This tutorial shows the basics of how to use the package to calculate and visualize several metrics using map based inputs. It utilizes the package’s built-in data, which is the same example data used in Fletcher et al. (2019).
# First step is to load the libraries. Not all of these libraries are stricly
# needed; some are used for convenience and visualization for this tutorial.
library("samc")
library("raster")
library("viridisLite")
# "Load" the data. In this case we are using data built into the package.
# In practice, users will likely load raster data using the raster() function
# from the raster package.
<- samc::ex_res_data
res_data <- samc::ex_abs_data
abs_data <- samc::ex_occ_data
occ_data
# Plot the data and make sure it looks good. The built-in data is in matrices,
# so we use the raster() function to help with the plotting. Note that when
# matrices are used by the package, it sets the extents based on the number of
# rows/cols. We do the same thing here when converting to a raster, otherwise
# the default extents will be (0,1) for both x and y, which is not only
# uninformative, but can result in "stretching" when visualizing datasets
# based non-square matrices.
plot(raster(res_data, xmn = 1, xmx = ncol(res_data), ymn = 1, ymx = nrow(res_data)),
main = "Example Resistance Data", xlab = "x", ylab = "y", col = viridis(256))
plot(raster(abs_data, xmn = 1, xmx = ncol(abs_data), ymn = 1, ymx = nrow(abs_data)),
main = "Example Absorption Data", xlab = "x", ylab = "y", col = viridis(256))
plot(raster(occ_data, xmn = 1, xmx = ncol(occ_data), ymn = 1, ymx = nrow(occ_data)),
main = "Example Occupancy Data", xlab = "x", ylab = "y", col = viridis(256))
samc
Object# Setup the details for our transition function
<- list(fun = function(x) 1/mean(x), # Function for calculating transition probabilities
tr dir = 8, # Directions of the transitions. Either 4 or 8.
sym = TRUE) # Is the function symmetric?
# Create a `samc-class` object using the resistance and absorption data. We use the
# recipricol of the arithmetic mean for calculating the transition matrix. Note,
# the input data here are matrices, not RasterLayers.
<- samc(res_data, abs_data, tr_args = tr)
samc_obj
# Print out the samc object and make sure everything is filled out. Try to
# double check some of the values, such as the nrows/ncols of the landscape
# data. The dimensions of the matrix (slot p) should be the number of non-NA
# cells in your data +1. In this case, our data has 2624 non-NA cells, so the
# matrix should be 2625 x 2625
str(samc_obj)
#> Formal class 'samc' [package "samc"] with 7 slots
#> ..@ data :Formal class 'samc_data' [package "samc"] with 3 slots
#> .. .. ..@ q :Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
#> .. .. .. .. ..@ i : int [1:19786] 1 115 116 117 0 1 2 116 117 118 ...
#> .. .. .. .. ..@ p : int [1:2625] 0 4 10 16 22 28 34 40 46 52 ...
#> .. .. .. .. ..@ Dim : int [1:2] 2624 2624
#> .. .. .. .. ..@ Dimnames:List of 2
#> .. .. .. .. .. ..$ : chr [1:2624] "1" "2" "3" "4" ...
#> .. .. .. .. .. ..$ : chr [1:2624] "1" "2" "3" "4" ...
#> .. .. .. .. ..@ x : num [1:19786] 0.226 0.138 0.163 0.104 0.293 ...
#> .. .. .. .. ..@ factors : list()
#> .. .. ..@ t_abs: Named num [1:2624] 2e-04 2e-04 2e-04 2e-04 2e-04 ...
#> .. .. .. ..- attr(*, "names")= chr [1:2624] "1" "2" "3" "4" ...
