
Package ‘spamtree’
December 7, 2021

Type Package

Title Spatial Multivariate Trees

Version 0.2.2

Date 2021-12-07

Author Michele Peruzzi

Maintainer Michele Peruzzi <michele.peruzzi@duke.edu>

Description Fits multivariate Bayesian spatial regression models for large datasets using Spatial Mul-
tivariate Trees (SpamTrees).
The methods in this package are detailed in Peruzzi and Dunson (2020) <arXiv:2012.00943>.
Funded by ERC grant 856506 and NIH grant R01ES028804.

License GPL-3

Imports Rcpp (>= 1.0.3), FNN, dplyr, magrittr, rlang, tibble

LinkingTo Rcpp, RcppArmadillo

Suggests knitr, rmarkdown, abind, ggplot2

VignetteBuilder knitr

NeedsCompilation yes

Repository CRAN

Date/Publication 2021-12-07 06:40:01 UTC

R topics documented:

CrossCovarianceAG10 . 2
spamtree . 4

Index 9

1

https://arxiv.org/abs/2012.00943

2 CrossCovarianceAG10

CrossCovarianceAG10 Multivariate non-separable cross-covariance function on latent do-
main of variables.

Description

This function implements the cross-covariance function used in Peruzzi and Dunson (2021), which
is derived from eq. 7 in Apanasovich and Genton (2010).

Usage

CrossCovarianceAG10(coords1, mv1, coords2, mv2,
ai1, ai2, phi_i, thetamv, Dmat)

Arguments

coords1 matrix with spatial coordinates
mv1 integer vector with variable IDs. The length must match the number of rows in

coords1

coords2 matrix with spatial coordinates
mv2 integer vector with variable IDs. The length must match the number of rows in

coords2

ai1 q-dimensional vector
ai2 q-dimensional vector
phi_i q-dimensional vector
thetamv for bivariate data (q = 2), this is a scalar. For q > 2, this is a vector with

elements α, β, φ.
Dmat symmetric matrix of dimension (q, q) with zeroes on the diagonal and whose

(i, j) element is δi,j .

Details

Suppose we have q variables. For h > 0 and ∆ > 0 define:

C(h,∆) =
exp{−φ‖h‖/ exp{β log(1 + α∆)/2}}

exp{β log(1 + α∆)}

and for j = 1, . . . , q, define Cj(h) = exp{−φj‖h‖}.
Then the cross-covariance between the ith margin of a q-variate process w(·) at spatial location s
and the jth margin at location s′ is built as follows. For i = j as

Cov(w(s, ξi), w(s′, ξj)) = σ2
i1C(h, 0) + σ2

i2Ci(h),

whereas if i 6= j it is defined as

Cov(w(s, ξi), w(s′, ξj)) = σi1σi2C(h, δij),

where ξi and ξj are the latent locations of margin i and j in the domain of variables and δij =
‖ξi − ξj‖ is their distance in such domain.

CrossCovarianceAG10 3

Value

The cross-covariance matrix for all pairwise locations.

Author(s)

Michele Peruzzi <michele.peruzzi@duke.edu>

References

Apanasovich, T. V. and Genton, M. G. (2010) Cross-covariance functions for multivariate random
fields based on latent dimensions. Biometrika, 97:15-30. doi: 10.1093/biomet/asp078

Peruzzi, M. and Dunson, D. B. (2021) Spatial Multivariate Trees for Big Data Bayesian Regression.
https://arxiv.org/abs/2012.00943

Examples

library(magrittr)
library(dplyr)
library(spamtree)

SS <- 10
xlocs <- seq(0.0, 1, length.out=SS)
coords <- expand.grid(xlocs, xlocs)
c1 <- coords %>% mutate(mv_id=1)
c2 <- coords %>% mutate(mv_id=2)

coords <- bind_rows(c1, c2)
coords_q <- coords %>% dplyr::select(-mv_id)
cx <- coords_q %>% as.matrix()
mv_id <- coords$mv_id

ai1 <- c(1, 1.5)
ai2 <- c(.1, .51)
phi_i <- c(1, 2)
thetamv <- 5

q <- 2
Dmat <- matrix(0, q, q)
Dmat[2,1] <- 1
Dmat[upper.tri(Dmat)] <- Dmat[lower.tri(Dmat)]

CC <- CrossCovarianceAG10(cx, mv_id, cx, mv_id, ai1, ai2, phi_i, thetamv, Dmat)

https://doi.org/10.1093/biomet/asp078
https://arxiv.org/abs/2012.00943

4 spamtree

spamtree Bayesian Spatial Multivariate Tree GP Regression

Description

Bayesian linear multivariate spatial regression using SpamTrees.

