Package ‘ts2net’

June 9, 2022
Title From Time Series to Networks
Version 0.1.0

Description Transforming one or multiple time series into networks. This package is
useful for complex systems modeling, time series data mining, or time series analysis using net-
works.
An introduction to the topic and the descriptions of the methods implemented
in this package can be found in Mitchell (2006) <doi:10.1016/j.artint.2006.10.002>,
Silva and Zhao (2016) <doi:10.1007/978-3-319-17290-
3>, and Silva et al. (2021) <doi:10.1002/widm.1404>.

License MIT + file LICENSE
URL https://github.com/1nferreira/ts2net

BugReports https://github.com/1nferreira/ts2net/issues
Encoding UTF-8

RoxygenNote 7.1.2

Depends R (>=4.1.0), igraph (>= 1.2.11), parallel, compiler

Imports dtw (>= 1.22.3), scales (>= 1.1.1), minerva (>= 1.5.10),
infotheo (>= 1.2.0), mmpp (>= 0.6), dbscan (>= 1.1.10), zoo (>=
1.8.9), nonlinearTseries (>= 0.2.11), stats, utils

Suggests covr, testthat (>= 3.0.0)
Config/testthat/edition 3
NeedsCompilation no

Author Leonardo N. Ferreira [aut, cre]
(<https://orcid.org/0000-0003-1445-0590>)

Maintainer Leonardo N. Ferreira <ferreira@leonardonascimento.com>
Repository CRAN
Date/Publication 2022-06-09 07:40:02 UTC

https://doi.org/10.1016/j.artint.2006.10.002
https://doi.org/10.1007/978-3-319-17290-3
https://doi.org/10.1007/978-3-319-17290-3
https://doi.org/10.1002/widm.1404
https://github.com/lnferreira/ts2net
https://github.com/lnferreira/ts2net/issues
https://orcid.org/0000-0003-1445-0590

2

dataset_sincos_generate

R topics documented:

Index

dataset_sinCos_generate uu e e e 2
dist_file_parts_merge e e e e e e e 3
dist._matrix_normalize e e 4
dist_partS_merge e e e e 4
dist_percentile e 5
events_from_ts L. e e e e e 5
NEL BN . . . v v v e e e e e e e e e e s 6
NEL_ENN_APPIOX « « v v v v v e 7
net_Knno e 8
net_knn_approx L 8
net_weighted L 9
random_€tS e e e e e s 9
tsdist_cctf e e e e e e 10
tSAISE_COT . . . o o o o e e e 10
tsAdiSt_dtW s 11
tSAIST_ES . . o v e e e e e e 12
tsdist_micC e e e e e e e e e 13
SAISt ML L e e e e s e 13
tSAISE_VOL . . . o o e e e e 14
ESAIST_VE . . o o e e e e e e e 15
ISNEL_IN o . e e e e e e e e e e 15
ESNCE_VE . . . o o o e e e e e 16
tSSIM_EVENE_SYNC o v v v vt vt e e e e e e e e e e e e 17
tS_diSt e e e e e e e e e 18
ts_dist_part e e e 19
ts_dist_part_file L 20
tS_tO_WINdOWS o o e e e e e 21

23

dataset_sincos_generate

Sin-Cos data set generator. This function generates a set of sine and
cosine time series. This function is used as example of the package
application.

Description

Sin-Cos data set generator. This function generates a set of sine and cosine time series. This
function is used as example of the package application.

dist_file_parts_merge 3

Usage

dataset_sincos_generate(
num_sin_series = 25,
num_cos_series = 25,
x_max = 8 * pi,
ts_length = 100,
jitter_amount = 0.1,
return_x_values = FALSE

Arguments

num_sin_series Integer. Number of sine time series
num_cos_series Integer. Number of cosine time series
X_max Float. Max x value in sin(x) or cor(X).
ts_length Integer. Time series length.

jitter_amount Float. The total amount of jitter added to each time series.
return_x_values
Boolean. If positive, returns a list of data frames with x and y values.

Value

A list with all time series. First the num_sin_series sine time series followed by the num_cos_series
cosine time series.

dist_file_parts_merge Merge parts of distances stored in files.

Description

The functions tsdist_dir_parallel and tsdist_parts_parallel calculate part of the distance matrix D.
The results of the multiple calls of these functions are normally stored in RDS or csv files. This
function merges these files and construct a distance matrix D.

