tidyterra is a package that add common methods from
the tidyverse for SpatRaster
and SpatVectors objects created with the {terra} package. It
also adds specificgeom_spat*()
for plotting these kind of
objects with {ggplot2}.
Spat* objects are not like regular data frames. They are a different type of objects, implemented via the S4 object system, and have their own syntax and computation methods, implemented on the {terra} package.
By implementing tidyverse methods for these objects, and more specifically {dplyr} and {tidyr} methods, a useR can now work more easily with Spat*, just like (s)he would do with tabular data.
Note that in terms of performance, {terra} is much more optimized for working for this kind of objects, so it is recommended also to learn a bit of {terra} syntax. Each function of {tidyterra} refers (when possible) to the corresponding equivalent on {terra}.
As previously mentioned, {tidyterra} is not optimized in terms of
performance. Specially when working with filter()
and
mutate()
methods, it can be slow.
As a rule of thumb, {tidyterra} can handle objects with less than
10.000.000 slots of information(i.e.,
terra::ncell(a_rast) * terra::nlyr(a_rast) < 10e6
).
First thing you’ll notice when loading {tidyterra} is that a set of
packages would be also loaded. You can disable the message by setting
Sys.setenv(tidyterra.quiet = TRUE)
.
# Disable message with:
# Sys.setenv(tidyterra.quiet = TRUE)
library(tidyterra)
#> ── Attaching packages ─────────────────────────────────────── tidyterra 0.2.0 ──
#>
#> Suppress this startup message by setting Sys.setenv(tidyterra.quiet = TRUE)
#> ✔ tibble 3.1.7 ✔ dplyr 1.0.9
#> ✔ tidyr 1.2.0
Currently, the following methods are available:
tidyverse method | SpatVector | SpatRaster |
---|---|---|
tibble::as_tibble() |
✔️ | ✔️ |
dplyr::filter() |
✔️ | ✔️ |
dplyr::mutate() |
✔️ | ✔️ |
dplyr::pull() |
✔️ | ✔️ |
dplyr::relocate() |
✔️ | ✔️ |
dplyr::rename() |
✔️ | ✔️ |
dplyr::select() |
✔️ | ✔️ |
dplyr::slice() |
✔️ | ✔️ |
dplyr::transmute() |
✔️ | ✔️ |
tidyr::drop_na() |
✔️ | ✔️ (questioned) |
tidyr::replace_na() |
✔️ | ✔️ |
Let’s see some of them in action:
library(terra)
<- system.file("extdata/cyl_temp.tif", package = "tidyterra")
f
<- rast(f)
temp
temp#> class : SpatRaster
#> dimensions : 89, 116, 3 (nrow, ncol, nlyr)
#> resolution : 3856.617, 3856.617 (x, y)
#> extent : 2893583, 3340950, 2019451, 2362690 (xmin, xmax, ymin, ymax)
#> coord. ref. : ETRS89-extended / LAEA Europe (EPSG:3035)
#> source : cyl_temp.tif
#> names : tavg_04, tavg_05, tavg_06
#> min values : 0.565614, 4.294102, 8.817221
#> max values : 13.28383, 16.74090, 21.11378
<- temp %>%
mod select(-1) %>%
mutate(newcol = tavg_06 - tavg_05) %>%
relocate(newcol, .before = 1) %>%
replace_na(list(newcol = 3)) %>%
rename(difference = newcol)
mod#> class : SpatRaster
#> dimensions : 89, 116, 3 (nrow, ncol, nlyr)
#> resolution : 3856.617, 3856.617 (x, y)
#> extent : 2893583, 3340950, 2019451, 2362690 (xmin, xmax, ymin, ymax)
#> coord. ref. : ETRS89-extended / LAEA Europe (EPSG:3035)
#> sources : memory
#> memory
#> memory
#> names : difference, tavg_05, tavg_06
#> min values : 2.786910, 4.294102, 8.817221
#> max values : 5.408157, 16.740898, 21.113781
plot(mod)
On the previous example, we had:
Eliminated the first layer of the raster
tavg_04
.
