5,
## Model types
mreg = "logistic",
yreg = "survAFT_weibull",
## Additional specification
interaction = TRUE,
casecontrol = FALSE)
summary()
for regmedint
summary(regmedint_obj)
## ### Mediator model
##
## Call:
## glm(formula = m ~ x + c, family = binomial(link = "logit"), data = data)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.5143 -1.1765 0.9177 1.1133 1.4602
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.3545 0.3252 -1.090 0.276
## x 0.3842 0.4165 0.922 0.356
## c 0.2694 0.2058 1.309 0.191
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 138.59 on 99 degrees of freedom
## Residual deviance: 136.08 on 97 degrees of freedom
## AIC: 142.08
##
## Number of Fisher Scoring iterations: 4
##
## ### Outcome model
##
## Call:
## survival::survreg(formula = Surv(y, event) ~ x + m + x:m + c,
## data = data, dist = "weibull")
## Value Std. Error z p
## (Intercept) -1.0424 0.1903 -5.48 4.3e-08
## x 0.4408 0.3008 1.47 0.14
## m 0.0905 0.2683 0.34 0.74
## c -0.0669 0.0915 -0.73 0.46
## x:m 0.1003 0.4207 0.24 0.81
## Log(scale) -0.0347 0.0810 -0.43 0.67
##
## Scale= 0.966
##
## Weibull distribution
## Loglik(model)= -11.4 Loglik(intercept only)= -14.5
## Chisq= 6.31 on 4 degrees of freedom, p= 0.18
## Number of Newton-Raphson Iterations: 5
## n= 100
##
## ### Mediation analysis
## est se Z p lower upper
## cde 0.541070807 0.29422958 1.8389409 0.06592388 -0.03560858 1.11775019
## pnde 0.488930417 0.21049248 2.3227928 0.02019028 0.07637274 0.90148809
## tnie 0.018240025 0.03706111 0.4921608 0.62260566 -0.05439841 0.09087846
## tnde 0.498503455 0.21209540 2.3503737 0.01875457 0.08280410 0.91420281
## pnie 0.008666987 0.02730994 0.3173565 0.75097309 -0.04485951 0.06219348
## te 0.507170442 0.21090051 2.4047853 0.01618197 0.09381303 0.92052785
## pm 0.045436278 0.09119614 0.4982259 0.61832484 -0.13330488 0.22417743
##
## Evaluated at:
## avar: x
## a1 (intervened value of avar) = 1
## a0 (reference value of avar) = 0
## mvar: m
## m_cde (intervend value of mvar for cde) = 1
## cvar: c
## c_cond (covariate vector value) = 0.5
##
## Note that effect estimates can vary over m_cde and c_cond values when interaction = TRUE.
summary(regmedint_obj, exponentiate = TRUE)
## ### Mediator model
##
## Call:
## glm(formula = m ~ x + c, family = binomial(link = "logit"), data = data)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.5143 -1.1765 0.9177 1.1133 1.4602
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.3545 0.3252 -1.090 0.276
## x 0.3842 0.4165 0.922 0.356
## c 0.2694 0.2058 1.309 0.191
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 138.59 on 99 degrees of freedom
## Residual deviance: 136.08 on 97 degrees of freedom
## AIC: 142.08
##
## Number of Fisher Scoring iterations: 4
##
## ### Outcome model
##
## Call:
## survival::survreg(formula = Surv(y, event) ~ x + m + x:m + c,
## data = data, dist = "weibull")
## Value Std. Error z p
## (Intercept) -1.0424 0.1903 -5.48 4.3e-08
## x 0.4408 0.3008 1.47 0.14
## m 0.0905 0.2683 0.34 0.74
## c -0.0669 0.0915 -0.73 0.46
## x:m 0.1003 0.4207 0.24 0.81
## Log(scale) -0.0347 0.0810 -0.43 0.67
##
## Scale= 0.966
##
## Weibull distribution
## Loglik(model)= -11.4 Loglik(intercept only)= -14.5
## Chisq= 6.31 on 4 degrees of freedom, p= 0.18
## Number of Newton-Raphson Iterations: 5
## n= 100
##
## ### Mediation analysis
## est se Z p lower upper
## cde 0.541070807 0.29422958 1.8389409 0.06592388 -0.03560858 1.11775019
## pnde 0.488930417 0.21049248 2.3227928 0.02019028 0.07637274 0.90148809
## tnie 0.018240025 0.03706111 0.4921608 0.62260566 -0.05439841 0.09087846
## tnde 0.498503455 0.21209540 2.3503737 0.01875457 0.08280410 0.91420281
## pnie 0.008666987 0.02730994 0.3173565 0.75097309 -0.04485951 0.06219348
## te 0.507170442 0.21090051 2.4047853 0.01618197 0.09381303 0.92052785
## pm 0.045436278 0.09119614 0.4982259 0.61832484 -0.13330488 0.22417743
## exp(est) exp(lower) exp(upper)
## cde 1.717845 0.9650179 3.057967
## pnde 1.630571 1.0793648 2.463266
## tnie 1.018407 0.9470547 1.095136
## tnde 1.646256 1.0863290 2.494786
## pnie 1.008705 0.9561318 1.064168
## te 1.660586 1.0983544 2.510615
## pm NA NA NA
##
## Evaluated at:
## avar: x
## a1 (intervened value of avar) = 1
## a0 (reference value of avar) = 0
## mvar: m
## m_cde (intervend value of mvar for cde) = 1
## cvar: c
## c_cond (covariate vector value) = 0.5
##
## Note that effect estimates can vary over m_cde and c_cond values when interaction = TRUE.
summary(regmedint_obj, m_cde = 0, c_cond = 1)
## ### Mediator model
##
## Call:
## glm(formula = m ~ x + c, family = binomial(link = "logit"), data = data)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.5143 -1.1765 0.9177 1.1133 1.4602
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.3545 0.3252 -1.090 0.276
## x 0.3842 0.4165 0.922 0.356
## c 0.2694 0.2058 1.309 0.191
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 138.59 on 99 degrees of freedom