Usage

dist_file_parts_merge(list_files, dir_path, num_elements, file_type = "RDS")

Arguments
list_files A list of files with distances.
dir_path If list_files was not passed, than this function uses this parameter to read the files

in this directory.

num_elements The number of time series in the data set. The number of elements defines the
number of rows ans columns in the distance matrix D.

4 dist_parts_merge

file_type The extension of the files where the distances are stored. It can be "RDS" (de-
fault) or "csv". The RDS files should be data frames composed by three columns
1,j, and dist. This format is preferred because it is a compact file. The other op-
tion is a "csv" also containing the i,j, and dist columns.

Value

Distance matrix D

dist_matrix_normalize Normalize a distance/similarity matrix.

Description

Normalize a distance/similarity matrix.

Usage

dist_matrix_normalize(D, to = c(0, 1))

Arguments
D Distance/similarity matrix
to An array of two elements c(min_value, max_value) representing the interval
where the elements of dist_matrix will be normalized to.
Value

Normalized matrix

dist_parts_merge Merge parts of distances stored in data frames.

Description
The functions tsdist_dir_parallel and tsdist_parts_parallel calculate part of the distance matrix D.
This function merges these files and construct a distance matrix D.

Usage

dist_parts_merge(list_dfs, num_elements)

Arguments

list_dfs A list of data frames. Each data frame should have three columns i,j, and dist.

num_elements The number of time series in the data set. The number of elements defines the
number of rows ans columns in the distance matrix D.

dist_percentile

Value

Distance matrix D

dist_percentile

Returns the distance value that corresponds to the desired percentile.
This function is useful when the user wants to generate networks with
different distance functions but with the same link density.

Description

Returns the distance value that corresponds to the desired percentile. This function is useful when
the user wants to generate networks with different distance functions but with the same link density.

Usage

dist_percentile(D, percentile = 0.1, is_D_symetric = TRUE)

Arguments

D
percentile

is_D_symetric

Value

Distance percentile value.

distance matrix
(Float) The desired percentile of lower distances.

(Boolean)

events_from_ts

Extract events from a time series.

Description

This function transforms an time series (array) into a binary time series where 1 means a event and

0 means no event.

Usage
events_from_ts(
ts,
th,
method = c("greater_than"”, "lower_than", "top_percentile”, "lower_percentile”,

"highest”, "lowest"),
return_marked_times = FALSE

6 net_enn

Arguments
ts Array. Time series
th A threshold (if ‘method=greater_than‘ or ‘=lower_than®), or the percentile (if
‘method=top_percentile or ‘=lower_percentile), or the total number (if ‘method=highest*
or ‘=lowest").
method String. One of following options: * ‘greater_than‘: All values greater or equal to

‘th®. * ‘lower_than*: All values lower or equal to ‘th®. * ‘top_percentile‘: Values
greater than the ‘th* percentile. * ‘highest‘: The top ‘th* values. * ‘lowest‘: The
lower ‘th* values.

return_marked_times
Return the time indices (marked points) where the events occur.

Value

An event (binary, 1: event, 0 otherwise) time series

net_enn Construct an epsilon-network from a distance matrix.

Description

Construct an epsilon-network from a distance matrix.

Usage

net_enn(
D,
eps,
treat_NA_as = 1,
is_dist_symetric = TRUE,
weighted = FALSE,
invert_dist_as_weight = TRUE,
add_col_rownames = TRUE

)
Arguments
D Distance matrix
eps the threshold value to be considered a link. Only values lower or equal to epsilon
become 1.
treat_NA_as A numeric value, usually 1, that represent NA values in the distance matrix

is_dist_symetric
Boolean, TRUE (default) if dist is symmetric

weighted Boolean, TRUE will create a weighted network

net_enn_approx 7

invert_dist_as_weight
Boolean, if weighted == TRUE, then the weights become 1 - distance. This is
the default behavior since most network measures interpret higher weights as
stronger connection.

add_col_rownames

Boolean. If TRUE (default), it uses the column and row names from dist matrix
as node labels.

Value

a igraph network

net_enn_approx Construct an approximated epsilon neighbor network (faster, but ap-
proximated) from a distance matrix. Some actual nearest neighbors
may be omitted.

Description

Construct an approximated epsilon neighbor network (faster, but approximated) from a distance
matrix. Some actual nearest neighbors may be omitted.

Usage
net_enn_approx(D, eps, ...)
Arguments
D Distance matrix
eps (Integer) k nearest-nearest neighbors where each time series will be connected
to
Other parameters to frNN() function from dbscan package.
Value

Approximated epsilon nearest-neighbor network

8 net_knn_approx

net_knn Construct a knn-network from a distance matrix.

