zscorer
facilitates the calculation of a range of anthropometric z-scores
(i.e. the number of standard deviations from the mean) and adds them to survey data:
Weight-for-length (wfl) z-scores for children with lengths between 45 and 110 cm
Weight-for-height (wfh) z-scores for children with heights between 65 and 120 cm
Length-for-age (lfa) z-scores for children aged less than 24 months
Height-for-age (hfa) z-scores for children aged between 24 and 228 months
Weight-for-age (wfa) z-scores for children aged between zero and 120 months
Body mass index-for-age (bfa) z-scores for children aged between zero and 228 months
MUAC-for-age (mfa) z-scores for children aged between 3 and 228 months
Triceps skinfold-for-age (tsa) z-scores for children aged between 3 and 60 months
Sub-scapular skinfold-for-age (ssa) z-scores for children aged between 3 and 60 months
Head circumference-for-age (hca) z-scores for children aged between zero and 60 months
The z-scores
are calculated using the WHO Child Growth Standards [1],[2] for children aged between zero and 60 months or the WHO Growth References [3] for school-aged children and adolescents. MUAC-for-age (mfa) z-scores for children aged between 60 and 228 months are calculated using the MUAC-for-age growth reference developed by Mramba et al. (2017) [4] using data from the USA and Africa. This reference has been validated with African school-age children and adolescents. The zscorer
comes packaged with the WHO Growth References data and the MUAC-for-age reference data.
You can install zscorer
from CRAN:
or you can install the development version of zscorer
from GitHub with:
then load zscorer
The main function in the zscorer
package is addWGSR()
.
To demonstrate its usage, we will use the accompanying dataset in zscorer
called anthro3
. We inspect the dataset as follows:
which returns:
#> psu age sex weight height muac oedema
#> 1 1 10 1 5.7 64.2 125 2
#> 2 1 10 2 5.8 64.4 121 2
#> 3 1 9 2 6.5 62.2 139 2
#> 4 1 11 9 6.5 64.9 129 2
#> 5 1 24 2 6.5 72.9 120 2
#> 6 1 12 2 6.6 69.4 126 2
anthro3
contains anthropometric data from a Rapid Assessment Method (RAM) survey from Burundi.
Anthropometric indices (e.g. weight-for-height z-scores) have not been calculated and added to the data.
We will use the addWGSR()
function to add weight-for-height (wfh) z-scores to the example data:
svy <- addWGSR(data = anthro3, sex = "sex", firstPart = "weight",
secondPart = "height", index = "wfh")
#> ===========================================================================
A new column named wfhz has been added to the dataset:
#> psu age sex weight height muac oedema wfhz
#> 1 1 10 1 5.7 64.2 125 2 -2.73
#> 2 1 10 2 5.8 64.4 121 2 -2.04
#> 3 1 9 2 6.5 62.2 139 2 0.13
#> 4 1 11 9 6.5 64.9 129 2 NA
#> 5 1 24 2 6.5 72.9 120 2 -3.44
#> 6 1 12 2 6.6 69.4 126 2 -2.26
The wfhz
column contains the weight-for-height (wfh) z-scores calculated from the sex
, weight
, and height
columns in the anthro3
dataset. The calculated z-scores are rounded to two decimals places unless the digits
option is used to specify a different precision (run ?addWGSR
to see description of various parameters that can be specified in the addWGSR()
function).