## Residual deviance: 136.08 on 97 degrees of freedom
## AIC: 142.08
##
## Number of Fisher Scoring iterations: 4
##
## ### Outcome model
##
## Call:
## survival::survreg(formula = Surv(y, event) ~ x + m + x:m + c,
## data = data, dist = "weibull")
## Value Std. Error z p
## (Intercept) -1.0424 0.1903 -5.48 4.3e-08
## x 0.4408 0.3008 1.47 0.14
## m 0.0905 0.2683 0.34 0.74
## c -0.0669 0.0915 -0.73 0.46
## x:m 0.1003 0.4207 0.24 0.81
## Log(scale) -0.0347 0.0810 -0.43 0.67
##
## Scale= 0.966
##
## Weibull distribution
## Loglik(model)= -11.4 Loglik(intercept only)= -14.5
## Chisq= 6.31 on 4 degrees of freedom, p= 0.18
## Number of Newton-Raphson Iterations: 5
## n= 100
##
## ### Mediation analysis
## est se Z p lower upper
## cde 0.440756562 0.30083077 1.4651313 0.14288511 -0.14886090 1.03037403
## pnde 0.492306223 0.21015655 2.3425690 0.01915149 0.08040695 0.90420550
## tnie 0.018077074 0.03653416 0.4947991 0.62074191 -0.05352857 0.08968272
## tnde 0.501765186 0.21433402 2.3410432 0.01922994 0.08167823 0.92185214
## pnie 0.008618111 0.02707487 0.3183067 0.75025232 -0.04444765 0.06168388
## te 0.510383297 0.21212172 2.4060870 0.01612443 0.09463237 0.92613422
## pm 0.044816400 0.08889613 0.5041434 0.61416060 -0.12941682 0.21904962
##
## Evaluated at:
## avar: x
## a1 (intervened value of avar) = 1
## a0 (reference value of avar) = 0
## mvar: m
## m_cde (intervend value of mvar for cde) = 0
## cvar: c
## c_cond (covariate vector value) = 1
##
## Note that effect estimates can vary over m_cde and c_cond values when interaction = TRUE.
summary(regmedint_obj, m_cde = 0, c_cond = 1, level = 0.99)
## ### Mediator model
##
## Call:
## glm(formula = m ~ x + c, family = binomial(link = "logit"), data = data)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.5143 -1.1765 0.9177 1.1133 1.4602
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.3545 0.3252 -1.090 0.276
## x 0.3842 0.4165 0.922 0.356
## c 0.2694 0.2058 1.309 0.191
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 138.59 on 99 degrees of freedom
## Residual deviance: 136.08 on 97 degrees of freedom
## AIC: 142.08
##
## Number of Fisher Scoring iterations: 4
##
## ### Outcome model
##
## Call:
## survival::survreg(formula = Surv(y, event) ~ x + m + x:m + c,
## data = data, dist = "weibull")
## Value Std. Error z p
## (Intercept) -1.0424 0.1903 -5.48 4.3e-08
## x 0.4408 0.3008 1.47 0.14
## m 0.0905 0.2683 0.34 0.74
## c -0.0669 0.0915 -0.73 0.46
## x:m 0.1003 0.4207 0.24 0.81
## Log(scale) -0.0347 0.0810 -0.43 0.67
##
## Scale= 0.966
##
## Weibull distribution
## Loglik(model)= -11.4 Loglik(intercept only)= -14.5
## Chisq= 6.31 on 4 degrees of freedom, p= 0.18
## Number of Newton-Raphson Iterations: 5
## n= 100
##
## ### Mediation analysis
## est se Z p lower upper
## cde 0.440756562 0.30083077 1.4651313 