Description

Construct a knn-network from a distance matrix.

Usage

net_knn(D, k, num_cores = 1)

Arguments
D Distance matrix
k (Integer) k nearest-nearest neighbors where each time series will be connected
to
num_cores (Integer) Number of cores to use.
Value

k nearest-neighbor network

net_knn_approx Construct an approximated knn-network (faster, but approximated)
from a distance matrix.

Description

Construct an approximated knn-network (faster, but approximated) from a distance matrix.

Usage
net_knn_approx(D, k, ...)
Arguments
D Distance matrix
k (Integer) k nearest-nearest neighbors where each time series will be connected
to
Other parameters to kKNN() function from dbscan package.
Value

Approximated k nearest-neighbor network

net_weighted 9

net_weighted Creates a weighted network.

Description

A link is created for each pair of nodes, except if the distance is maximum (1). In network science,
stronger links are commonly represented by high values. For this reason, the link weights returned
are 1 - D.

Usage

net_weighted(D, invert_dist_as_weight = TRUE)

Arguments

D Distance matrix. All values must be between [0,1].

invert_dist_as_weight
Boolean, if weighted == TRUE, then the weights become 1 - distance. This is
the default behavior since most network measures interpret higher weights as
stronger connection.

Value

Fully connected network

random_ets Random event time series generator

Description
It generates an event time series with length ts_length with num_events events considering a uni-
form probability distribution.

Usage

random_ets(ts_length, num_events, return_marked_times = FALSE)

Arguments
ts_length Time series Length
num_events The number of events

return_marked_times
Return the time indices (marked points) where the events occur.

Value

An event (binary, 1: event, O otherwise) time series

10 tsdist_cor

tsdist_ccf Cross-correlation distance

Description

Minimum correlation distance considering a +- max lag (lag_max)

Usage
tsdist_ccf(
ts1,
ts2,
type = c("correlation”, "covariance"),
cor_type = "abs",
directed = FALSE,
lag_max = 10,
return_lag = FALSE
)
Arguments
ts1 Array. Time series 1
ts2 Array. Time series 2
type String. "correlation" or "covariance" to be used (type) in the ccf function.
cor_type String. "abs" (default), "+", or "-". "abs" considers the correlation absolute
value. "+" only positive correlations and "-" only negative correlations.
directed Boolean. If FALSE (default), the lag interval [-lag_max,+lag_max] is consid-
ered. Otherwise, [-lag_max,0] is considered.
lag_max Integer. Default = 10.
return_lag Also returns the time lag that leads to the shortest distances.
Value
Distance
tsdist_cor Absolute, positive, or negative correlation distance.
Description

Considering r the person correlation coefficient, this function returns either 1 - abs(r) if cor_type=="abs",
1 - pmax(0, r) if cor_type == "+", or 1 - pmax(0, r * -1) if cor_type == "-". Another possibility is to
run a significance test to verify if the r is significant.

tsdist_dtw 11

Usage
tsdist_cor(tsl, ts2, cor_type = "abs", sig_test = FALSE, sig_level = 0.01, ...)
Arguments
ts1 Array. Time series 1
ts2 Array. Time series 2
cor_type String. "abs" (default), "+", or "-". "abs" considers the correlation absolute
value. "+" only positive correlations and "-" only negative correlations.
sig_test Run a statistical test. Return 0 if significant or 1 otherwise.
sig_level The significance level to test if correlation is significant.
Additional parameters to cor.test() function.
Value

Real value [0,1] where 0 means perfect positive (or negative if positive_cor==FALSE) correlation
and 1 no positive (or negative if positive_cor==FALSE) correlation.

tsdist_dtw Dynamic Time Warping (DTW) distance.

Description

This function is a wrapper for the dtw() function from the dtw package.

Usage
tsdist_dtw(tsl, ts2, ...)
Arguments
ts1 Array. Time series 1
ts2 Array. Time series 2
Additional parameters for the dtw() function from the dtw package.
Value

DTW distance

12 tsdist_es

tsdist_es Event synchronization distance test.

Description

Quiroga, R. Q., Kreuz, T., & Grassberger, P. (2002). Event synchronization: a simple and fast
method to measure synchronicity and time delay patterns. Physical review E, 66(4), 041904.