Created a new layer newcol
as the difference of the
layers tavg_05
and tavg_06.
Relocated newcol
as the first layer of the
SpatRaster
Replaced the NA
cells on newcol
with
3
.
Renamed newcol
to difference.
In all the process, the essential properties of the SpatRaster
(number of cells, columns and rows, extent, resolution and coordinate
reference system) have not been modified. Other methods as
filter()
, slice()
or drop_na()
can modify these properties, as they would do when applied to a data
frame (number of rows would be modified on that case).
{tidyterra} provides several geom_*
for SpatRasters.
When the SpatRaster has the CRS informed
(i.e. terra::crs(a_rast) != ""
), the geom uses
ggplot2::coord_sf()
, and may be also reprojected for
adjusting the coordinates to other spatial layers:
library(ggplot2)
# A faceted SpatRaster
ggplot() +
geom_spatraster(data = temp) +
facet_wrap(~lyr) +
scale_fill_whitebox_c(
palette = "muted",
na.value = "white"
)
# Contour lines for a specific layer
<- system.file("extdata/volcano2.tif", package = "tidyterra")
f_volcano <- rast(f_volcano)
volcano2
ggplot() +
geom_spatraster(data = volcano2) +
geom_spatraster_contour(data = volcano2, breaks = seq(80, 200, 5)) +
scale_fill_whitebox_c() +
coord_sf(expand = FALSE) +
labs(fill = "elevation")
# Contour filled
ggplot() +
geom_spatraster_contour_filled(data = volcano2) +
scale_fill_whitebox_d(palette = "atlas") +
labs(fill = "elevation")
With {tidyterra} you can also plot RGB SpatRasters to add imagery to your plots:
# Read a vector
<- system.file("extdata/cyl.gpkg", package = "tidyterra")
f_v <- vect(f_v)
v
# Read a tile
<- system.file("extdata/cyl_tile.tif", package = "tidyterra")
f_rgb
<- rast(f_rgb)
r_rgb
<- ggplot() +
rgb_plot geom_spatraster_rgb(data = r_rgb) +
geom_spatvector(data = v, fill = NA, size = 1)
rgb_plot
# Change CRS automatically
+
rgb_plot coord_sf(crs = 3035)
{tidyterra} provides selected scales that are suitable for creating hypsometric and bathymetric maps:
<- rast(system.file("extdata/asia.tif", package = "tidyterra"))
asia
asia#> class : SpatRaster
#> dimensions : 367, 683, 1 (nrow, ncol, nlyr)
#> resolution : 14263.38, 14231.61 (x, y)
#> extent : 7619120, 17361007, -1304745, 3918256 (xmin, xmax, ymin, ymax)
#> coord. ref. : WGS 84 / Pseudo-Mercator (EPSG:3857)
#> source : asia.tif
#> name : file44bc291153f2
#> min value : -9991.472
#> max value : 6156.079
ggplot() +
geom_spatraster(data = asia) +
scale_fill_hypso_tint_c(
palette = "gmt_globe",
labels = scales::label_number(),
breaks = c(-10000, -5000, 0, 2500, 5000, 8000),
guide = guide_colorbar(
direction = "horizontal",
title.position = "top",
barwidth = 20
)+
) labs(
fill = "elevation (m)",
title = "Hypsometric map of Asia"
+
) theme_minimal() +
theme(legend.position = "bottom")
{tidyterra} allows you to plot SpatVectors with {ggplot2} using the
geom_spatvector()
functions:
<- system.file("ex/lux.shp", package = "terra")
lux
<- terra::vect(lux)
spatvector
ggplot() +
geom_spatvector(data = spatvector, aes(fill = POP)) +
geom_spatvector_text(
data = spatvector, aes(label = NAME_2),
color = "grey90"
+
) scale_fill_binned(labels = scales::number_format()) +
coord_sf(crs = 3857)
The underlying implementation is to take advantage of the conversion
terra::vect()/sf::st_as_sf()
(see About SpatVectors) and use
ggplot2::geom_sf()
as an endpoint for creating the
layer.