0.14288511 -0.33413214 1.21564526
## pnde 0.492306223 0.21015655 2.3425690 0.01915149 -0.04902118 1.03363363
## tnie 0.018077074 0.03653416 0.4947991 0.62074191 -0.07602870 0.11218285
## tnde 0.501765186 0.21433402 2.3410432 0.01922994 -0.05032266 1.05385303
## pnie 0.008618111 0.02707487 0.3183067 0.75025232 -0.06112213 0.07835835
## te 0.510383297 0.21212172 2.4060870 0.01612443 -0.03600604 1.05677263
## pm 0.044816400 0.08889613 0.5041434 0.61416060 -0.18416486 0.27379767
##
## Evaluated at:
## avar: x
## a1 (intervened value of avar) = 1
## a0 (reference value of avar) = 0
## mvar: m
## m_cde (intervend value of mvar for cde) = 0
## cvar: c
## c_cond (covariate vector value) = 1
##
## Note that effect estimates can vary over m_cde and c_cond values when interaction = TRUE.
coef()
for regmedint
coef(regmedint_obj)
## cde pnde tnie tnde pnie te
## 0.541070807 0.488930417 0.018240025 0.498503455 0.008666987 0.507170442
## pm
## 0.045436278
## attr(,"args")
## attr(,"args")$a0
## [1] 0
##
## attr(,"args")$a1
## [1] 1
##
## attr(,"args")$m_cde
## [1] 1
##
## attr(,"args")$c_cond
## [1] 0.5
coef(regmedint_obj, m_cde = 0, c_cond = 1)
## cde pnde tnie tnde pnie te
## 0.440756562 0.492306223 0.018077074 0.501765186 0.008618111 0.510383297
## pm
## 0.044816400
## attr(,"args")
## attr(,"args")$a0
## [1] 0
##
## attr(,"args")$a1
## [1] 1
##
## attr(,"args")$m_cde
## [1] 0
##
## attr(,"args")$c_cond
## [1] 1
vcov()
for regmedint
vcov(regmedint_obj)
## cde pnde tnie tnde pnie te
## cde 0.08657105 NA NA NA NA NA
## pnde NA 0.04430708 NA NA NA NA
## tnie NA NA 0.001373526 NA NA NA
## tnde NA NA NA 0.04498446 NA NA
## pnie NA NA NA NA 0.0007458327 NA
## te NA NA NA NA NA 0.04447903
## pm NA NA NA NA NA NA
## pm
## cde NA
## pnde NA
## tnie NA
## tnde NA
## pnie NA
## te NA
## pm 0.008316736
## attr(,"args")
## attr(,"args")$a0
## [1] 0
##
## attr(,"args")$a1
## [1] 1
##
## attr(,"args")$m_cde
## [1] 1
##
## attr(,"args")$c_cond
## [1] 0.5
vcov(regmedint_obj, m_cde = 0, c_cond = 1)
## cde pnde tnie tnde pnie te
## cde 0.09049915 NA NA NA NA NA
## pnde NA 0.04416578 NA NA NA NA
## tnie NA NA 0.001334745 NA NA NA
## tnde NA NA NA 0.04593907 NA NA
## pnie NA NA NA NA 0.0007330485 NA
## te NA NA NA NA NA 0.04499562
## pm NA NA NA NA NA NA
## pm
## cde NA
## pnde NA
## tnie NA
## tnde NA
## pnie NA
## te NA
## pm 0.007902522
## attr(,"args")
## attr(,"args")$a0
## [1] 0
##
## attr(,"args")$a1
## [1] 1
##
## attr(,"args")$m_cde
## [1] 0
##
## attr(,"args")$c_cond
## [1] 1
confint()
for regmedint
confint(regmedint_obj)
## lower upper
## cde -0.03560858 1.11775019
## pnde 0.07637274 0.90148809
## tnie -0.05439841 0.09087846
## tnde 0.08280410 0.91420281
## pnie -0.04485951 0.06219348
## te 0.09381303 0.92052785
## pm -0.13330488 0.22417743
## attr(,"args")
## attr(,"args")$a0
## [1] 0
##
## attr(,"args")$a1
## [1] 1
##
## attr(,"args")$m_cde
## [1] 1
##
## attr(,"args")$c_cond
## [1] 0.5
confint(regmedint_obj, m_cde = 0, c_cond = 1)
