In this vignette a departure timetable for a stop is generated and visualised. For some analysis it is important to know how and when a single stop is served and workflows to gather and plot such data can help with this analysis.
We use a feed from the New York Metropolitan Transportation Authority. It is provided as a sample feed with tidytransit but you can read it directly from the MTA’s website.
<- system.file("extdata", "google_transit_nyc_subway.zip", package = "tidytransit")
local_gtfs_path <- read_gtfs(local_gtfs_path)
gtfs # gtfs <- read_gtfs("http://web.mta.info/developers/data/nyct/subway/google_transit.zip")
To display where a bus (or any public transit vehicle) is headed on a timetable we need the column trip_headsign
in gtfs$trips
. This is an optional field but our example feed provides this information. To display where a vehicle comes from on the timetable we need to create a new column in gtfs$trips
which we’ll call trip_origin
.
# get the id of the first stop in the trip's stop sequence
<- gtfs$stop_times %>%
first_stop_id group_by(trip_id) %>%
summarise(stop_id = stop_id[which.min(stop_sequence)])
# join with the stops table to get the stop_name
<- left_join(first_stop_id, gtfs$stops, by="stop_id")
first_stop_names
# rename the first stop_name as trip_origin
<- first_stop_names %>% select(trip_id, trip_origin = stop_name)
trip_origins
# join the trip origins back onto the trips
$trips <- left_join(gtfs$trips, trip_origins, by = "trip_id") gtfs
$trips %>%
gtfsselect(route_id, trip_origin) %>%
head()
## # A tibble: 6 × 2
## route_id trip_origin
## <chr> <chr>
## 1 1 Van Cortlandt Park - 242 St
## 2 1 Van Cortlandt Park - 242 St
## 3 1 Van Cortlandt Park - 242 St
## 4 1 Van Cortlandt Park - 242 St
## 5 1 South Ferry
## 6 1 Van Cortlandt Park - 242 St
In case trip_headsign
does not exist in the feed it can be generated similarly to trip_origin
:
if(!exists("trip_headsign", where = gtfs$trips)) {
# get the last id of the trip's stop sequence
<- gtfs$stop_times %>%
trip_headsigns group_by(trip_id) %>%
summarise(stop_id = stop_id[which.max(stop_sequence)]) %>%
left_join(gtfs$stops, by="stop_id") %>% select(trip_id, trip_headsign.computed = stop_name)
# assign the headsign to the gtfs object
$trips <- left_join(gtfs$trips, trip_headsigns, by = "trip_id")
gtfs }
To create a departure timetable we first need to find the ids of all stops in the stops table with the same same name, as stop_name
might cover different platforms and thus have multiple stop_ids in the stops table.
<- gtfs$stops %>%
stop_ids filter(stop_name == "Times Sq - 42 St") %>%
select(stop_id)
To the selected stop_ids for Time Square, we can join trip columns: route_id
, service_id
, trip_headsign
, and trip_origin
. Because stop_ids and trips are linked via the stop_times
data frame, we do this by joining the stop_ids we’ve selected to the stop_times data frame and then to the trips data frame.
<- stop_ids %>%
departures inner_join(gtfs$stop_times %>%
select(trip_id, arrival_time,
departure_time, stop_id), by = "stop_id")
<- departures %>%
departures left_join(gtfs$trips %>%
select(trip_id, route_id,
service_id, trip_headsign,
trip_origin), by = "trip_id")
Each trip belongs to a route, and the route short name can be added to the departures by joining the trips data frame with gtfs$routes
.
<- departures %>%
departures left_join(gtfs$routes %>%
select(route_id,
route_short_name), by = "route_id")
Now we have a data frame that tells us about the origin, destination, and time at which each train depart from Times Square for every possible schedule of service.
%>%
departures select(arrival_time,
departure_time,
trip_headsign,trip_origin,%>%
route_id) head() %>%
::kable() knitr
arrival_time | departure_time | trip_headsign | trip_origin | route_id |
---|---|---|---|---|
01:29:30 | 01:29:30 | Van Cortlandt Park - 242 St | South Ferry | 1 |
01:49:30 | 01:49:30 | Van Cortlandt Park - 242 St | South Ferry | 1 |
02:09:30 | 02:09:30 | Van Cortlandt Park - 242 St | South Ferry | 1 |
02:29:30 | 02:29:30 | Van Cortlandt Park - 242 St | South Ferry | 1 |
02:49:30 | 02:49:30 | Van Cortlandt Park - 242 St | South Ferry | 1 |
03:09:30 | 03:09:30 | Van Cortlandt Park - 242 St | South Ferry | 1 |
However, we don’t know days on which these trips run. Using the service_id column on our calculated departures, and tidytransit’s calculated dates_services
data frame, we can filter trips to a given date of interest.
head(gtfs$.$dates_services)
## # A tibble: 6 × 2
## date service_id
## <date> <chr>
## 1 2018-06-24 ASP18GEN-1037-Sunday-00
## 2 2018-06-24 ASP18GEN-2048-Sunday-00
## 3 2018-06-24 ASP18GEN-3041-Sunday-00
## 4 2018-06-24 ASP18GEN-4049-Sunday-00
## 5 2018-06-24 ASP18GEN-5048-Sunday-00
## 6 2018-06-24 ASP18GEN-6030-Sunday-00
Please see the servicepatterns
vignette for further examples on how to use this table.