SpatVector objects are vector data. This means that they are a set of individual points with geographic information (i.e. location of restaurants), that can be also grouped to form lines (i.e. a river) and, when these lines forms a closed polygon, a spatial polygon (i.e. a country).
{terra} can handle vector files on the S4 system. There is other alternative, the {sf} package, that represents the same information on a tabular way. You can convert easily between the two packages like this:
<- system.file("ex/lux.shp", package = "terra")
lux
<- terra::vect(lux)
spatvector
spatvector#> class : SpatVector
#> geometry : polygons
#> dimensions : 12, 6 (geometries, attributes)
#> extent : 5.74414, 6.528252, 49.44781, 50.18162 (xmin, xmax, ymin, ymax)
#> source : lux.shp
#> coord. ref. : lon/lat WGS 84 (EPSG:4326)
#> names : ID_1 NAME_1 ID_2 NAME_2 AREA POP
#> type : <num> <chr> <num> <chr> <num> <int>
#> values : 1 Diekirch 1 Clervaux 312 18081
#> 1 Diekirch 2 Diekirch 218 32543
#> 1 Diekirch 3 Redange 259 18664
::plot(spatvector, main = "SpatVector", axes = TRUE) terra
# To sf
<- sf::st_as_sf(spatvector)
sfobj head(sfobj, 3)
#> Simple feature collection with 3 features and 6 fields
#> Geometry type: POLYGON
#> Dimension: XY
#> Bounding box: xmin: 5.746118 ymin: 49.69933 xmax: 6.315773 ymax: 50.18162
#> Geodetic CRS: WGS 84
#> ID_1 NAME_1 ID_2 NAME_2 AREA POP geometry
#> 1 1 Diekirch 1 Clervaux 312 18081 POLYGON ((6.026519 50.17767...
#> 2 1 Diekirch 2 Diekirch 218 32543 POLYGON ((6.178368 49.87682...
#> 3 1 Diekirch 3 Redange 259 18664 POLYGON ((5.881378 49.87015...
plot(sfobj$geometry, main = "sf", axes = TRUE)
# Back to terra
<- terra::vect(sfobj)
spatvector2
spatvector2#> class : SpatVector
#> geometry : polygons
#> dimensions : 12, 6 (geometries, attributes)
#> extent : 5.74414, 6.528252, 49.44781, 50.18162 (xmin, xmax, ymin, ymax)
#> coord. ref. : lon/lat WGS 84 (EPSG:4326)
#> names : ID_1 NAME_1 ID_2 NAME_2 AREA POP
#> type : <num> <chr> <num> <chr> <num> <int>
#> values : 1 Diekirch 1 Clervaux 312 18081
#> 1 Diekirch 2 Diekirch 218 32543
#> 1 Diekirch 3 Redange 259 18664
On that sense, {sf} already has its own implementation of {tidyverse} methods. Since converting SpatVector to {sf} it is straightforward with no loss of information, {tidyterra} is specially focused on SpatRasters. See an example of how to work with {terra} + {sf} + {dplyr}:
library(dplyr)
library(terra)
library(sf)
<- spatvector2 %>%
spat_summ # to sf
st_as_sf() %>%
# dplyr
group_by(ID_1) %>%
summarise(TOTPOP = sum(POP)) %>%
# back to terra
vect()
spat_summ#> class : SpatVector
#> geometry : polygons
#> dimensions : 3, 2 (geometries, attributes)
#> extent : 5.74414, 6.528252, 49.44781, 50.18162 (xmin, xmax, ymin, ymax)
#> coord. ref. : lon/lat WGS 84 (EPSG:4326)
#> names : ID_1 TOTPOP
#> type : <num> <int>
#> values : 1 91186
#> 2 71093
#> 3 439726
::plot(spat_summ, "TOTPOP") terra