The addWGSR()
function takes up to nine parameters to calculate each index separately, depending on the index required. These are described in the Help files of the zscorer
package which can be accessed as follows:
The standing parameter specifies how “stature” (i.e. length or height) was measured. If this is not specified, and in some special circumstances, height and age rules will be applied when calculating z-scores. These rules are described in the table below.
index | standing | age | height | Action |
---|---|---|---|---|
hfa or lfa | standing | < 731 days | index = lfa height = height + 0.7 cm | |
hfa or lfa | supine | < 731 days | index = lfa | |
hfa or lfa | unknown | < 731 days | index = lfa | |
hfa or lfa | standing | ≥ 731 days | index = hfa | |
hfa or lfa | supine | ≥ 731 days | index = hfa height = height - 0.7 cm | |
hfa or lfa | unknown | ≥ 731 days | index = hfa | |
wfh or wfl | standing | < 65 cm | index = wfl height = height + 0.7 cm | |
wfh or wfl | standing | ≥ 65 cm | index = wfh | |
wfh or wfl | supine | ≤ 110 cm | index = wfl | |
wfh or wfl | supine | more than 110 cm | index = wfh height = height - 0.7 cm | |
wfh or wfl | unknown | < 87 cm | index = wfl | |
wfh or wfl | unknown | ≥ 87 cm | index = wfh | |
bfa | standing | < 731 days | height = height + 0.7 cm | |
bfa | standing | ≥ 731 days | height = height - 0.7 cm |
The addWGSR()
function will not produce error messages unless there is something very wrong with the data or the specified parameters. If an error is encountered in a record then the value NA is returned. Error conditions are listed in the table below.
Error condition | Action |
---|---|
Missing or nonsense value in standing parameter |
Set standing to 3 (unknown) and apply appropriate height or age rules. |
Unknown index specified |
Return NA for z-score. |
Missing sex |
Return NA for z-score. |
Missing firstPart |
Return NA for z-score. |
Missing secondPart |
Return NA for z-score. |
sex is not male (1 ) or female (2 ) |
Return NA for z-score. |
firstPart is not numeric |
Return NA for z-score. |
secondPart is not numeric |
Return NA for z-score. |
Missing thirdPart when index = "bfa" |
Return NA for z-score. |
thirdPart is not numeric when index = "bfa" |
Return NA for z-score. |
secondPart is out of range for specified index |
Return NA for z-score. |
We can see this error behaviour using the example data:
We can display the problem record:
The problem is due to the value 9 in the sex
column, which should be coded 1 (for male) and 2 (for female). Z-scores are only calculated for records with sex specified as either 1 (male) or 2 (female). All other values, including NA, will return NA.
The addWGSR()
function requires that data are recorded using the required units or required codes (see ?addWGSR
to check units required by the different function parameters).
The addWGSR()
function will return incorrect values if the data are not recorded using the required units. For example, this attempt to add weight-for-age z-scores to the example data:
svy <- addWGSR(data = svy, sex = "sex", firstPart = "weight",
secondPart = "age", index = "wfa")
#> ===========================================================================
will give incorrect results:
summary(svy$wfaz)
#> Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
#> 3.450 7.692 9.840 9.684 11.430 15.900 1
The odd range of values is due to age being recorded in months rather than days.
