mixgb: Multiple Imputation Through 'XGBoost'

Multiple imputation using 'XGBoost', bootstrapping and predictive mean matching as described in Deng and Lumley (2021) <arXiv:2106.01574>. It is built under Fully Conditional Specification, where 'XGBoost' imputation models are built for each incomplete variable. It supports various types of variables and offers different settings regarding bootstrapping and predictive mean matching. Visual diagnostic functions are also provided for inspecting multiply imputed values for incomplete variables.

Version: 0.1.0
Depends: R (≥ 3.5.0)
Imports: data.table, ggplot2, Matrix, mice, Rfast, rlang, scales, stats, tidyr, utils, xgboost
Suggests: knitr, rmarkdown, RColorBrewer
Published: 2022-06-07
Author: Yongshi Deng ORCID iD [aut, cre], Thomas Lumley [ths]
Maintainer: Yongshi Deng <yongshi.deng at auckland.ac.nz>
BugReports: https://github.com/agnesdeng/mixgb/issues
License: GPL (≥ 3)
URL: https://github.com/agnesdeng/mixgb, https://agnesdeng.github.io/mixgb/
NeedsCompilation: no
Materials: README
CRAN checks: mixgb results

Documentation:

Reference manual: mixgb.pdf
Vignettes: Imputing newdata with a saved mixgb imputer
mixgb: Multiple Imputation Through XGBoost

Downloads:

Package source: mixgb_0.1.0.tar.gz
Windows binaries: r-devel: mixgb_0.1.0.zip, r-release: mixgb_0.1.0.zip, r-oldrel: mixgb_0.1.0.zip
macOS binaries: r-release (arm64): mixgb_0.1.0.tgz, r-oldrel (arm64): mixgb_0.1.0.tgz, r-release (x86_64): mixgb_0.1.0.tgz, r-oldrel (x86_64): mixgb_0.1.0.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=mixgb to link to this page.