Usage

spamtree(y, x, coords,
mv_id = rep(1, length(y)),
cell_size = 25,
K = rep(2, ncol(coords)),
start_level = 0,
tree_depth = Inf,
last_not_reference = TRUE,
limited_tree = FALSE,
cherrypick_same_margin = TRUE,
cherrypick_group_locations = TRUE,
mvbias = 0,
mcmc = list(keep = 1000, burn = 0, thin = 1),
num_threads = 4,
verbose = FALSE,
settings = list(adapting = TRUE, mcmcsd = 0.01,
debug = FALSE, printall = FALSE),

prior = list(set_unif_bounds = NULL,
btmlim = NULL, toplim = NULL, vlim = NULL),

starting = list(beta = NULL, tausq = NULL, theta = NULL, w = NULL),
debug = list(sample_beta = TRUE, sample_tausq = TRUE,
sample_theta = TRUE, sample_w = TRUE,
sample_predicts = TRUE)

)

Arguments

y vector of outcomes of size n. Correspondingly, y[i] is the observation of out-
come mv_id[i] at location coords[i,] and with covariates x[i,]. This means
that if the number of outcomes is q > 1 then these are all stacked in a vector,
and their integer ID is stored in mv_id.

x matrix of covariates with dimension (n, p).

coords matrix of coordinates with dimension (n, 2).

mv_id integer vector of outcome IDs of size n with values in {1, . . . , q}.
cell_size integer number of knots for each node in the treed DAG. Defaults to 25. This

is a target number and some nodes may include more or less locations. Here,
knots can only be chosen among observed locations.

spamtree 5

K integer vector of dimension 2 indicating the number of intervals for axis-parallel
recursive partitioning. Each tree level will thus have prod(K) times as many
partitions as the previous. Defaults to c(2,2), leading to a recursive quadtree.

start_level integer indicating the root level. Example: start_level=0 means there is 1
root node. start_level=1 means there are prod(K) root nodes.

tree_depth integer indicating the number of branching steps in the tree. Defaults to Inf
meaning that observed locations will be placed on tree nodes as much as possi-
ble.

last_not_reference

bool indicating whether to treat the last level of the tree as a reference set. The
default value TRUE is recommended when tree_depth=Inf or whenever only a
very small number of observed locations remain at the last level.

limited_tree bool determining whether to use a recursive tree. If TRUE, each non-root node
has 1 parent and prod(K) children. Otherwise, each node at level L (where root
nodes have L = 0) has L parents.

cherrypick_same_margin

bool used only for multivariate outcomes. This determines how to assign parents
to leaf nodes. In a SpamTree, outcome j at a new spatial location is assigned
the same parent of its nearest neighbor. If cherrypick_same_margin=TRUE
then the nearest neighbor is searched within the subset of locations for which
outcome j was observed. Otherwise, the nearest neighbor is searched within
all locations at which any outcome was observed. If outcomes are aligned (all
observed at the same locations) and cherrypick_group_locations=TRUE, then
this setting has minimal or no effect.

cherrypick_group_locations

bool used in multivariate settings to determine whether the allocation of knots
to tree nodes should treat the q outcomes at location s ∈ D as either (1) a q
dimensional vector observed at 1 location, or (2) one observed outcome at each
of q locations (i.e. same spatial location but different outcome index).

mvbias parameter used in settings of multivariate misalignment in which one or more
outcomes are observed at a number of locations that is much smaller than oth-
ers. mvbias can be used to disproportionately place the more sparsely observed
outcomes near root nodes. This is justified by Prop. 1 in Peruzzi and Dunson
(2021).

mcmc list for setting up MCMC. mcmc$keep is the number of MCMC samples to be
saved, mcmc$burn is the number of iterations for burn-in, mcmc$thin is the thin-
ning level for the chain. The total number of iterations that will be run is burn +
thin*keep.

num_threads integer number of OpenMP threads to use within MCMC. Ineffective if source
is compiled without OpenMP support.

verbose level of verbosity. All messages are suppressed if verbose=FALSE (default). It
is useful to set verbose=TRUE for data of medium size or long MCMC chains.

settings list with additional settings. settings$adapting determines whether to use
Robust Adaptive Metropolis algorithm of Vihola (2012). settings$mcmcsd
is the initial standard deviation for the MCMC proposals before adaptation.
settings$debug prints some debug messages. settings$printall determines
whether to print to console at each iteration.

6 spamtree

prior setup for prior on θ, which currently only allows to specify the support of inde-
pendent uniform distributions. See examples. (subject to change).

starting list with starting values for all unknowns. Compatibility checks with prior are
minimal and incompatible values may result in crashes.

debug list with debug settings. Can be used to turn off parts of MCMC.

