shrinkDSM: Efficient Bayesian Inference for Dynamic Survival Models with
Shrinkage
Efficient Markov chain Monte Carlo (MCMC) algorithms for fully
Bayesian estimation of dynamic survival models with shrinkage priors.
Details on the algorithms used are provided in Wagner (2011) <doi:10.1007/s11222-009-9164-5>,
Bitto and Frühwirth-Schnatter (2019) <doi:10.1016/j.jeconom.2018.11.006> and
Cadonna et al. (2020) <doi:10.3390/econometrics8020020>.
Version: |
0.1.0 |
Depends: |
R (≥ 3.3.0) |
Imports: |
Rcpp, stochvol (≥ 3.0.3), coda, utils, shrinkTVP (≥ 2.0.2) |
LinkingTo: |
Rcpp, RcppArmadillo, RcppProgress, stochvol, shrinkTVP |
Suggests: |
testthat (≥ 3.0.0) |
Published: |
2021-09-06 |
Author: |
Daniel Winkler [aut, cre],
Peter Knaus [aut] |
Maintainer: |
Daniel Winkler <daniel.winkler at wu.ac.at> |
License: |
GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
NeedsCompilation: |
yes |
CRAN checks: |
shrinkDSM results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=shrinkDSM
to link to this page.