Providing a collection of techniques for semi-supervised classification, regression and clustering. In semi-supervised problem, both labeled and unlabeled data are used to train a classifier. The package includes a collection of semi-supervised learning techniques: self-training, co-training, democratic, decision tree, random forest, 'S3VM' ... etc, with a fairly intuitive interface that is easy to use.
Version: | 0.9.3.3 |
Depends: | R (≥ 2.10) |
Imports: | stats, parsnip, plyr, dplyr (≥ 0.8.0.1), magrittr, purrr, rlang (≥ 0.3.1), proxy, methods, generics, utils, RANN, foreach, RSSL, conclust |
LinkingTo: | Rcpp, RcppArmadillo |
Suggests: | caret, tidymodels, e1071, C50, kernlab, testthat, doParallel, tidyverse, factoextra, survival, covr, kknn, randomForest, ranger, MASS, nlme, knitr, rmarkdown |
Published: | 2021-07-22 |
Author: | Francisco Jesús Palomares Alabarce [aut, cre], José Manuel Benítez [ctb], Isaac Triguero [ctb], Christoph Bergmeir [ctb], Mabel González [ctb] |
Maintainer: | Francisco Jesús Palomares Alabarce <fpalomares at correo.ugr.es> |
License: | GPL-3 |
URL: | https://dicits.ugr.es/software/SSLR/ |
NeedsCompilation: | yes |
Materials: | NEWS |
CRAN checks: | SSLR results |
Reference manual: | SSLR.pdf |
Vignettes: |
classification clustering fit introduction models regression |
Package source: | SSLR_0.9.3.3.tar.gz |
Windows binaries: | r-devel: SSLR_0.9.3.3.zip, r-release: SSLR_0.9.3.3.zip, r-oldrel: SSLR_0.9.3.3.zip |
macOS binaries: | r-release (arm64): SSLR_0.9.3.3.tgz, r-oldrel (arm64): SSLR_0.9.3.3.tgz, r-release (x86_64): SSLR_0.9.3.3.tgz, r-oldrel (x86_64): SSLR_0.9.3.3.tgz |
Old sources: | SSLR archive |
Please use the canonical form https://CRAN.R-project.org/package=SSLR to link to this page.