It is simple to convert all ages from months to days:
svy$age <- svy$age * (365.25 / 12)
head(svy)
#> psu age sex weight height muac oedema wfhz wfaz
#> 1 1 304.3750 1 5.7 64.2 125 2 -2.73 3.45
#> 2 1 304.3750 2 5.8 64.4 121 2 -2.04 3.95
#> 3 1 273.9375 2 6.5 62.2 139 2 0.13 5.12
#> 4 1 334.8125 9 6.5 64.9 129 2 NA NA
#> 5 1 730.5000 2 6.5 72.9 120 2 -3.44 3.82
#> 6 1 365.2500 2 6.6 69.4 126 2 -2.26 5.01
before calculating and adding weight-for-age z-scores:
svy <- addWGSR(data = svy, sex = "sex", firstPart = "weight",
secondPart = "age", index = "wfa")
#> ===========================================================================
head(svy)
#> psu age sex weight height muac oedema wfhz wfaz
#> 1 1 304.3750 1 5.7 64.2 125 2 -2.73 -4.13
#> 2 1 304.3750 2 5.8 64.4 121 2 -2.04 -3.19
#> 3 1 273.9375 2 6.5 62.2 139 2 0.13 -1.97
#> 4 1 334.8125 9 6.5 64.9 129 2 NA NA
#> 5 1 730.5000 2 6.5 72.9 120 2 -3.44 -4.61
#> 6 1 365.2500 2 6.6 69.4 126 2 -2.26 -2.56
summary(svy$wfaz)
#> Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
#> -4.610 -1.873 -1.085 -1.154 -0.480 2.600 1
The muac column in the example dataset is recorded in millimetres (mm). We need to convert this to centimetres (cm):
svy$muac <- svy$muac / 10
head(svy)
#> psu age sex weight height muac oedema wfhz wfaz
#> 1 1 304.3750 1 5.7 64.2 12.5 2 -2.73 -4.13
#> 2 1 304.3750 2 5.8 64.4 12.1 2 -2.04 -3.19
#> 3 1 273.9375 2 6.5 62.2 13.9 2 0.13 -1.97
#> 4 1 334.8125 9 6.5 64.9 12.9 2 NA NA
#> 5 1 730.5000 2 6.5 72.9 12.0 2 -3.44 -4.61
#> 6 1 365.2500 2 6.6 69.4 12.6 2 -2.26 -2.56
before using the addWGS()
function to calculate MUAC-for-age z-scores:
svy <- addWGSR(svy, sex = "sex", firstPart = "muac",
secondPart = "age", index = "mfa")
#> ===========================================================================
head(svy)
#> psu age sex weight height muac oedema wfhz wfaz mfaz
#> 1 1 304.3750 1 5.7 64.2 12.5 2 -2.73 -4.13 -1.97
#> 2 1 304.3750 2 5.8 64.4 12.1 2 -2.04 -3.19 -1.88
#> 3 1 273.9375 2 6.5 62.2 13.9 2 0.13 -1.97 -0.14
#> 4 1 334.8125 9 6.5 64.9 12.9 2 NA NA NA
#> 5 1 730.5000 2 6.5 72.9 12.0 2 -3.44 -4.61 -2.70
#> 6 1 365.2500 2 6.6 69.4 12.6 2 -2.26 -2.56 -1.46
As a last example we will use the addWGSR()
function to add body mass index-for-age (bfa) z-scores to the data to create a new variable called bmiAgeZ with a precision of 4 decimal places as:
svy <- addWGSR(data = svy, sex = "sex", firstPart = "weight",
secondPart = "height", thirdPart = "age", index = "bfa",
output = "bmiAgeZ", digits = 4)
#> ===========================================================================
head(svy)
#> psu age sex weight height muac oedema wfhz wfaz mfaz bmiAgeZ
#> 1 1 304.3750 1 5.7 64.2 12.5 2 -2.73 -4.13 -1.97 -2.6928
#> 2 1 304.3750 2 5.8 64.4 12.1 2 -2.04 -3.19 -1.88 -2.0005
#> 3 1 273.9375 2 6.5 62.2 13.9 2 0.13 -1.97 -0.14 0.0405
#> 4 1 334.8125 9 6.5 64.9 12.9 2 NA NA NA NA
#> 5 1 730.5000 2 6.5 72.9 12.0 2 -3.44 -4.61 -2.70 -2.8958
#> 6 1 365.2500 2 6.6 69.4 12.6 2 -2.26 -2.56 -1.46 -2.0796
To maintain support for earlier versions of the package, the earlier functions used to calculate anthropometric z-scores for weight-for-age
, height-for-age
and weight-for-height
have been kept for now until future deprecation. For current users, it is recommended to use addWGSR()
and getWGSR()
functions.
For this example, we will use the getWGS()
function and apply it to dummy data of a 52 month old male child with a weight of 14.6 kg and a height of 98.0 cm.
