Loading required libraries

library(MASS)
library(scoringTools)
# library(tikzDevice)

Mean vectors and variances for each class

mu0 <- array(0, c(1, 1))
mu1 <- array(1, c(1, 1))
sigma0 <- diag(1)
sigma1 <- diag(1)

Data generation

m <- 10000
set.seed(21)
y <- rbinom(m, 1, 0.5)
data_test_pred <- array(0, c(m, 2))

for (n in 1:1) {
  x <- array(0, c(m, n))
  x[y == 0, ] <- mvrnorm(n = sum(y == 0), mu0[1:n], sigma0[1:n, 1:n])
  x[y == 1, ] <- mvrnorm(n = sum(y == 1), mu1[1:n], sigma1[1:n, 1:n])
  data_test_pred[, 1:(n + 1)] <- as.matrix(cbind.data.frame(y = y, x = x))
  rm(x)
}

rm(y)

Oracle

oracle <- glm(V1 ~ V2, data = as.data.frame(data_test_pred), family = binomial(link = "logit"))

Reject some “clients”

reject <- predict(oracle, as.data.frame(data_test_pred), type = "response") < 0.3

Perform Reclassification

reclass_model <- reclassification(
  as.matrix(data_test_pred[!reject, 2]),
  as.matrix(data_test_pred[reject, 2]),
  data_test_pred[!reject, 1]
)

Plot the probability prediction

# path_to_tex <- file.path(dirname(rstudioapi::getActiveDocumentContext()$path), "../TEX_CODE/biais_CEM.tex")
# tikz(file = path_to_tex, width = 6, height = 3, engine = "pdftex", pointsize = 14)
plot(x = data_test_pred[, 2], y = predict(reclass_model@financed_model, data.frame(x = data_test_pred[, 2]), type = "response"), type = "n", ylab = "$p(1 \\mid x)$", xlab = "Feature $x$", xlim = c(-2, 4))
lines(x = data_test_pred[order(data_test_pred[, 2]), 2], y = predict(oracle, data.frame(V2 = data_test_pred[order(data_test_pred[, 2]), 2]), type = "response"), col = "blue", lwd = 5, lty = 2)
lines(x = data_test_pred[order(data_test_pred[, 2]), 2], y = predict(reclass_model@financed_model, data.frame(x = data_test_pred[order(data_test_pred[, 2]), 2]), type = "response"), col = "orange", lwd = 5, lty = 3)
lines(x = data_test_pred[order(data_test_pred[, 2]), 2], y = predict(reclass_model@infered_model, data.frame(x = data_test_pred[order(data_test_pred[, 2]), 2]), type = "response"), col = "red", lwd = 3.5)
legend(-2, 1,
  pch = c(-1, -1, -1), lty = c(2, 3, 1), lwd = (2.5),
  col = c("blue", "orange", "red"),
  legend = c("Oracle", "Financed", "CEM"),
  cex = 1
)

plot of chunk plot

# dev.off()