Usage
tsdist_es(
ets1,
ets2,
tau_max = +Inf,
method = c("quiroga”, "boers"),
sig_test = FALSE,
reps = 100,
sig_level = 0.01
)
Arguments
etsl Event time series 1 (one means an event, or zero otherwise)
ets2 Event time series 2 (one means an event, or zero otherwise)
tau_max The maximum tau allowed ()
method "quiroga" (default) for the default co-occurrence count and normalization or
"boers" for the co-occurrence count with tau_max and no normalization.
sig_test Run a significance test. Return 0 if significant or 1 otherwise.
reps Number of repetitions to construct the confidence interval
sig_level The significance level to test if correlation is significant.
Details

Boers, N., Goswami, B., Rheinwalt, A., Bookhagen, B., Hoskins, B., & Kurths, J. (2019). Complex
networks reveal global pattern of extreme-rainfall teleconnections. Nature, 566(7744), 373-377.

Value

distance

tsdist_mic 13

tsdist_mic Maximal information coefficient (MIC) distance.

Description

This function transforms the MIC function (from minerva package) into a distance function.

Usage

tsdist_mic(ts1, ts2)

Arguments

ts1 Array. Time series 1

ts2 Array. Time series 2

Value

Distance

tsdist_nmi Normalized mutual information distance

Description

Calculates the normalized mutual information (NMI) and returns it as distance 1 - NMI.

Usage
tsdist_nmi(
ts1,
ts2,
nbins = c("sturges”, "freedman-diaconis”, "scott”),
normalization = c(”"sum”, "min"”, "max”, "sqrt"),
method = "emp"
)
Arguments
ts1 Array. Time series 1
ts2 Array. Time series 2
nbins The number of bins used for the discretization of both time series. It can be

a positive integer or a string with one of the three rules "sturges" (default),
"freedman-diaconis", or "scott".

14

tsdist_voi

normalization The mutual information (I) normalization method. Options are "sum" (default)
1-2I/(h1+h2)), "min" 1-(I/min(h1,h2)), "max" 1-(I/max(h1,h2)), and "sqrt" 1-
(I/sqrt(h1*¥h2)).
method The name of the entropy estimator used in the functions mutinformation() and
entropy() from the infotheo package.
Value
Distance
tsdist_voi Variation of Information distance
Description

The variation of information (Vol) is a distance function based on mutual information.

Usage
tsdist_voi(
tsi1,
ts2,
nbins = c("sturges”, "freedman-diaconis”, "scott"),
method = "emp"
)
Arguments
ts1 Array. Time series 1
ts2 Array. Time series 2
nbins The number of bins used for the discretization of both time series. It can be
a positive integer or a string with one of the three rules "sturges" (default),
"freedman-diaconis", or "scott".
method The name of the entropy estimator used in the functions mutinformation() and
entropy() from the infotheo package.
Value

Distance

tsdist_vr 15

tsdist_vr van Rossum distance

Description

This function compares the times which the events occur e.g., time indices where the time series
values are different than zero. Note that the intensity does not matter but if there is an event or not.
This function also performs a statistical test using a shuffling approach to test significance. This
implementation uses the fmetric function from the mmpp package.

Usage

tsdist_vr(etsl, ets2, tau = 1, sig_test = FALSE, reps = 100, sig_level = 0.01)

Arguments
ets1 Event time series 1 (one means an event, or zero otherwise)
ets2 Event time series 2 (one means an event, or zero otherwise)
tau Parameter for filtering function (See fmetric function from mmpp package.)
sig_test Run a statistical test. Return 0 if significant or 1 otherwise.
reps Number of repetitions to construct the confidence interval
sig_level The significance level to test if correlation is significant.
Value
distance
tsnet_rn Construct the recurrence network from a time series.
Description

This function constructs the recurrence matrix of the time series using the function ‘rqa()‘ from
nonlinearTseries package.

Usage

tsnet_rn(x, radius, embedding.dim, time.lag = 1, do.plot = FALSE, ...)