Now we are ready to extract the same service table for any given day of the year.
For example, for August 23rd 2018, a typical weekday, we can filter as follows:
<- gtfs$.$dates_services %>%
services_on_180823 filter(date == "2018-08-23") %>% select(service_id)
<- departures %>%
departures_180823 inner_join(services_on_180823, by = "service_id")
How services and trips are set up depends largely on the feed. For an idea how to handle other dates and questions about schedules have a look at the servicepatterns
vignette.
%>%
departures_180823 arrange(departure_time, stop_id, route_short_name) %>%
select(departure_time, stop_id, route_short_name, trip_headsign) %>%
filter(departure_time >= hms::hms(hours = 7)) %>%
filter(departure_time < hms::hms(hours = 7, minutes = 10)) %>%
::kable() knitr
departure_time | stop_id | route_short_name | trip_headsign |
---|---|---|---|
07:00:00 | 725S | 7X | 34 St - 11 Av |
07:00:30 | 902N | S | Times Sq - 42 St |
07:01:00 | 127N | 3 | Harlem - 148 St |
07:01:00 | 127S | 3 | New Lots Av |
07:01:00 | 725N | 7 | Flushing - Main St |
07:01:30 | R16N | Q | 96 St |
07:02:00 | R16S | R | Bay Ridge - 95 St |
07:02:30 | 725S | 7 | 34 St - 11 Av |
07:02:30 | 902S | S | Grand Central - 42 St |
07:03:00 | 725N | 7 | Flushing - Main St |
07:03:30 | 127S | 2 | Flatbush Av - Brooklyn College |
07:04:00 | 127N | 1 | Van Cortlandt Park - 242 St |
07:04:00 | R16S | Q | Coney Island - Stillwell Av |
07:04:30 | 902N | S | Times Sq - 42 St |
07:05:00 | 725S | 7X | 34 St - 11 Av |
07:05:00 | R16S | W | Whitehall St |
07:05:30 | 725N | 7 | Flushing - Main St |
07:06:00 | R16N | R | Forest Hills - 71 Av |
07:06:30 | 127S | 1 | South Ferry |
07:06:30 | 902S | S | Grand Central - 42 St |
07:07:00 | 127N | 2 | Wakefield - 241 St |
07:07:00 | R16S | R | Bay Ridge - 95 St |
07:07:30 | 725S | 7 | 34 St - 11 Av |
07:08:00 | 725N | 7 | Flushing - Main St |
07:08:00 | R16N | N | Astoria - Ditmars Blvd |
07:08:30 | 127S | 3 | New Lots Av |
07:08:30 | 902N | S | Times Sq - 42 St |
07:09:00 | R16S | N | Coney Island - Stillwell Av |
We’ll now plot all departures from Times Square depending on trip_headsign and route. We can use the route colors provided in the feed.
<- gtfs$routes %>% select(route_id, route_short_name, route_color)
route_colors $route_color[which(route_colors$route_color == "")] <- "454545"
route_colors<- setNames(paste0("#", route_colors$route_color), route_colors$route_short_name)
route_colors
ggplot(departures_180823) + theme_bw() +
geom_point(aes(y=trip_headsign, x=departure_time, color = route_short_name), size = 0.2) +
scale_x_time(breaks = seq(0, max(as.numeric(departures$departure_time)), 3600),
labels = scales::time_format("%H:%M")) +
theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
theme(legend.position = "bottom") +
scale_color_manual(values = route_colors) +
labs(title = "Departures from Times Square on 08/23/18")
Now we plot departures for all stop_ids with the same name, we can separate for different stop_id. The following plot shows all departures for stop_ids 127N and 127S from 7 to 8 AM.
<- departures_180823 %>%
departures_180823_sub_7to8 filter(stop_id %in% c("127N", "127S")) %>%
filter(departure_time >= hms::hms(hours = 7) & departure_time <= hms::hms(hour = 8))
ggplot(departures_180823_sub_7to8) + theme_bw() +
geom_point(aes(y=trip_headsign, x=departure_time, color = route_short_name), size = 1) +
scale_x_time(breaks = seq(7*3600, 9*3600, 300), labels = scales::time_format("%H:%M")) +
scale_y_discrete(drop = F) +
theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
theme(legend.position = "bottom") +
labs(title = "Departures from Times Square on 08/23/18") +
facet_wrap(~stop_id, ncol = 1)
Of course this plot idea can be expanded further. You could also differentiate each route by direction (using headsign, origin or next/previous stops). Another approach is to calculate frequencies and show different levels of service during the day, all depending on the goal of your analysis.