#> .. .. ..@ c_abs: num[0 , 0 ]
#> ..@ source : chr "map"
#> ..@ map :Formal class 'RasterLayer' [package "raster"] with 12 slots
#> .. .. ..@ file :Formal class '.RasterFile' [package "raster"] with 13 slots
#> .. .. .. .. ..@ name : chr ""
#> .. .. .. .. ..@ datanotation: chr "FLT4S"
#> .. .. .. .. ..@ byteorder : chr "little"
#> .. .. .. .. ..@ nodatavalue : num -Inf
#> .. .. .. .. ..@ NAchanged : logi FALSE
#> .. .. .. .. ..@ nbands : int 1
#> .. .. .. .. ..@ bandorder : chr "BIL"
#> .. .. .. .. ..@ offset : int 0
#> .. .. .. .. ..@ toptobottom : logi TRUE
#> .. .. .. .. ..@ blockrows : int 0
#> .. .. .. .. ..@ blockcols : int 0
#> .. .. .. .. ..@ driver : chr ""
#> .. .. .. .. ..@ open : logi FALSE
#> .. .. ..@ data :Formal class '.SingleLayerData' [package "raster"] with 13 slots
#> .. .. .. .. ..@ values : logi [1:6868] FALSE FALSE FALSE FALSE FALSE FALSE ...
#> .. .. .. .. ..@ offset : num 0
#> .. .. .. .. ..@ gain : num 1
#> .. .. .. .. ..@ inmemory : logi TRUE
#> .. .. .. .. ..@ fromdisk : logi FALSE
#> .. .. .. .. ..@ isfactor : logi FALSE
#> .. .. .. .. ..@ attributes: list()
#> .. .. .. .. ..@ haveminmax: logi TRUE
#> .. .. .. .. ..@ min : int 0
#> .. .. .. .. ..@ max : int 1
#> .. .. .. .. ..@ band : int 1
#> .. .. .. .. ..@ unit : chr ""
#> .. .. .. .. ..@ names : chr ""
#> .. .. ..@ legend :Formal class '.RasterLegend' [package "raster"] with 5 slots
#> .. .. .. .. ..@ type : chr(0)
#> .. .. .. .. ..@ values : logi(0)
#> .. .. .. .. ..@ color : logi(0)
#> .. .. .. .. ..@ names : logi(0)
#> .. .. .. .. ..@ colortable: logi(0)
#> .. .. ..@ title : chr(0)
#> .. .. ..@ extent :Formal class 'Extent' [package "raster"] with 4 slots
#> .. .. .. .. ..@ xmin: num 0.5
#> .. .. .. .. ..@ xmax: num 202
#> .. .. .. .. ..@ ymin: num 0.5
#> .. .. .. .. ..@ ymax: num 34.5
#> .. .. ..@ rotated : logi FALSE
#> .. .. ..@ rotation:Formal class '.Rotation' [package "raster"] with 2 slots
#> .. .. .. .. ..@ geotrans: num(0)
#> .. .. .. .. ..@ transfun:function ()
#> .. .. ..@ ncols : int 202
#> .. .. ..@ nrows : int 34
#> .. .. ..@ crs :Formal class 'CRS' [package "sp"] with 1 slot
#> .. .. .. .. ..@ projargs: chr NA
#> .. .. ..@ history : list()
#> .. .. ..@ z : list()
#> ..@ clumps : int 1
#> ..@ override: logi FALSE
#> ..@ threads : num 1
#> ..@ .cache :<environment: 0x55bb1d792ee0>
# Convert the occupancy data to probability of occurrence
<- occ_data / sum(occ_data, na.rm = TRUE)
occ_prob_data
# Calculate short- and long-term mortality metrics and long-term dispersal
<- mortality(samc_obj, occ_prob_data, time = 4800)
short_mort <- mortality(samc_obj, occ_prob_data)
long_mort <- dispersal(samc_obj, occ_prob_data)
long_disp #>
#> Cached diagonal not found.
#> Performing setup. This can take several minutes... Complete.
#> Calculating matrix inverse diagonal...
#>
: 100% (done)
Computing#>
Complete #> Diagonal has been cached. Continuing with metric calculation...
# Create rasters using the vector result data for plotting.
<- map(samc_obj, short_mort)
short_mort_map <- map(samc_obj, long_mort)
long_mort_map <- map(samc_obj, long_disp)
long_disp_map
# Plot the mortality and dispersal results
plot(short_mort_map, main = "Short-term Mortality", xlab = "x", ylab = "y", col = viridis(256))
plot(long_mort_map, main = "Long-term Mortality", xlab = "x", ylab = "y", col = viridis(256))
plot(long_disp_map, main = "Long-term Dispersal", xlab = "x", ylab = "y", col = viridis(256))