16 tsnet_vg

Arguments
X Array. Time series
radius Maximum distance between two phase-space points to be considered a recur-

rence.

embedding.dim Integer denoting the dimension in which we shall embed the time.series. If miss-
ing, the embedding dimensions is estimated using ‘estimateEmbeddingDim()*
from nonlinearTseries. The constructed igraph network has the estimated di-
mension (and other info) as a parameter. For example: netfembedding_dim

time.lag Integer denoting the number of time steps that will be use to construct the Tak-
ens’ vectors.

do.plot Boolean. Show recurrence plot (default = FALSE)

Other parameters to ‘rqa()‘ from nonlinearTseries

Value

recurrence network

tsnet_vg Construct the visibility graph from a time series

Description

TODO: weights

Usage
tsnet_vg(x, method = c("nvg”, "hvg"), limit = +Inf, num_cores = 1)
Arguments
X Array. Time series
method String. Construction method: "nvg" (default) for Natural visibility graph, "hvg"
horizontal visibility graph.
limit Positive integer. The maximum temporal distance (indexes) allowed in the visi-
bility. This parameter limits the max visibility.
num_cores Number of cores (default = 1).
Value

visibility graph

tssim_event_sync

17

tssim_event_sync

Event synchronization measure

Description

This function is an adapted version of the coocmetric function from the package mmpp. The differ-
ences are the introduction of a tau_max limitation factor and the optional normalization.

Usage

tssim_event_sync(

ttsi1,
tts2,

tau_max =1,
normalization

Arguments
ttsi
tts2
tau_max

normalization

Details

= c¢("both”, "min”, "none")

Time indices marking events in time series 1
Time indices marking events in time series 2
Max tau to be considered

Forms of normalization after the co-occurrence count. Possible values "both"
(default), "min", and "none". The Default is "both", the original normalization
defined by Quiroga et al: sqrt(N1*N2). This normalization might be problematic
when both time series have very different number of events. Another possibility
is to normalize the count by the "min" length between both series. The interpre-
tation now takes into account only the series with less events. For example, con-
sidering two series, one with many events and another with just a single event,
the results can be 1 (total sync). The option "none" means no normalization and
the method returns the total count of synchronized events.

Quiroga, R. Q., Kreuz, T., & Grassberger, P. (2002). Event synchronization: a simple and fast
method to measure synchronicity and time delay patterns. Physical review E, 66(4), 041904.

Boers, N., Goswami, B., Rheinwalt, A., Bookhagen, B., Hoskins, B., & Kurths, J. (2019). Complex
networks reveal global pattern of extreme-rainfall teleconnections. Nature, 566(7744), 373-377.

Value

Synchronization-based similarity

18 ts_dist

ts_dist Calculate distances between pairs of time series in a list.

Description

This function calculates the distance between all combinations of time series in the list and returns
a distance matrix. This function is usually the first try and might work if the number of time series
and their length are not too big.

Usage

ts_dist(
ts_list,
dist_func = tsdist_cor,
is_symetric = TRUE,
error_value = NaN,
warn_error = TRUE,
num_cores = 1,

)
Arguments
ts_list List of time series (arrays).
dist_func Function to be applied to all combinations of time series. This function should
have at least two parameters for each time series. Ex: function(ts1, ts2) cor(tsl,
ts2)
is_symetric Boolean. If the distance function is symmetric.
error_value The value returned if an error occur when calculating a the distance for a pair of
time series.
warn_error Boolean. If TRUE (default), a warning will rise when an error occur during the
calculations.
num_cores Numeric. Number of cores
Additional parameters for measureFunc
Value

A distance or similarity matrix M whose position M_ij corresponds to distance or similarity value
between time series i and j.

ts_dist_part

19

ts_dist_part

Calculate distances between pairs of time series in part of a list.

Description

This function is particularly useful to run in parallel as jobs in a cluster (HPC). It returns a data
frame with elements (i,j) and a distance value calculated for the time series i and j. Not all the
elements are calculated but just a a part of the total combinations of time series in the list. This
function load all the time series in the memory to make the calculations faster. However, if the time
series are too long and/or the dataset is huge, it might represent a memory problem. In this case,
dist_dir_parallel() is more recommended.

Usage

ts_dist_part(
ts_list,
num_part,

num_total_parts,
combinations,

dist_func =
isSymetric
error_value

tsdist_cor,
TRUE,
= NaN,

warn_error = TRUE,
simplify = TRUE,

num_cores

Arguments

ts_list

num_part

:'],

List of time series.

Numeric positive between 1 and the total number of parts (num_total_parts).
This value corresponds to the part (chunk) of the total number of parts to be
calculated.

num_total_parts

combinations

dist_func

Numeric positive corresponding the total number of parts.

A list composed by arrays of size 2 indicating the files indices to be compared.
If this parameter is passed, then the function does not split all the possibilities
and does not use the parameters num_part and num_total_parts. This parameter
is useful when the number of combinations is very high and this functions is
called several times (high num_total_parts). In this case, instead of calculating
all the combinations in each call, the user can calculate it once and pass it via
this parameter.

