A fast, flexible, and comprehensive framework for
quantitative text analysis in R. Provides functionality for corpus management,
creating and manipulating tokens and n-grams, exploring keywords in context,
forming and manipulating sparse matrices
of documents by features and feature co-occurrences, analyzing keywords, computing feature similarities and
distances, applying content dictionaries, applying supervised and unsupervised machine learning,
visually representing text and text analyses, and more.
Version: |
3.2.3 |
Depends: |
R (≥ 3.5.0), methods |
Imports: |
fastmatch, magrittr, Matrix (≥ 1.2), Rcpp (≥ 0.12.12), RcppParallel, SnowballC, stopwords, stringi, xml2, yaml |
LinkingTo: |
Rcpp, RcppParallel, RcppArmadillo (≥ 0.7.600.1.0) |
Suggests: |
rmarkdown, spelling, testthat, formatR, tm (≥ 0.6), tokenizers, knitr, lda, lsa, dplyr, purrr, quanteda.textmodels, quanteda.textstats, quanteda.textplots, RColorBrewer, slam, spacyr, stm, text2vec, topicmodels, jsonlite, quanteda, tibble, tidytext, xtable, ggplot2 |
Published: |
2022-08-29 |
Author: |
Kenneth Benoit
[cre, aut, cph],
Kohei Watanabe
[aut],
Haiyan Wang [aut],
Paul Nulty [aut],
Adam Obeng [aut],
Stefan Müller
[aut],
Akitaka Matsuo
[aut],
William Lowe
[aut],
Christian Müller [ctb],
European Research Council [fnd] (ERC-2011-StG 283794-QUANTESS) |
Maintainer: |
Kenneth Benoit <kbenoit at lse.ac.uk> |
BugReports: |
https://github.com/quanteda/quanteda/issues |
License: |
GPL-3 |
URL: |
https://quanteda.io |
NeedsCompilation: |
yes |
SystemRequirements: |
C++11 |
Language: |
en-GB |
Citation: |
quanteda citation info |
Materials: |
README NEWS |
In views: |
NaturalLanguageProcessing |
CRAN checks: |
quanteda results |