## lower upper
## cde -0.14886090 1.03037403
## pnde 0.08040695 0.90420550
## tnie -0.05352857 0.08968272
## tnde 0.08167823 0.92185214
## pnie -0.04444765 0.06168388
## te 0.09463237 0.92613422
## pm -0.12941682 0.21904962
## attr(,"args")
## attr(,"args")$a0
## [1] 0
##
## attr(,"args")$a1
## [1] 1
##
## attr(,"args")$m_cde
## [1] 0
##
## attr(,"args")$c_cond
## [1] 1
confint(regmedint_obj, m_cde = 0, c_cond = 1, level = 0.99)
## lower upper
## cde -0.33413214 1.21564526
## pnde -0.04902118 1.03363363
## tnie -0.07602870 0.11218285
## tnde -0.05032266 1.05385303
## pnie -0.06112213 0.07835835
## te -0.03600604 1.05677263
## pm -0.18416486 0.27379767
## attr(,"args")
## attr(,"args")$a0
## [1] 0
##
## attr(,"args")$a1
## [1] 1
##
## attr(,"args")$m_cde
## [1] 0
##
## attr(,"args")$c_cond
## [1] 1
print()
for regmedint
# Implicit printing regmedint_obj
## ### Mediator model
##
## Call: glm(formula = m ~ x + c, family = binomial(link = "logit"), data = data)
##
## Coefficients:
## (Intercept) x c
## -0.3545 0.3842 0.2694
##
## Degrees of Freedom: 99 Total (i.e. Null); 97 Residual
## Null Deviance: 138.6
## Residual Deviance: 136.1 AIC: 142.1
## ### Outcome model
## Call:
## survival::survreg(formula = Surv(y, event) ~ x + m + x:m + c,
## data = data, dist = "weibull")
##
## Coefficients:
## (Intercept) x m c x:m
## -1.04244118 0.44075656 0.09053705 -0.06689165 0.10031424
##
## Scale= 0.9658808
##
## Loglik(model)= -11.4 Loglik(intercept only)= -14.5
## Chisq= 6.31 on 4 degrees of freedom, p= 0.177
## n= 100
## ### Mediation analysis
## cde pnde tnie tnde pnie te
## 0.541070807 0.488930417 0.018240025 0.498503455 0.008666987 0.507170442
## pm
## 0.045436278
print(regmedint_obj)
## ### Mediator model
##
## Call: glm(formula = m ~ x + c, family = binomial(link = "logit"), data = data)
##
## Coefficients:
## (Intercept) x c
## -0.3545 0.3842 0.2694
##
## Degrees of Freedom: 99 Total (i.e. Null); 97 Residual
## Null Deviance: 138.6
## Residual Deviance: 136.1 AIC: 142.1
## ### Outcome model
## Call:
## survival::survreg(formula = Surv(y, event) ~ x + m + x:m + c,
## data = data, dist = "weibull")
##
## Coefficients:
## (Intercept) x m c x:m
## -1.04244118 0.44075656 0.09053705 -0.06689165 0.10031424
##
## Scale= 0.9658808
##
## Loglik(model)= -11.4 Loglik(intercept only)= -14.5
## Chisq= 6.31 on 4 degrees of freedom, p= 0.177
## n= 100
## ### Mediation analysis
## cde pnde tnie tnde pnie te
## 0.541070807 0.488930417 0.018240025 0.498503455 0.008666987 0.507170442
## pm
## 0.045436278
print(regmedint_obj, m_cde = 0, c_cond = 1)