Function to be applied to all combinations of time series. This function should
have at least two parameters for each time series. Ex: function(ts1, ts2) cor(ts1,
ts2)

20

isSymetric

error_value

warn_error

simplify

num_cores

Value

ts_dist_part_file

Boolean. If the distance function is symmetric.

The value returned if an error occur when calculating a the distance for a pair of
time series.

Boolean. If TRUE (default), a warning will rise when an error occur during the
calculations.

Boolean. If FALSE, returns a list of one (if isSymetric == FALSE) or two ele-
ments (if isSymetric == TRUE).

Numeric. Number of cores

Additional parameters for measureFunc

A data frame with elements (i,j) and a distance value calculated for the time series i and j.

ts_dist_part_file

Calculate distances between pairs of time series stored in files.

Description

This function work:

s similarly as dist_parts_parallel(). The difference is that it reads the time series

from RDS files in a directory. The advantage of this approach is that it does not load all the time
series in memory but reads them only when necessary. This means that this function requires much
less memory and should be preferred when memory consumption is a concern, e.g., huge data set
or very long time series. The disadvantage of this approach is that it requires a high number of file
read operations which considerably takes more time during the calculations. IMPORTANT: the file

order is very impor

Usage

tant so it is highly recommended to use numeric names, e.g., 0013.RDS.

ts_dist_part_file(

input_dir,
num_part,

num_total_parts,

combinations,
measureFunc =

tsdist_cor,

isSymetric = TRUE,

error_value =

NaN,

warn_error = TRUE,
simplify = TRUE,

num_cores = 1

’

ts_to_windows

Arguments

input_dir
num_part

num_total_parts

combinations

measurefFunc

isSymetric
error_value
warn_error

simplify

num_cores

Value

21

Directory path for the directory with time series files (RDS)

Numeric positive between 1 and the total number of parts (num_total_parts).
This value corresponds to the part (chunk) of the total number of parts to be
calculated.

Numeric positive corresponding the total number of parts.

A list composed by arrays of size 2 indicating the files indices to be compared.
If this parameter is passed, then the function does not split all the possibilities
and does not use the parameters num_part and num_total_parts.

Function to be applied to all combinations of time series. This function should
have at least two parameters for each time series. Ex: function(ts1, ts2) cor(tsl,
ts2)

Boolean. If the distance function is symmetric.

The value returned if an error occur when calculating a the distance for a pair of
time series.

Boolean. If TRUE (default), a warning will rise when an error occur during the
calculations.

Boolean. If FALSE, returns a list of one (if isSymetric == FALSE) or two
elements (if isSymetric == TRUE).

Numeric. Number of cores

Additional parameters for measureFunc

A data frame with elements (i,j) and a distance value calculated for the time series i and j. Each
index corresponds to the order where the files are listed.

ts_to_windows

Extract time windows from a time series

Description

This function is useful when constructing a network from a single time series. The returned list can
be directly used to calculate the distance matrix D with ts_dist().

Usage

ts_to_windows(x, width, by = 1)

Arguments

X
width

by

time series
window length

Window step. This is the number of values in and out during the window rollover
process.

22 ts_to_windows

Value

List of windows

Index

dataset_sincos_generate, 2
dist_file_parts_merge, 3
dist_matrix_normalize, 4
dist_parts_merge, 4
dist_percentile, 5

events_from_ts, 5

net_enn, 6
net_enn_approx, 7
net_knn, 8
net_knn_approx, 8
net_weighted, 9

random_ets, 9

ts_dist, 18
ts_dist_part, 19
ts_dist_part_file, 20
ts_to_windows, 21
tsdist_ccf, 10
tsdist_cor, 10
tsdist_dtw, 11
tsdist_es, 12
tsdist_mic, 13
tsdist_nmi, 13
tsdist_voi, 14
tsdist_vr, 15
tsnet_rn, 15
tsnet_vg, 16
tssim_event_sync, 17

23

	dataset_sincos_generate
	dist_file_parts_merge
	dist_matrix_normalize
	dist_parts_merge
	dist_percentile
	events_from_ts
	net_enn
	net_enn_approx
	net_knn
	net_knn_approx
	net_weighted
	random_ets
	tsdist_ccf
	tsdist_cor
	tsdist_dtw
	tsdist_es
	tsdist_mic
	tsdist_nmi
	tsdist_voi
	tsdist_vr
	tsnet_rn
	tsnet_vg
	tssim_event_sync
	ts_dist
	ts_dist_part
	ts_dist_part_file
	ts_to_windows
	Index