# weight-for-age z-score
waz <- getWGS(sexObserved = 1, # 1 = Male / 2 = Female
firstPart = 14.6, # Weight in kilograms up to 1 decimal place
secondPart = 52, # Age in whole months
index = "wfa") # Anthropometric index (weight-for-age)
waz
#> [1] -1.187651
# height-for-age z-score
haz <- getWGS(sexObserved = 1,
firstPart = 98, # Height in centimetres
secondPart = 52,
index = "hfa") # Anthropometric index (height-for-age)
haz
#> [1] -1.741175
# weight-for-height z-score
whz <- getWGS(sexObserved = 1,
firstPart = 14.6,
secondPart = 98,
index = "wfh") # Anthropometric index (weight-for-height)
whz
#> [1] -0.1790878
Applying the getWGS()
function results in a calculated z-score
for one child.
For this example, we will use the getCohortWGS()
function and apply it to sample data anthro1
that came with zscorer
.
As you will see, this dataset has the 4 variables you will need to use with getCohortWGS()
to calculate the z-score
for the corresponding anthropometric index. These are age
, sex
, weight
and height
.
head(anthro1)
#> psu age sex weight height muac oedema haz waz whz flag
#> 1 1 6 1 7.3 65.0 146 2 -1.23 -0.76 0.06 0
#> 2 1 42 2 12.5 89.5 156 2 -2.35 -1.39 -0.02 0
#> 3 1 23 1 10.6 78.1 149 2 -2.95 -1.06 0.57 0
#> 4 1 18 1 12.8 81.5 160 2 -0.28 1.42 2.06 0
#> 5 1 52 1 12.1 87.3 152 2 -4.21 -2.68 -0.14 0
#> 6 1 36 2 16.9 93.0 190 2 -0.54 1.49 2.49 0
To calculate the three anthropometric indices for all the children in the sample, we execute the following commands in R:
# weight-for-age z-score
waz <- getCohortWGS(data = anthro1,
sexObserved = "sex",
firstPart = "weight",
secondPart = "age",
index = "wfa")
head(waz, 50)
#> [1] -0.75605549 -1.39021503 -1.05597853 1.41575096 -2.67757242
#> [6] 1.49238050 -0.12987704 -0.02348159 -1.50647344 -1.54381630
#> [11] -2.87495712 -0.43497240 -1.03899540 -1.69281855 -1.31245898
#> [16] -2.21003260 -0.01189226 -0.90917762 -0.67839855 -0.94746695
#> [21] -2.49960425 -0.95659644 -1.65442686 -1.25052760 0.67335751
#> [26] 0.30156301 0.24261346 -2.78670709 -1.15820651 -1.15477183
#> [31] -1.35540820 -0.59134959 -4.14967218 -0.45748752 -0.74331669
#> [36] -1.69725836 -1.05745067 -0.18869508 -0.42095770 -2.21030414
#> [41] -1.30536715 -3.63778143 -0.60662526 -0.54360470 -1.59171780
#> [46] -1.74745738 -0.34803338 0.69896149 -0.74467130 0.18924572
# height-for-age z-score
haz <- getCohortWGS(data = anthro1,
sexObserved = "sex",
firstPart = "height",
secondPart = "age",
index = "hfa")
head(haz, 50)
#> [1] -1.2258169 -2.3475886 -2.9518041 -0.2812852 -4.2056663 -0.5387678
#> [7] -2.4020719 -1.0317699 -2.7410884 -4.7037571 -2.5670550 -2.1144960
#> [13] -2.2323505 -2.3155458 -2.7516165 -2.7930694 0.1121349 -1.9001797
#> [19] -2.9543730 -1.9671042 -3.8716522 0.8667206 -2.8252069 -2.1412285
#> [25] -2.7994643 0.5496459 -1.4372002 -3.7979410 -2.5661752 -1.8301183
#> [31] -1.6548589 -2.7110333 -3.6399642 -1.7955069 -1.6775100 -1.0317699
#> [37] -0.4356881 -1.2660152 0.4990326 -4.6085660 -3.1662351 -1.0695930
#> [43] -1.8477936 -2.5502314 -1.8301183 -2.2755493 -3.2816532 0.4876774
#> [49] -2.4396410 -0.4794744
# weight-for-height z-score
whz <- getCohortWGS(data = anthro1,
sexObserved = "sex",
firstPart = "weight",
