hdImpute: A Batch Process for High Dimensional Imputation
A correlation-based batch process for fast imputation for
high dimensional missing data problems via chained random forests.
See Stekhoven and Bühlmann (2012) <doi:10.1093/bioinformatics/btr597>
for more on missForest, and Mayer (2022)
<https://github.com/mayer79/missRanger> for more on missRanger.
Version: |
0.1.1 |
Imports: |
missRanger, plyr, purrr, magrittr, tibble, dplyr, tidyselect, cli |
Suggests: |
testthat (≥ 3.0.0), knitr, rmarkdown, usethis, missForest, tidyverse |
Published: |
2022-04-20 |
Author: |
Philip Waggoner [aut, cre] |
Maintainer: |
Philip Waggoner <philip.waggoner at gmail.com> |
BugReports: |
https://github.com/pdwaggoner/hdImpute/issues |
License: |
MIT + file LICENSE |
NeedsCompilation: |
no |
Materials: |
README |
CRAN checks: |
hdImpute results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=hdImpute
to link to this page.