Details

This implements the following model (in stacked vector form):

y = Xβ + w + ε,

where y is a n-dimensional vector of outcomes, X is a matrix of covariates of dimension (n, p)
associated to coefficients β, w is a n-dimensional vector storing the realization of a spatial multi-
variate Gaussian tree w(·) ∼ SpamTreeG(0, Cθ) where G is a treed directed acyclic graph, and
where Cθ(s, s′) is a matrix-valued non-separable cross-covariance function on latent dimensions
(see Peruzzi and Dunson (2021), equation 18, and CrossCovarianceAG10) where θ is a vector of
unknown parameters. SpamTrees Gaussian processes are a scalable alternative to a spatial multi-
variate GP. Conditional independence across domain locations is assumed to be determined by the
treed graph G, whose sparsity enables more efficient computations for the Gibbs sampler computed
with this function. The graph architecture can be customized using inputs of the spamtree func-
tion. The example below computes SpamTrees on univariate data. A vignette exists with bivariate
misaligned spatial data.

Value

coords reordered spatial coordinates

coordsinfo reordered spatial coordinates plus partitioning information.

mv_id reordered outcome IDs.

w_mcmc posterior sample of the spatial random effect. This is a list of length mcmc$thin
whose elements are n-dimensional vectors of multivariate spatial random effects
whose q margins are listed in mv_id as output here.

yhat_mcmc posterior predictive sample. This is a list of length mcmc$thin whose elements
are n-dimensional vectors of predictions whose q margins are listed in mv_id as
output here.

beta_mcmc array of size c(p,mcmc$keep,q) with posterior samples of the regression coef-
ficients on each outcome. Example: beta_mcmc[2,,1] is the posterior sample
for the second regressor on the first outcome.

tausq_mcmc matrix with posterior samples of the q nuggets, one for each outcome.

theta_mcmc matrix with posterior samples of the cross-covariance parameters. These include
the latent distance between outcomes which may be poorly identifiable.

mcmc_time elapsed clock time for MCMC.

Author(s)

Michele Peruzzi <michele.peruzzi@duke.edu>,
David B. Dunson <dunson@duke.edu>

spamtree 7

References

Peruzzi, M. and Dunson, D. B. (2021) Spatial Multivariate Trees for Big Data Bayesian Regression.
https://arxiv.org/abs/2012.00943

Vihola, M. (2012) Robust adaptive Metropolis algorithm with coerced acceptance rate. Statistics
and Computing, 22:997-1008. doi: 10.1007/s1122201192695

Examples

toy example with tiny dataset and short MCMC
on a univariate outcome

library(magrittr)
library(dplyr)
library(ggplot2)
library(spamtree)

set.seed(2021)

SS <- 15
n <- SS^2 # total n. locations, including missing ones

coords <- data.frame(Var1=runif(n), Var2=runif(n)) %>%
as.matrix()

generate data
sigmasq <- 2.3
phi <- 6
tausq <- .1
B <- c(-1,.5,1)

CC <- sigmasq * exp(-phi * as.matrix(dist(coords)))
LC <- t(chol(CC))
w <- LC %*% rnorm(n)
p <- length(B)
X <- rnorm(n * p) %>% matrix(ncol=p)
y <- X %*% B + w + tausq^.5 * rnorm(n)

set_missing <- rbinom(n, 1, 0.1)

simdata <- data.frame(coords,
y_full = y,
w_latent = w) %>%

mutate(y_observed = ifelse(set_missing==1, NA, y_full))

MCMC setup
mcmc_keep <- 300
mcmc_burn <- 300
mcmc_thin <- 1

ybar <- mean(y, na.rm=TRUE)

https://arxiv.org/abs/2012.00943
https://doi.org/10.1007/s11222-011-9269-5

8 spamtree

fit spamtree with defaults
spamtree_done <- spamtree(y - ybar, X, coords,

mcmc = list(keep=mcmc_keep, burn=mcmc_burn, thin=mcmc_thin),
num_threads = 1)

predictions
y_out <- spamtree_done$yhat_mcmc %>%

abind::abind(along=3) %>% `[`(,1,) %>%
add(ybar) %>% apply(1, mean)

w_out <- spamtree_done$w_mcmc %>%
abind::abind(along=3) %>% `[`(,1,) %>%
apply(1, mean)

outdf <- spamtree_done$coordsinfo %>%
cbind(data.frame(w_spamtree = w_out,

y_spamtree = y_out)) %>%
left_join(simdata)

plot predictions
pred_plot <- outdf %>%

ggplot(aes(Var1, Var2, color=y_spamtree)) +
geom_point() +
scale_color_viridis_c()

plot latent process
latent_plot <- outdf %>%

ggplot(aes(Var1, Var2, color=w_spamtree)) +
geom_point() +
scale_color_viridis_c()

estimation of regression coefficients
plot(density(spamtree_done$beta_mcmc[1,,1]))
abline(v=B[1], col="red")

Index

CrossCovarianceAG10, 2, 6

spamtree, 4

9

	CrossCovarianceAG10
	spamtree
	Index