## ### Mediator model
##
## Call: glm(formula = m ~ x + c, family = binomial(link = "logit"), data = data)
##
## Coefficients:
## (Intercept) x c
## -0.3545 0.3842 0.2694
##
## Degrees of Freedom: 99 Total (i.e. Null); 97 Residual
## Null Deviance: 138.6
## Residual Deviance: 136.1 AIC: 142.1
## ### Outcome model
## Call:
## survival::survreg(formula = Surv(y, event) ~ x + m + x:m + c,
## data = data, dist = "weibull")
##
## Coefficients:
## (Intercept) x m c x:m
## -1.04244118 0.44075656 0.09053705 -0.06689165 0.10031424
##
## Scale= 0.9658808
##
## Loglik(model)= -11.4 Loglik(intercept only)= -14.5
## Chisq= 6.31 on 4 degrees of freedom, p= 0.177
## n= 100
## ### Mediation analysis
## cde pnde tnie tnde pnie te
## 0.440756562 0.492306223 0.018077074 0.501765186 0.008618111 0.510383297
## pm
## 0.044816400
summary_regmedint
The summary
method for the regmedint
object returns an object of class summary_regmedint
. To extract the mediation analysis result table as a matrix, use the coef
method.
coef()
for summary_regmedint
coef(summary(regmedint_obj))
## est se Z p lower upper
## cde 0.541070807 0.29422958 1.8389409 0.06592388 -0.03560858 1.11775019
## pnde 0.488930417 0.21049248 2.3227928 0.02019028 0.07637274 0.90148809
## tnie 0.018240025 0.03706111 0.4921608 0.62260566 -0.05439841 0.09087846
## tnde 0.498503455 0.21209540 2.3503737 0.01875457 0.08280410 0.91420281
## pnie 0.008666987 0.02730994 0.3173565 0.75097309 -0.04485951 0.06219348
## te 0.507170442 0.21090051 2.4047853 0.01618197 0.09381303 0.92052785
## pm 0.045436278 0.09119614 0.4982259 0.61832484 -0.13330488 0.22417743
print()
for summary_regmedint
<- summary(regmedint_obj)
regmedint_summary_obj # Implicit printing regmedint_summary_obj
## ### Mediator model
##
## Call:
## glm(formula = m ~ x + c, family = binomial(link = "logit"), data = data)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.5143 -1.1765 0.9177 1.1133 1.4602
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.3545 0.3252 -1.090 0.276
## x 0.3842 0.4165 0.922 0.356
## c 0.2694 0.2058 1.309 0.191
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 138.59 on 99 degrees of freedom
## Residual deviance: 136.08 on 97 degrees of freedom
## AIC: 142.08
##
## Number of Fisher Scoring iterations: 4
##
## ### Outcome model
##
## Call:
## survival::survreg(formula = Surv(y, event) ~ x + m + x:m + c,
## data = data, dist = "weibull")
## Value Std. Error z p
## (Intercept) -1.0424 0.1903 -5.48 4.3e-08
## x 0.4408 0.3008 1.47 0.14
## m 0.0905 0.2683 0.34 0.74
## c -0.0669 0.0915 -0.73 0.46
## x:m 0.1003 0.4207 0.24 0.81
## Log(scale) -0.0347 0.0810 -0.43 0.67
##
## Scale= 0.966
##
## Weibull distribution
## Loglik(model)= -11.4 Loglik(intercept only)= -14.5
## Chisq= 6.31 on 4 degrees of freedom, p= 0.18
## Number of Newton-Raphson Iterations: 5
## n= 100
##
## ### Mediation analysis
## est se Z p lower upper
## cde 0.541070807 