tracerer versus Tracer demo

Richèl J.C. Bilderbeek

2021-05-30

tracerer: ‘Tracer for R’ is an R package that does the same as Tracer does, from within R.

To use tracerer, it needs to be loaded:

library(tracerer)

When loading beast2_example_output.log in Tracer, the following is displayed:

Tracer output

Tracer output

Most prominently, at the left, the effective sample sizes (ESSes) are shown.

The show the ESSes using tracerer:

estimates <- parse_beast_tracelog_file(
  get_tracerer_path("beast2_example_output.log")
)
estimates <- remove_burn_ins(estimates, burn_in_fraction = 0.1)
esses <- calc_esses(estimates, sample_interval = 1000)
table <- t(esses)
colnames(table) <- c("ESS")
knitr::kable(table)
ESS
posterior 10
likelihood 10
prior 10
treeLikelihood 10
TreeHeight 7
BirthDeath 10
birthRate2 9
relativeDeathRate2 6

At the top-right, some measures of the variable posterior is shown. To reproduce these measures in tracerer:

sum_stats <- calc_summary_stats(
  estimates$posterior,
  sample_interval = 1000
)
table <- t(sum_stats)
colnames(table) <- c("sum_stat")
knitr::kable(table)
sum_stat
mean -70.58394
stderr_mean 0.5044887
stdev 1.681629
variance 2.827876
median -69.87976
mode n/a
geom_mean n/a
hpd_interval_low -74.15268
hpd_interval_high -68.68523
act 1000
ess 10

Unlike Tracer, in tracerer all summary statistics can be obtained at once:

sum_stats <- calc_summary_stats(
  estimates,
  sample_interval = 1000
)
knitr::kable(sum_stats)
mean stderr_mean stdev variance median mode geom_mean hpd_interval_low hpd_interval_high act ess
posterior -70.5839432 0.5044887 1.6816291 2.8278764 -69.8797613 n/a n/a -74.1526820 -68.6852294 1000.000 10.000000
likelihood -60.1725009 0.3964208 1.3214025 1.7461047 -60.0504225 n/a n/a -62.4090389 -58.7371284 1000.000 10.000000
prior -10.4114423 0.5424505 1.8081684 3.2694729 -10.5950270 n/a n/a -14.1703653 -7.2820933 1000.000 10.000000
treeLikelihood -60.1725009 0.3964208 1.3214025 1.7461047 -60.0504225 n/a n/a -62.4090389 -58.7371284 1000.000 10.000000
TreeHeight 0.9744748 0.1439937 0.3916244 0.1533697 0.8755907 n/a 0.91041547166058 0.4529637 1.8159958 1502.121 6.657254
BirthDeath -3.5036870 0.5424505 1.8081684 3.2694729 -3.6872718 n/a n/a -7.2626100 -0.3743380 1000.000 10.000000
birthRate2 1.4470488 0.2134411 0.6713951 0.4507714 1.4118781 n/a 1.28823302868404 0.3909076 2.8041208 1122.942 8.905181
relativeDeathRate2 0.4937568 0.0650235 0.1709096 0.0292101 0.4480670 n/a 0.466468860930895 0.2496224 0.7107459 1608.296 6.217762

At the bottom-right, a histogram of the posterior estimates is shown. To reproduce these measures in tracerer:

ggplot2::ggplot(
  data = remove_burn_ins(estimates, burn_in_fraction = 0.1),
  ggplot2::aes(posterior)
) + ggplot2::geom_histogram(binwidth = 0.21) +
  ggplot2::scale_x_continuous(breaks = seq(-75, -68))

Tracer can also show the trace of each estimated variable:

Tracer shows the trace of the posterior likelihood

Tracer shows the trace of the posterior likelihood

Same can be done with tracerer:

ggplot2::ggplot(
  data = remove_burn_ins(estimates, burn_in_fraction = 0.1),
  ggplot2::aes(x = Sample)
) + ggplot2::geom_line(ggplot2::aes(y = posterior))

tracerer can also use part of DensiTree’s functionality. Here is beast2_example_output.trees displayed by DensiTree:

DensiTree output

DensiTree output

The same is achieved in tracerer with:

trees <- parse_beast_trees(
  get_tracerer_path("beast2_example_output.trees")
)
phangorn::densiTree(trees, width = 2)