secondPart = "height",
index = "wfh")
head(whz, 50)
#> [1] 0.05572347 -0.01974903 0.57469112 2.06231749 -0.14080044
#> [6] 2.49047246 1.83315197 0.93614891 0.18541943 2.11599287
#> [11] -1.96943887 1.06351047 0.35315830 -0.61151003 -0.01049441
#> [16] -0.75038993 -0.08000322 0.31277573 1.56456175 0.22152087
#> [21] -0.08798757 -2.14197877 -0.30804823 0.00778227 3.21041413
#> [26] 0.07434468 1.40966986 -0.81485050 0.63816647 -0.33540392
#> [31] -0.61955533 1.35716952 -2.77364671 1.00831095 0.32842063
#> [36] -1.66705281 -1.21157702 0.89024472 -0.89865037 0.82166393
#> [41] 0.64442137 -4.39847850 0.38411140 1.48299847 -0.93068495
#> [46] -0.88558228 1.69551410 0.65143649 0.61269397 0.59813891
Applying the getCohortWGS()
function results in a vector of calculated z-scores
for all children in the cohort or sample.
For this example, we will use the getAllWGS()
function and apply it to sample data anthro1
that came with zscorer
.
# weight-for-age z-score
zScores <- getAllWGS(data = anthro1,
sex = "sex",
weight = "weight",
height = "height",
age = "age",
index = "all")
head(zScores, 20)
#> waz haz whz
#> 1 -0.75605549 -1.2258169 0.05572347
#> 2 -1.39021503 -2.3475886 -0.01974903
#> 3 -1.05597853 -2.9518041 0.57469112
#> 4 1.41575096 -0.2812852 2.06231749
#> 5 -2.67757242 -4.2056663 -0.14080044
#> 6 1.49238050 -0.5387678 2.49047246
#> 7 -0.12987704 -2.4020719 1.83315197
#> 8 -0.02348159 -1.0317699 0.93614891
#> 9 -1.50647344 -2.7410884 0.18541943
#> 10 -1.54381630 -4.7037571 2.11599287
#> 11 -2.87495712 -2.5670550 -1.96943887
#> 12 -0.43497240 -2.1144960 1.06351047
#> 13 -1.03899540 -2.2323505 0.35315830
#> 14 -1.69281855 -2.3155458 -0.61151003
#> 15 -1.31245898 -2.7516165 -0.01049441
#> 16 -2.21003260 -2.7930694 -0.75038993
#> 17 -0.01189226 0.1121349 -0.08000322
#> 18 -0.90917762 -1.9001797 0.31277573
#> 19 -0.67839855 -2.9543730 1.56456175
#> 20 -0.94746695 -1.9671042 0.22152087
Applying the getAllWGS()
function results in a data frame of calculated z-scores
for all children in the cohort or sample for all the anthropometric indices.
To use the included Shiny app, run the following command in R:
This will initiate the Shiny app using the installed web browser in your current device as shown below:
World Health Organization. (2006). WHO child growth standards : length/height-for-age, weight-for-age, weight-for-length, weight -for-height and body mass index-for-age : methods and development. World Health Organization. https://apps.who.int/iris/handle/10665/43413
World Health Organization. (2007). WHO child growth standards : head circumference-for-age, arm circumference-for-age, triceps skinfold-for-age and subscapular skinfold-for-age : methods and development. World Health Organization. https://apps.who.int/iris/handle/10665/43706
de Onis M. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Org. 2007;85: 660–667. doi:10.2471/BLT.07.043497
Mramba L, Ngari M, Mwangome M, Muchai L, Bauni E, Walker AS, et al. A growth reference for mid upper arm circumference for age among school age children and adolescents, and validation for mortality: growth curve construction and longitudinal cohort study. BMJ. 2017;: j3423–8. doi:10.1136/bmj.j3423