0.29422958 1.8389409 0.06592388 -0.03560858 1.11775019
## pnde 0.488930417 0.21049248 2.3227928 0.02019028 0.07637274 0.90148809
## tnie 0.018240025 0.03706111 0.4921608 0.62260566 -0.05439841 0.09087846
## tnde 0.498503455 0.21209540 2.3503737 0.01875457 0.08280410 0.91420281
## pnie 0.008666987 0.02730994 0.3173565 0.75097309 -0.04485951 0.06219348
## te 0.507170442 0.21090051 2.4047853 0.01618197 0.09381303 0.92052785
## pm 0.045436278 0.09119614 0.4982259 0.61832484 -0.13330488 0.22417743
##
## Evaluated at:
## avar: x
## a1 (intervened value of avar) = 1
## a0 (reference value of avar) = 0
## mvar: m
## m_cde (intervend value of mvar for cde) = 1
## cvar: c
## c_cond (covariate vector value) = 0.5
##
## Note that effect estimates can vary over m_cde and c_cond values when interaction = TRUE.
print(regmedint_summary_obj)
## ### Mediator model
##
## Call:
## glm(formula = m ~ x + c, family = binomial(link = "logit"), data = data)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.5143 -1.1765 0.9177 1.1133 1.4602
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.3545 0.3252 -1.090 0.276
## x 0.3842 0.4165 0.922 0.356
## c 0.2694 0.2058 1.309 0.191
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 138.59 on 99 degrees of freedom
## Residual deviance: 136.08 on 97 degrees of freedom
## AIC: 142.08
##
## Number of Fisher Scoring iterations: 4
##
## ### Outcome model
##
## Call:
## survival::survreg(formula = Surv(y, event) ~ x + m + x:m + c,
## data = data, dist = "weibull")
## Value Std. Error z p
## (Intercept) -1.0424 0.1903 -5.48 4.3e-08
## x 0.4408 0.3008 1.47 0.14
## m 0.0905 0.2683 0.34 0.74
## c -0.0669 0.0915 -0.73 0.46
## x:m 0.1003 0.4207 0.24 0.81
## Log(scale) -0.0347 0.0810 -0.43 0.67
##
## Scale= 0.966
##
## Weibull distribution
## Loglik(model)= -11.4 Loglik(intercept only)= -14.5
## Chisq= 6.31 on 4 degrees of freedom, p= 0.18
## Number of Newton-Raphson Iterations: 5
## n= 100
##
## ### Mediation analysis
## est se Z p lower upper
## cde 0.541070807 0.29422958 1.8389409 0.06592388 -0.03560858 1.11775019
## pnde 0.488930417 0.21049248 2.3227928 0.02019028 0.07637274 0.90148809
## tnie 0.018240025 0.03706111 0.4921608 0.62260566 -0.05439841 0.09087846
## tnde 0.498503455 0.21209540 2.3503737 0.01875457 0.08280410 0.91420281
## pnie 0.008666987 0.02730994 0.3173565 0.75097309 -0.04485951 0.06219348
## te 0.507170442 0.21090051 2.4047853 0.01618197 0.09381303 0.92052785
## pm 0.045436278 0.09119614 0.4982259 0.61832484 -0.13330488 0.22417743
##
## Evaluated at:
## avar: x
## a1 (intervened value of avar) = 1
## a0 (reference value of avar) = 0
## mvar: m
## m_cde (intervend value of mvar for cde) = 1
## cvar: c
## c_cond (covariate vector value) = 0.5
##
## Note that effect estimates can vary over m_cde and c_cond values when interaction = TRUE.