classifly: Explore Classification Models in High Dimensions

Given $p$-dimensional training data containing $d$ groups (the design space), a classification algorithm (classifier) predicts which group new data belongs to. Generally the input to these algorithms is high dimensional, and the boundaries between groups will be high dimensional and perhaps curvilinear or multi-faceted. This package implements methods for understanding the division of space between the groups.

Version: 0.4.1
Imports: class, plyr, stats
Suggests: e1071, MASS, rpart
Published: 2022-05-20
Author: Hadley Wickham
Maintainer: Hadley Wickham <h.wickham at gmail.com>
License: MIT + file LICENSE
URL: http://had.co.nz/classifly
NeedsCompilation: no
Materials: NEWS ChangeLog
CRAN checks: classifly results

Documentation:

Reference manual: classifly.pdf

Downloads:

Package source: classifly_0.4.1.tar.gz
Windows binaries: r-devel: classifly_0.4.1.zip, r-release: classifly_0.4.1.zip, r-oldrel: classifly_0.4.1.zip
macOS binaries: r-release (arm64): classifly_0.4.1.tgz, r-oldrel (arm64): classifly_0.4.1.tgz, r-release (x86_64): classifly_0.4.1.tgz, r-oldrel (x86_64): classifly_0.4.1.tgz
Old sources: classifly archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=classifly to link to this page.