Visual 2D point and contour plots for binary classification modeling under algorithms such as glm(), randomForest(), gbm(), nnet() and svm(), presented over two dimensions generated by FAMD and MCA methods. Package 'FactoMineR' for multivariate reduction functions and package 'MBA' for interpolation functions are used. The package can be used to visualize the discriminant power of input variables and algorithmic modeling, explore outliers, compare algorithm behaviour, etc. It has been created initially for teaching purposes, but it has also many practical uses.
Version: | 0.1.0 |
Depends: | R (≥ 3.5.0) |
Imports: | gbm, randomForest, nnet (≥ 7.3.12), e1071, MASS (≥ 7.3.51.4), magrittr, FactoMineR (≥ 2.3), ggplot2 (≥ 3.3.0), mltools, dplyr, data.table, MBA, pROC, ggrepel |
Suggests: | knitr, markdown, egg |
Published: | 2020-10-24 |
Author: | Javier Portela [aut, cre] |
Maintainer: | Javier Portela <javipgm at gmail.com> |
License: | GPL (≥ 3) |
NeedsCompilation: | no |
CRAN checks: | visualpred results |
Reference manual: | visualpred.pdf |
Vignettes: |
Advanced settings visualpred package Comparing algorithms Plotting outliers |
Package source: | visualpred_0.1.0.tar.gz |
Windows binaries: | r-devel: visualpred_0.1.0.zip, r-release: visualpred_0.1.0.zip, r-oldrel: visualpred_0.1.0.zip |
macOS binaries: | r-release (arm64): visualpred_0.1.0.tgz, r-oldrel (arm64): visualpred_0.1.0.tgz, r-release (x86_64): visualpred_0.1.0.tgz, r-oldrel (x86_64): visualpred_0.1.0.tgz |
Please use the canonical form https://CRAN.R-project.org/package=visualpred to link to this page.