trendchange: Innovative Trend Analysis and Time-Series Change Point Analysis

Innovative Trend Analysis is a graphical method to examine the trends in time series data. Sequential Mann-Kendall test uses the intersection of prograde and retrograde series to indicate the possible change point in time series data. Distribution free cumulative sum charts indicate location and significance of the change point in time series. Zekai, S. (2011). <doi:10.1061/(ASCE)HE.1943-5584.0000556>. Grayson, R. B. et al. (1996). Hydrological Recipes: Estimation Techniques in Australian Hydrology. Cooperative Research Centre for Catchment Hydrology, Australia, p. 125. Sneyers, S. (1990). On the statistical analysis of series of observations. Technical note no 5 143, WMO No 725 415. Secretariat of the World Meteorological Organization, Geneva, 192 pp.

Version: 1.2
Depends: R (≥ 2.10)
Suggests: testthat (≥ 3.0.0), knitr, rmarkdown, covr
Published: 2022-01-08
Author: Sandeep Kumar Patakamuri ORCID iD [aut, cre], Bappa Das ORCID iD [aut, ctb]
Maintainer: Sandeep Kumar Patakamuri <sandeep.patakamuri at gmail.com>
License: GPL-3
NeedsCompilation: no
Materials: README
CRAN checks: trendchange results

Documentation:

Reference manual: trendchange.pdf

Downloads:

Package source: trendchange_1.2.tar.gz
Windows binaries: r-devel: trendchange_1.2.zip, r-release: trendchange_1.2.zip, r-oldrel: trendchange_1.2.zip
macOS binaries: r-release (arm64): trendchange_1.2.tgz, r-oldrel (arm64): trendchange_1.2.tgz, r-release (x86_64): trendchange_1.2.tgz, r-oldrel (x86_64): trendchange_1.2.tgz
Old sources: trendchange archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=trendchange to link to this page.